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Series Foreword

The Zeuthen Lectures offer a forum for leading scholars to develop
and synthesize novel results in theoretical and applied economics.
They aim to present advances in knowledge in a form accessible to
a wide audience of economists and advanced students of econom-
ics. The choice of topics will range from abstract theorizing to
economic history. Regardless of the topic, the emphasis in the lec-
ture series will be on originality and relevance. The Zeuthen Lec-
tures are organized by the Institute of Economics, University of
Copenhagen.

The lecture series is named after Frederik Zeuthen, a former
professor at the Institute of Economics, and it is only appropriate
that the ªrst Zeuthen lecturer is Ariel Rubinstein, who has reªned
and developed a research program to which Frederik Zeuthen
made important initial contributions.

Karl Gunnar Persson





Preface

This book is a collection of notes I have developed over the last
eight years and presented in courses and lectures at the London
School of Economics (1989), Hebrew University (1989), University
of Pennsylvania (1990), Columbia University (1991), Princeton Uni-
versity (1992, 1995), University of Oslo (1994), Paris X (1995), Ober-
wesel (1995), New York University (1996), and my home university,
Tel Aviv (1990, 1994). I completed writing the book while I was a
visiting scholar at the Russell Sage Foundation, New York. A pre-
liminary version was presented as the Core Lectures at Louvain-
La-Neuve in October 1995; this version served as the basis for my
Zeuthen Lectures at the University of Copenhagen in December
1996.

The book provides potential material for a one-term graduate
course. The choice of material is highly subjective. Bibliographic
notes appear at the end of each chapter. The projects that follow
those notes contain speculative material and ideas that the reader
should consider with caution.

My thanks to my friends Bart Lipman and Martin Osborne for
their detailed comments and encouragement. I am grateful to all
those students, especially Dana Heller, Rani Spigeler, and Ehud
Yampuler, who commented on drafts of several chapters, to Nina
Reshef, who helped edit the English-language manuscript, to Dana
Heller, who prepared the index, and to Gregory McNamee who
copyedited the manuscript.





Introduction

1 “Modeling” and “Bounded Rationality”

The series of lectures that constitute the chapters in this book con-
cerns modeling bounded rationality. The choice of the title “modeling
bounded rationality” rather than “models of bounded rationality”
or “economic models of bounded rationality” emphasizes that the
focus is not on substantive conclusions derived from the models
but on the tools themselves. As to the term bounded rationality,
putting fences around a ªeld is often viewed as a picky activity.
Nonetheless, it is important in this case in that the term has been
used in many ways, sometimes just to say that we deal with incom-
plete (or bad) models. Lying within the domain of this investigation
are models in which elements of the process of choice are embedded
explicitly. Usually, economic models do not spell out the procedures
by which decisions of the economic units are made; here, we are
interested in models in which procedural aspects of decision mak-
ing are explicitly included.

I will not touch the growing literature on evolutionary economics
for three reasons. First, the topic of evolutionary/learning models
deserves a complete and separate series of lectures. Second, the
mathematical methods involved in models of evolutionary econom-
ics are quite different than those used here. Third, and most impor-
tant, I want to place an admittedly vague dividing line between the



two bodies of research.  Within the scope of our discussion, I wish
to include models in which decision makers make deliberate deci-
sions by applying procedures that guide their reasoning about
“what” to do, and probably also about “how” to decide. In contrast,
evolutionary models treat agents as automata, merely responding
to changing environments, without deliberating about their decisions.

2 The Aim of This Book

The basic motivation for studying models of bounded rationality
springs from our dissatisfaction with the models that adhere to the
“perfect rational man” paradigm. This dissatisfaction results from
the strong tension arising from a comparison of the assumptions
made by economic modelers about “perfect rationality” with obser-
vations about human behavior. This situation would be much less
disturbing if we were able to perceive microeconomic models as
“miraculous machines” that produce empirical linkages between
economic parameters. I doubt that this is the case. I adhere to the
view that the main objective of economic theory is to deduce inter-
esting relationships between concepts that appear in our reasoning
on interactive situations. Adopting this approach makes it impor-
tant to examine the plausibility of the assumptions, and not only
the conclusions.

The emphasis on the modeling process, rather than on the sub-
stance, does not diminish the importance of the goal, which is to
construct models that will be useful tools in providing explanations
of economic (or other) phenomena that could not otherwise be
explained (ideally comparable to results such as those achieved by
Spence’s signaling model). The following are examples of basic in-
tuitions that await proper explanation:

•  Advertising is an activity that is supposed to inºuence an eco-
nomic agent’s decisions not only by supplying information and
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changing preferences, but also by inºuencing the way decisions are
made.

•  Decision makers are not equally capable of analyzing a situation
even when the information available to all of them is the same. The
differences in their economic success can be attributed to these
differences.

•  Many social institutions, like standard contracts and legal proce-
dures, exist, or are structured as they are, in order to simplify
decision making.

3 The State of the Art

Dissatisfaction with classical theory and attempts to replace the
basic model of rational man with alternative decision models are
not new. Ideas of how to model bounded rationality have been
lurking in the economics literature for many years. Papers written
by Herbert Simon as early as the mid-1950s have inspired many
proposals in this vein. Although Simon received worldwide recog-
nition for his work, only recently has his call affected mainstream
economic theory. Only a few of the modeling tools we will discuss
here have been applied to economic settings. What is more, the
usefulness of these models is still far from being established. In fact,
I have the impression that many of us feel that the attempts to
model bounded rationality have yet to ªnd the right track. It is
difªcult to pinpoint any economic work not based on fully rational
microeconomic behavior that yields results as rich, deep, and in-
teresting as those achieved by standard models assuming full
rationality.

I consider these to be the three fundamental obstacles we have
to overcome:

•  The construction of pertinent new theories of choice. We have
clear, casual, and experimental observations that indicate
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systematic deviations from the rational man paradigm. We look for
models that will capture this evidence.

•  The reªnement of the notion of choice. Decision makers also make
decisions about how and when to decide; we look for models that
will relate to such decisions as well.

•  The transformation of the notion of equilibrium. Current solution
concepts, especially those concerning strategic interactions and ra-
tional expectations, are based on an implicit assumption that indi-
viduals know the prevailing equilibrium. But decision makers also
have to make inferences about the environment in which they
operate, an activity dependent on their ability to analyze the situ-
ation. We look for models in which the making of inferences will
be the basic activity occupying the decision maker.

The evaluation that very little has been achieved makes one
wonder whether it is at all possible to construct interesting models
without the assumption of substantive rationality. Is there some-
thing fundamental that prevents us from constructing useful
bounded rationality models, or have we been “brainwashed” by
our conventional models? One intriguing idea is that substantive
rationality is actually a constraint on the modeler rather than an
assumption about the real world. The rationality of the decision
maker can be seen as the minimal discipline to be imposed on the
modeler. Our departure from the rational man paradigm represents
a removal of those chains. However, there are an inªnite number
of “plausible” models that can explain social phenomena; without
such chains we are left with a strong sense of arbitrariness. Al-
though I have nothing to contribute to the discussion of this issue,
I think it is worth mentioning.

In any case, even if one believes like Kenneth Arrow (1987), that
“there is no general principle that prevents the creation of an eco-
nomic theory based on other hypotheses than that of rationality,”
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the only way to prove the power of including the procedural as-
pects of decision making in speciªc economic theories is by actually
doing so. This is the challenge for scholars of “bounded rationality.”

4 A Personal Note

This book is not intended to be a triumphal march of a ªeld of
research but a journey into the dilemmas faced by economic theo-
rists attempting to expand the scope of the theory in the direction
of bounded rationality. Some of the ideas I discuss are only just
evolving.

By choosing such a topic for this series of lectures, I am taking
the risk that my presentation will be less clear, less persuasive, and
much more speculative than if I were discussing a more established
topic. However, these attributes can also be advantageous, espe-
cially to the students among the readers. Newcomers to economic
theory are in the best position to pursue themes that require imagi-
nation and invention. Students have a major advantage over us
teachers in that, they are not (yet) indoctrinated by the body of
literature so ªrmly rooted in the notion of rational man.

Finally, within the wide borders I have tried to draw, the selection
of material is strongly biased toward topics with which I have been
personally involved, either as an author or as an interested ob-
server. I have not tried to be objective in the choice of topics, nor
have I tried to summarize views held by “the profession.” In this
respect, the book is personal and aims at presenting my own views
and knowledge of the subject.

5 Bibliographic Notes

Some of the methodological issues regarding the construction
of new models on hypotheses other than that of rationality are
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discussed in Hogarth and Reder (1987). In particular, the reader is
encouraged to review the four articles by Arrow, Lucas, Thaler, and
Tversky and Kahneman.

Selten (1989) proposes an alternative view of bounded rationality
and provides an overview of some of the issues discussed up to the
late 1980s. For other views on modeling rational and bounded-
rational players, see Binmore (1987, 1988) and Aumann (1996). Lip-
man (1995a) contains a short survey covering some of the topics
discussed in this book.
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1 Bounded Rationality in
Choice

1.1 The “Rational Man”

In economic theory, a rational decision maker is an agent who has
to choose an alternative after a process of deliberation in which he
answers three questions:

•  “What is feasible?”

•  “What is desirable?”

•  “What is the best alternative according to the notion of desirabil-
ity, given the feasibility constraints?”

This description lacks any predictive power regarding a single
decision problem, inasmuch as one can always explain the choice
of an alternative, from a given set, as an outcome of a process of
deliberation in which that outcome is indeed considered the best.
Herein lies a key assumption regarding the rational man: The op-
eration of discovering the feasible alternatives and the operation of
deªning the preferences are entirely independent. That is, if the
decision maker ranks one alternative above another when facing a
set of options that includes both, he will rank them identically when
encountering any other decision problem in which these two alter-
natives are available.

Formally, the most abstract model of choice refers to a decision
maker who faces choices from sets of alternatives that are subsets



of some “grand set” A. A choice problem, A, is a subset of A; the task
of the decision maker is to single out one element of A.

To conclude, the scheme of the choice procedure employed by
the rational decision maker is as follows:

(P-1) The rational man The primitive of the procedure is a prefer-
ence relation i over a set A. Given a choice problem A ⊆ A, choose
an element x* in A that is i-optimal (that is, x* i x for all x ∈ A).

For simplicity, it will be assumed through the rest of this chapter
that preferences are asymmetric (i.e., if a i b then not b i a). Thus,
the decision maker has in mind a preference relation, i, over the
set of alternatives A. Facing a problem A, the decision maker
chooses an element in the set A, denoted by Ci(A), satisfying
Ci(A) i x for all x ∈ A. Sometimes we replace the preference
relation with a utility function, u: A → R, with the understanding
that u(a) ≥ u(a′) is equivalent to a i a′. (Of course, some assumptions
are needed for establishing the equivalence between the existence
of preferences and the existence of a utility function).

Let us uncover some of the assumptions buried in the rational
man procedure:

•  Knowledge of the problem The decision maker has a clear picture
of the choice problem he faces: he is fully aware of the set of
alternatives from which he has to choose (facing the problem A, the
decision maker can choose any x ∈ A, and the chosen x* cannot be
less preferred than any other x ∈ A). He neither invents nor discov-
ers new courses of actions (the chosen x* cannot be outside the
set A).

•  Clear preferences The decision maker has a complete ordering
over the entire set of alternatives.

•  Ability to optimize The decision maker has the skill necessary to
make whatever complicated calculations are needed to discover his
optimal course of action. His ability to calculate is unlimited, and
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he does not make mistakes. (The simplicity of the formula
“maxa∈Au(a)” is misleading; the operation may, of course, be very
complex.)

•  Indifference to logically equivalent descriptions of alternatives and choice
sets The choice is invariant to logically equivalent changes of de-
scriptions of alternatives. That is, replacing one “alternative” with
another “alternative” that is “logically equivalent” does not affect
the choice. If the sets A and B are equal, then the choice from A is
the same as the choice from B.

Comment Often the preferences on a set of alternatives are derived
from a more detailed structure. For example, it is often the case that
the decision maker bases his preferences, deªned on A, on the
calculation of consequences yielded from A. That is, he perceives a set
of possible consequences, C. He has a preference relation over C
(probably represented by a numerical function, V: C → R). He
perceives the causal dependence of a consequence on a chosen
alternative, described by a consequence function, f: A → C. He then
chooses, from any set A ⊆ A, the alternative in A that yields the
best consequence—that is, he solves the optimization problem
maxa∈AV(f(a)). In other words, the preference relation on A is in-
duced from the composition of the consequence function and the
preference relation on C.
 In order to deal with the situation in which the decision maker
assumes that the connection between the action and the conse-
quence has elements of uncertainty, we usually enrich the model.
A space of states, �, is added. One element of � represents the list
of exogenous factors that are relevant to the decision maker’s inter-
ests and are beyond his control. The consequence function is taken
to depend on � as well; that is, f: A × � → C. Each action a ∈ A
corresponds to an “act” (a function that speciªes an element in C
for each state in �) a(ω) = f(a, ω). The preference relation on A is
induced from a preference on “acts.” A choice problem now is a
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pair (A, Ω) where A ⊆ A is the set of alternatives, whereas Ω ⊆ �
is the set of states not excluded by the information the decision
maker receives. Usually, it is taken that the rational man’s choice is
based on a belief on the set �, a belief he updates by the Bayesian
formula whenever he is informed that an event Ω ⊆ � happens.

Note that underlying this structure, both with and without un-
certainty, is the assumption that the decision maker clearly per-
ceives the action–consequence relationship.

1.2 The Traditional Economist’s Position

Economists have often been apologetic about the assumption that
decision makers behave like the “rational man.” Introspection sug-
gests that those assumptions are often unrealistic. This is probably
the reason why economists argued long ago that the rational man
paradigm has to be taken less literally.

The “traditional” argument is roughly this: In economics, we are
mainly interested in the behavior of the decision maker and not in
the process leading to his decision. Even if the decision maker does
not behave in the manner described by the rational man procedure,
it still may be the case that his behavior can be described as if he
follows such a procedure. This is sufªcient for the purpose of
economics.

A good demonstration of this “as if” idea is given in consumer
theory. Imagine a consumer who operates in a world with two
goods, 1 and 2, who has budget I, and who faces prices p1 and p2.
Assume that the consumer allocates the fraction α of his income to
good 1 and (1 − α) of the income to good 2 (for every I, p1 and p2).
This behavior rule may be the result of activating a rule of thumb.
Nonetheless, it may still be presented as if it is the outcome of the
consumer’s maximization of the utility function x1

αx2
1−α.

Let us return to the general framework. The following argument
was designed to support the traditional point of view. Consider a
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decision maker whose behavior regarding choices from subsets of
the set A is described by a function C whose domain is the set of
all non-empty subsets of A and whose range is the set A. The ele-
ment C(A) is interpreted as the decision maker’s choice whenever he
confronts the decision problem A. For every A, C(A) ∈ A. (Note that
for simplicity, and in contrast to some of the literature, it is required
here that C(A) is a single element in A and not a subset of A).

We now come to an important necessary and sufªcient condition
for a choice function to be induced by a decision maker who be-
haves like a rational man. It is said that the decision maker’s behav-
ior function C satisªes the consistency condition (sometimes referred
to as the “independence of irrelevant alternatives”) if for all A1 ⊆
A2 ⊆ A, if C(A2) ∈ A1 then C(A1) = C(A2). That is, if the element
chosen from the large set (A2) is a member of the smaller set (A1),
then the decision maker chooses this element from the smaller set
as well. It is easy to see that C is consistent if and only if there exists
a preference relation i over A such that for all A ⊆ A, C(A) is the
i-maximal element in A.

Proof Of course, if for every subset A the element C(A) is the
i-maximal element in A, then the choice function C satisªes the
consistency condition. Assume that C satisªes the consistency con-
dition. Deªne a preference relation i by a i b if a = C({a, b}). We
ªrst verify that i is transitive. If a i b and b i c, then a = C({a, b})
and b = C({b, c}). Then C({a, b, c}) = a; otherwise, the consistency
condition is violated with respect to one of the sets, {a, b} or {b, c}.
Therefore, by the consistency condition, C({a, c}) = a; that is, a i c.
To verify that for every set A, C(A) is the i-maximal element in A,
notice that for any element a ∈ A, {a, C(A)} ⊆ A and because C
satisªes the consistency condition, C({a, C(A)}) = C(A), therefore by
deªnition of i, C(A) i a.

The conclusion from this simple analysis is that choice functions
that satisfy the consistency condition, even if they are not derived
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from a rational man procedure, can be described as if they are
derived by some rational man. The signiªcance of this result de-
pends on the existence of plausible procedures that satisfy the
consistency condition even though they do not belong to the
scheme (P-1) of choosing a maximal element. One such classic
example is what Simon termed the satisªcing procedure:

(P-2) The primitives of the procedure are O, an ordering of the set
A, and a set S ⊆ A (as well as a tie-breaking rule; see below). For
any decision problem A, sequentially examine the alternatives in A,
according to the ordering O, until you confront an alternative that
is a member of the set S, the set of “satisfactory” alternatives. Once
you ªnd such an element, stop and choose it. For the case where
no element of A belongs to S, use the tie-breaking rule that satisªes
the consistency requirement (such as choosing the last element
in A).

Any procedure within the scheme (P-2) satisªes the consistency
condition. To verify this, suppose that A1 ⊆ A2 and C(A2) ∈ A1, that
is, C(A2) is the ªrst (according to the ordering O) satisfactory alter-
native in A2, then it is also the ªrst satisfactory alternative in the
subset A1. If C(A2) ∉ S, then A1 also does not include any element
belonging to S, and because the tie-breaking rule satisªes the con-
sistency condition, we have C(A2) = C(A1).

A special case of (P-2) is one where the set S is derived from two
parameters, a function V and a number v*, so that S = {a ∈ A | V(a) ≥
v*}. The function V assigns a number to each of the potential alter-
natives, whereas v* is the aspiration level. The decision maker
searches for an alternative that satisªes the condition that its value
be above the aspiration level. For example, in the “ªnding a
worker” problem, the set of alternatives is the set of candidates for
a job, the ordering might be the alphabetical ordering of the candi-
dates’ names or an enumeration of their social security numbers,
V(a) may be the grade that candidate a gets in a test, and v* is the
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required minimal grade. Note that instead of having a maximiza-
tion problem, “maxa∈AV(a),” the decision maker who follows (P-2)
solves what seems to be a simpler problem: “Find an a ∈ A for
which V(a) ≥ v*.”

1.3 The Attack on the Traditional Approach

The fact that we have found a family of plausible procedures that
are not similar to the rational man procedure yet consistent with
rationality provides support for the traditional economic position.
However, the problem with this position is that it is difªcult to pro-
pose additional procedures for inducing consistent choice functions.

To appreciate the difªculties in ªnding such examples, note that
in (P-2) the ordering in which the alternatives are examined is ªxed
independent of the particular choice set. However, if the ordering
by which the alternatives are examined is dependent on the set, a
clash with the consistency condition arises. Consider the following
decision procedure scheme:

(P-3) The primitives of the procedure are two different orderings
of A, O1 and O2, a natural number n*, and a set S (plus a tie-breaking
rule). For a choice problem A, employ (P-2) with the ordering O1 if
the number of elements in A is below n* and with O2 if the number
of alternatives in A is above n*.

It is easy to see that a procedure within the scheme (P-3) will often
not satisfy the consistency condition. The fact that an element is the
ªrst element, by the ordering O2, belonging to S in a “large” set A2

does not guarantee that it is the ªrst, by the other ordering O1,
belonging to S in a “smaller” subset A1.

In the rest of this section, we will refer to three motives often
underlying procedures of choice that may conºict with the rational
man paradigm: “framing effects,” the “tendency to simplify prob-
lems,” and the “search for reasons.” In the next section, we present
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evidence from the psychological literature that conªrms that these
motives systematically appear in human choice situations.

Framing Effects
By framing effects, we refer to phenomena rooted solely in the way
that the decision problem is framed, not in the content of the choice
problem. Recall that a choice problem is deªned as a choice of an
element from a set. In practice, this set has to be described; the way
that it is described may affect the choice. For example, the model
does not allow distinct choices between the lists of alternatives
(a, b, b) and (a, a, a, b, b) because the sets {a, b, b} and {a, a, a, b, b}
are identical. If, however, the language in which the sets are speci-
ªed is a language of “lists,” then the following procedural scheme
is well deªned:

(P-4) Choose the alternative that appears in the list most often (and
apply some rule that satisªes the consistency condition for tie-
breaking).

Of course, such a procedure does not satisfy the consistency condi-
tion. It does not even induce a well-deªned choice function.

The Tendency to Simplify Decision Problems
Decision makers tend to simplify choice problems, probably as a
method of saving deliberation resources. An example of a proce-
dure motivated by the simpliªcation effort is the following:

(P-5) The primitives of the procedure are an ordering O and a
preference relation i on the set A. Given a decision problem A,
pick the ªrst and last elements (by the ordering O) among the set
A and choose the better alternative (by the preference relation i)
between the two.

In this case, the decision maker does not consider all the elements
in A but only those selected by a predetermined rule. From this
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sample, he then chooses the i-best alternative. If the alternatives
are a, b, and c, the preference ranking is b � a � c, and the ordering
O is alphabetical, then the alternative a will be chosen from among
{a, b, c} and b from among {a, b}, a choice conºicting with the
consistency condition. (Try to verify the plausibility of this proce-
dural motive by examining the method by which you make a choice
from a large catalog.)

The Search for Reasons
Choices are often made on the basis of reasons. If the reasons are
independent of the choice problem, the fact that the decision maker
is motivated by them does not cause any conºict with rationality.
Sometimes, however, the reasons are “internal,” that is, dependent
on the decision problem; in such a case, conºict with rationality is
often unavoidable. For example, in the next scheme of decision
procedures, the decision maker has in mind a partial ordering, D,
deªned on A. The interpretation given to a D b is that a “clearly
dominates” b. Given a decision problem, A, the decision maker
selects an alternative that dominates over more alternatives than
does any other alternative in the set A.

(P-6) The primitive is a partial ordering D. Given a problem A, for
each alternative a ∈ A, count the number N(a) of alternatives in A
that are dominated (according to the partial ordering D). Select the
alternative a* so that N(a*) ≥ N(a) for all a ∈ A (and use a rule that
satisªes the consistency requirement for tie-breaking).

By (P-6) a reason for choosing an alternative is the “large number
of alternatives dominated by the chosen alternative.” This is an
“internal reason” in the sense that the preference of one alternative
over another is determined by the other elements in the set. Of
course, (P-6) often does not satisfy the consistency condition.
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1.4 Experimental Evidence

Economic theory relies heavily on intuitions and casual observa-
tions of real life. However, despite being an economic theorist who
rarely approaches data, I have to agree that an understanding of
the procedural aspects of decision making should rest on an em-
pirical or experimental exploration of the algorithms of decision.
Too many routes diverge from the rational man paradigm, and the
input of experimentation may offer some guides for moving
onward.

The refutation of the rational man paradigm by experimental
evidence is not new. As early as 1955 Simon asserted, “Recent
developments in economics . . . have raised great doubts as to
whether this schematized model of economic man provides a suit-
able foundation on which to erect a theory—whether it be a theory
of how ªrms do behave or of how they ‘should’ rationally behave.”
Since then, a great deal of additional experimental evidence has
been accumulated, mainly by psychologists. Of particular interest
is the enormous literature initiated by Daniel Kahneman, Amos
Tversky, and their collaborators. We now have a fascinating com-
pilation of experimental data demonstrating the circumstances un-
der which rationality breaks down and other patterns of behavior
emerge.

I will brieºy dwell on a few examples that seem to me to be
especially strong in the sense that they not only demonstrate a
deviation from the rational man paradigm, but they also offer clues
about where to look for systematic alternatives. The order of the
examples parallels that of the discussion in the previous section.

Framing Effects
A rich body of literature has demonstrated circumstances under
which the assumption that two logically equivalent alternatives are
treated equally, does not hold. A beautiful demonstration of the
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framing effect is the following experiment taken from Tversky and
Kahneman (1986):

Subjects were told that an outbreak of a disease will cause six
hundred people to die in the United States. Two mutually exclusive
programs, yielding the following results, were considered:

A. two hundred people will be saved.

B. With a probability of 1/3, six hundred people will be saved; with
a probability of 2/3, none will be saved.

Another group of subjects were asked to choose between two pro-
grams, yielding the results:

C. four hundred people will die.

D. With a probability of 1/3 no one will die; with a probability of
2/3 all six hundred will die.

Although 72 percent of the subjects chose A from {A, B}, 78 percent
chose D from {C, D}. This occurred in spite of the fact that any
reasonable man would say that A and C are identical and B and D
are identical! One explanation for this phenomenon is that the
description of the choice between A and B in terms of gains
prompted risk aversion, whereas the description in terms of losses
prompted risk loving.

Framing effects pose the most problematic challenges to the ra-
tionality paradigm. Their existence leads to the conclusion that an
alternative has to appear in the model with its verbal description.
Doing so is a challenging task beyond our reach at the moment.

The Tendency to Simplify a Problem
The following experiment is taken from Tversky and Kahneman
(1986). Consider the lotteries A and B. Both involve spinning a
roulette wheel. The colors, the prizes, and their probabilities are
speciªed below:
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A Color white red green yellow
Probability (%) 90 6 1 3
Prize ($) 0 45 30 −15

B Color white red green yellow
Probability (%) 90 7 1 2
Prize ($) 0 45 −10 −15

Facing the choice between A and B, about 58 percent of the subjects
preferred A.

Now consider the two lotteries C and D:

C Color white red green blue yellow
Probability (%) 90 6 1 1 2
Prize ($) 0 45 30 −15 −15

D Color white red green blue yellow
Probability (%) 90 6 1 1 2
Prize ($) 0 45 45 −10 −15

The lottery D dominates C, and all subjects indeed chose D. How-
ever, notice that lottery B is, in all relevant respects, identical to
lottery D (red and green in D are combined in B), and that A is the
same as C (blue and yellow are combined in A).

What happened? As stated, decision makers try to simplify prob-
lems. “Similarity” relations are one of the basic tools they use for
this purpose. When comparing A and B, many decision makers
went through the following steps:

1. 6 and 7 percent, and likewise 2 and 3 percent, are similar;

2. The data about the probabilities and prizes for the colors white,
red, and yellow is more or less the same for A and B, and

3. “Cancel” those components and you are left with comparing a
gain of $30 with a loss of $10. This comparison, favoring A, is
the decisive factor in determining that the lottery A is preferred
to B.

18 Chapter 1



By the way, when I conducted this experiment in class, there were
(good!) students who preferred C over D after they preferred A over
B. When asked to justify this “strange” choice, they pointed out that
C is equivalent to A and D is equivalent to B and referred to their
previous choice of A! These students demonstrated another com-
mon procedural element of decision making: The choice in one
problem is made in relation to decisions made previously in re-
sponse to other problems.

The Search for Reasons
In the next example (following Huber, Payne, and Puto [1982]),
(x, y) represents a holiday package that contains x days in Paris and
y days in London, all offered for the same price. All subjects agree
that a day in London and a day in Paris are desirable goods. Denote,
A = (7, 4), B = (4, 7), C = (6, 3) and D = (3, 6). Some of the subjects
were requested to choose between the three packages A, B, and C;
others had to choose between A, B, and D. The subjects exhibited
a clear tendency to choose A out of the set {A, B, C} and to choose
B out of the set {A, B, D}. Obviously, this behavior is not consistent
with the behavior of a “rational man.” Given the universal prefer-
ence of A over C and of B over D, the preferred element out of {A, B}
should be chosen from both {A, B, C} and {A, B, D}.

Once again, the beauty of this example is not its contradiction of
the rational man paradigm but its demonstration of a procedural
element that often appears in decision making. Decision makers
look for reasons to prefer A over B. Sometimes, those reasons relate
to the decision problem itself. In the current example, “dominating
another alternative” is a reason to prefer one alternative over the
other. Reasons that involve relationships to other alternatives may
therefore conºict with the rational man paradigm.

Another related, striking experiment was conducted by Tversky
and Shaªr (1992). A subject was shown a list of twelve cards. Each
card described one prize. Then the subject was given two cards and
asked whether he wanted to pay a certain fee for getting a third
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card from the deck. If he did not pay the fee, he had to choose one
of the two prizes appearing on the cards in his hand. If he chose to
pay the fee, he would have three cards, the two he had originally
been dealt and the third he would now draw; he would then have
to choose one among the three prizes.

The different conªgurations of prizes which appeared on the two
cards given to the subjects were as follows:

1. Prizes A and B, where A dominates B;

2. Prizes A and C, where A and C are such that neither dominates
the other.

A signiªcantly lower percentage of subjects chose to pay the fee in
face of (1) than in face of (2). Thus, once the decision maker has an
“internal” reason (the domination of one over another alternative)
to choose one of the alternatives, he is no longer interested in
enriching the set of options. Many subjects, when confronted with
conºict while making a choice, were ready to pay a fee for receipt
of a reason that would help them to make the choice.

Remark One often hears criticism among economists of the experi-
ments done by psychologists. Critics tend to focus blame on the fact
that in the typical experimental design, subjects have no sufªcient
incentive to make the conduct of the experiment or its results
relevant for economics—the rewards given were too small and the
subjects were not trained to deal with the problems they faced. I
disagree with this criticism for the following reasons:

•  The experiments, I feel, simply conªrmed solid intuitions origi-
nating from our own thought experiments.

•  Many of the real-life problems we face entail small rewards and
many of our daily decisions are made in the context of nonrecurring
situations.

•  When considering human behavior regarding “major” decisions,
we observe severe conºicts with rationality as well. To illustrate,
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Benartzi and Thaler (1995) discuss a survey regarding the choices
made by university professors on the allocation of their investments
in stocks and bonds within the TIAA-CREF pension fund. Although
this decision is among the more important annual ªnancial deci-
sions made in the life of an American professor, the authors observe
that the majority of investors divide their money between the two
options in a manner almost impossible to rationalize as optimal in
any form.

To summarize this section, we have reviewed several experiments
that demonstrate motives for choice that are inconsistent with the
rational man paradigm. The number of experiments undertaken,
the clarity of the motives elicited, and their conªrmation by our
own “thought experiments” do not allow us to dismiss these ex-
periments as curiosities.

1.5 Comments

Procedural and Substantive Rationality

The observation that behavior is not rational does not imply that
it is chaotic. As already stated, the experiments discussed in the
previous section hint at alternative elements of decision-making
procedures that may establish the foundations for new economic
models. Simon distinguishes between substantive rationality and pro-
cedural rationality: on one hand, substantive rationality refers to
behavior that “is appropriate to the achievement of given goals
within the limits imposed by given conditions and constraints”; on
the other hand, “behavior is procedurally rational when it is the
outcome of appropriate deliberation.” That is, procedurally rational
behavior is the outcome of some strategy of reasoning, whereas
irrational behavior is an outcome of impulsive responses without
adequate intervention of thought. In this book, we will drop the
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assumption of substantive rationality but retain that of procedural
rationality.

Mistakes vs. Bounded Rationality

Some have claimed that the phenomena demonstrated in the above
experiments are uninteresting inasmuch as they express “mistakes”
that disappear once the subjects learn of their existence. They con-
tend that economists are not interested in traders who believe that
1 + 1 = 3; similarly, they should not be interested in agents who are
subject to framing affects.

I beg to differ. Labeling behavior as “mistakes” does make the
behavior uninteresting. If there are many traders in a market who
calculate 1 + 1 = 3, then their “mistake” may be economically
relevant. The fact that behavior may be changed after the subjects
have been informed of their “mistakes” is of interest, but so is
behavior absent the revelation of mistakes because, in real life,
explicit “mistake-identiªers” rarely exist.

Rationalizing on a Higher Level

As economists raised on the rational man paradigm, our natural
response to the idea of describing a decision maker by starting from
a decision procedure is akin to asking the question, “Where does
the procedure come from?” One method of rationalizing the use of
decision procedures inconsistent with the rational man paradigm
is by expanding the context to that of a “richer” decision problem
in which additional considerations (such as the cost of deliberation)
are taken into account. Under such conditions, one may try to argue
that what seems to be irrational is actually rational. In regard to
the satisªcing procedure (P-2), for example, such a question was
asked and answered by Simon himself. Simon proposed a search
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model with costs in order to derive the use of the procedure and
to provide an explanation for the determination of the aspiration
value.

This is an interesting research program, but I do not see why we
must follow it. Alternatively, we may treat the level of aspiration
simply as one parameter of the decision maker’s problem (similar
to the coefªcient in a Cobb-Douglas utility function in standard
consumer theory), a parameter that is not selected by the decision
maker but is given among his exogenous characteristics. We should
probably view rationality as a property of behavior within the
model. The fact that having an aspiration level is justiªable as
rational behavior in one model does not mean that we can consider
that behavior as rational within any other model.

1.6 Bibliographic Notes

The pioneering works on bounded rationality are those of Herbert
Simon. See, for example, Simon (1955, 1956, 1972, and 1976). (About
the ªrst two papers Simon wrote: “If I were asked to select just two
of my publications in economics for transmission to another galaxy
where intelligent life had just been discovered, these are the two I
would choose.”) All four papers are reprinted in Simon (1982).

For the foundation of choice theory see, for example, Kreps
(1988).

The material on experimental decision theory has been surveyed
recently in Camerer (1994) and Shaªr and Tversky (1995). For a
more detailed discussion of the framing effect see Tversky and
Kahneman (1986). The experiments on reason-based choice are
summarized in Shaªr, Simonson, and Tversky (1993) and Tversky
and Shaªr (1992). See also Simonson (1989) and Huber, Payne, and
Puto (1982). The tendency to simplify complicated problems to
more manageable ones is discussed in Payne, Battman, and Johnson
(1988).
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1.7 Projects

1. Reading Shaªr, Diamond, and Tversky (1997) reports on a “framing effect” in
the context of economic decisions in times of inºation. Read the paper and sug-
gest another context in which a similar “framing effect” may inºuence economic
behavior.

2. Reading Read Benartzi and Thaler (1995) on the decision of real investors to
allocate their investments between stocks and bonds. Consider the following “ex-
periment.” Subjects are split into two groups. At each of the two periods of the
experiment, each subject gets a ªxed income that he must invest immediately in
stocks and bonds. At the end of the ªrst period, an investor has access to informa-
tion about that period’s yields. A subject cashes his investments at the end of the
second period.
 At every period, a member of the ªrst group is asked to allocate only the income
he receives that period, whereas a member of the second group is asked to reallocate
his entire balance at that point.
 Guess the two typical responses. Can such an experiment establish that investors’
behaviors are not compatible with rationality?

3. Innovative Choose one of the axiomatizations of decision making under uncer-
tainly (exclude the original expected utility axiomatization) and examine the axiom
from a procedural point of view.
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2 Modeling Procedural
Decision Making

2.1 Motivation

In the previous chapter, I argued that experimental evidence from
the psychological literature demonstrates the existence of common
procedural elements that are quite distinct from those involved in
the rational man’s decision-making mechanism. In this chapter, we
turn to a discussion of attempts to model formally some of these
elements.

Note that when we model procedural aspects of decision making,
we are not necessarily aiming at the construction of models of
choice that are incompatible with rationality. Our research program
is to model formally procedures of choice that exhibit a certain
procedural element, and then to investigate whether or not such
procedures are compatible with rationality. If they are, we will try
to identify restrictions on the space of preferences that are compat-
ible with those procedures.

We now return to a motive we mentioned in Chapter 1: Decision
makers attempt to simplify decision problems. For simplicity, let us
focus on choice problems that contain two alternatives, each de-
scribed as a vector. One way to simplify such a problem is to apply
similarity notions in order to “cancel” the components of the two
alternatives that are alike, and thereby to reduce the number of
elements involved in the descriptions of the two alternatives. This
makes the comparison less cumbersome.



To illustrate, let us look at results of an experiment, reported in
Kahneman and Tversky (1982), that is similar to that of the Allais
paradox. The objects of choice in the experiment are simple lotter-
ies. A simple lottery (x,p) is a random variable that yields $x with
probability p and $0 with probability 1 − p. Thus, each object of
choice can be thought of as a vector of length 2.

In the experiment, some subjects were asked to choose between:

L3 = (4000, 0.2) and L4 = (3000, 0.25).

Most subjects chose L3. Another group of subjects was asked to
choose between:

L1 = (4000, 0.8) and L2 = (3000, 1.0).

The vast majority of subjects chose L2.
The choices L2 from {L1, L2} and L3 from {L3, L4} do not violate ra-

tionality. However, they do violate the von Neumann-Morgenstern
independence axiom. To see this, notice that the lotteries L3 and L4

can be presented as compound lotteries of L1, L2, and the degenerate
lottery [0], which yields the certain prize 0:

L3 = 0.25L1 + 0.75[0] and L4 = 0.25L2 + 0.75[0].

Therefore, the independence axiom requires that the choice be-
tween L3 and L4 be made according to the choice between L1 and
L2, in striking contrast to the experimental results.

The reasoning that probably guided many of the subjects was the
following: When comparing L3 to L4, a decision maker faces an
internal conºict due to the higher prize in L3 versus the higher
probability of getting a positive prize in L4. He tries to simplify the
choice problem so that one of the alternatives will be patently better.
With this aim, he checks the similarities of the probabilities and the
prizes that appear in the two lotteries. He considers the probability
numbers 0.25 and 0.2 to be similar, in contrast to the prizes $4000
and $3000, which are not. These similarity comparisons lead him to
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“simplify” the problem by “canceling” the probabilities and making
the choice between L3 and L4, based on the obvious choice between
$4000 and $3000. On the other hand, when comparing L1 and L2,
the decision maker cannot simplify the problem on the basis of
the cancellation of similar components since neither the prob-
abilities nor the prizes are perceived to be similar. He then invokes
another principle, presumably risk aversion, to arrive at the supe-
riority of L2.

Note that the attractiveness of the vNM independence axiom is
also related to its interpretation as an expression of a similar pro-
cedural element. When the lotteries L3 and L4 are represented ex-
plicitly in the form of the reduced lotteries 0.25L1 + 0.75[0] and
0.25L2 + 0.75[0], respectively, decision makers tend to simplify the
comparison between L3 and L4 by “canceling” the possibility that
the lotteries will yield the prize [0], then basing their choice on a
comparison between L1 and L2, thus choosing L4.

Hence, whether the lotteries are presented as simple or com-
pound, it seems that a major step in the deliberation is the “cancel-
lation of similar factors” and the consequent reduction of the
original complex choice to a simpler one. Activating this principle
when comparing L3 and L4 as simple lotteries leads to the choice of
L3; activating it when the lotteries are presented as compound
lotteries leads to the choice of L4. The way in which the principle
of reducing the complexity of a choice is applied, therefore, depends
on how the decision problem is framed. To avoid framing effects in
our analysis, we will retain the format of each alternative as ªxed.
Consequently, all objects of choice will be simple lotteries presented
as vectors of the type (x, p).

In the next three sections we will formulate and analyze a pro-
cedure for choosing between pairs of such lotteries that makes
explicit use of similarity relations. The presentation consists of the
following stages. First we will describe a scheme of choice proce-
dures between pairs of lotteries. Then we will ask two questions:
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1. Does such a procedure necessarily conºict with the rational man
paradigm?

2. If not, what preference relations are consistent with the
procedure?

But ªrst we will detour to the world of similarity relations in order
to equip ourselves with the necessary tools.

2.2 Preparing the Tools: Similarity Relations

In this chapter, a similarity relation is taken to be a binary relation ∼
on the set I = [0, 1] that satisªes the following properties:

(S-1) Reºexivity For all a ∈ I, a ∼ a.

(S-2) Symmetry For all a, b ∈ I, if a ∼ b, then b ∼ a.

(S-3) Continuity The graph of the relation ∼ is closed in I × I.

(S-4) Betweenness If a ≤ b ≤ c ≤ d and a ∼ d, then b ∼ c.

(S-5) Nondegeneracy 0 � 1, and for all 0 < a < 1, there are b and c
so that b < a < c and a ∼ b and a ∼ c. For a = 1, there is b < a so that
a ∼ b. (For reasons which will soon become clear, no such require-
ment is made for a = 0.)

(S-6) Responsiveness Denote by a* and a* the largest and the small-
est elements in the set that are similar to a. Then a* and a* are strictly
increasing functions (in a) at any point at which they obtain a value
different from 0 or 1.

Although these axioms restrict the notion of similarity quite sig-
niªcantly, I ªnd them particularly suitable when the similarity
stands for a relation of the kind “approximately the same.” This
does not deny that there are contexts in which the notion of simi-
larity clearly does not satisfy the above axioms. For example, we
say that “Luxembourg is similar to Belgium,” but we do not say
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that “Belgium is similar to Luxembourg” (see Tversky [1977]). In
this example, we say that “a is similar to b” in the sense that b is a
“representative” of the class of elements to which both a and b
belong; this use of the term does not satisfy the symmetry
condition.

A leading example of a family of relations that satisªes all these
assumptions is the one consisting of the λ-ratio similarity relations
(with λ > 1) deªned by a ∼ b if 1/λ ≤ a/b ≤ λ. More generally, for
any number λ > 1 and for every strictly increasing continuous
function, H, on the unit interval, the relation a ∼ b if 1/λ ≤
H(a)/H(b) ≤ λ is a similarity relation. In fact, we can represent any
similarity relation in this way. We say that the pair (H, λ) represents
the similarity relation ∼ if, for all a,b ∈ I, a ∼ b if 1/λ ≤ H(a)/H(b) ≤
λ. One can show (see Project 6) that for every λ  > 1 there is a strictly
increasing continuous function H with values in [0, 1], so that the
pair (H, λ) represents the similarity ∼. If 0 is not similar to any
positive number, we can ªnd a representation of the similarity
relation with a function H so that H(0) = 0. This proposition is
analogous to propositions in utility theory that show the existence
of a certain functional form of a utility representation.

Note that no equivalence relation is a similarity relation under
this deªnition. Consider, for example, the relation according to
which any two elements in I relate if, in their decimal presentation,
they have identical ªrst digits. This binary relation is an equivalence
relation that fails to comply with the continuity assumption, the
monotonicity assumption (because (.13)* = (.14)*, for example), and
the nondegeneracy condition (there is no x < 0.4 that relates to 0.4).

2.3 A Procedure of Choice between Vectors

In this section we analyze a family of decision procedures applied
to decision problems where the choice is made from a set of pairs
of lotteries in A = X × P = [0, 1] × [0, 1], where (x, p) ∈ A stands for
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a simple lottery that awards the prizes $x with probability p and $0
with the residual probability 1 − p.

(P-∗) The primitives of the procedure are two similarity relations,
∼x and ∼p, that relate to the objects in X and P, respectively. (Thus,
we do not require that the same similarity relation be relevant to
both dimensions.) When choosing between the two lotteries L1 =
(x1, p1) and L2 = (x2, p2):

Step 1 (Check domination):

If both xi > xj and pi > pj, then choose Li;

If Step 1 is not decisive, move to Step 2, in which the similarity
relations are invoked. This step is the heart of our procedure in
that it captures the intuitions gained from the psychological
experiments.

Step 2 (Check similarities):

If pi ∼p pj and not xi ∼x xj, and xi > xj, then choose Li.

If xi ∼x xj and not pi ∼p pj, and pi > pj, then choose Li.

If Step 2 is also not decisive, then move to Step 3, which is not
speciªed.

We move on to study the compatibility of following (P-∗) with
the rational man procedure. Note that all vectors of the type (x, 0)
or (0, p) are identical lotteries that yield the prize 0 with certainty.
Therefore, in the following, preferences on X × P are assumed to
have an indifference curve that coincides with the axis. The follow-
ing deªnition deªnes the compatibility of a preference relation with
(P-∗). We say that a preference relation i is ∗(∼x, ∼p) consistent if
for any pair of lotteries Li and Lj, if Li is chosen in one of the ªrst
two steps of the procedure, then Li � Lj. In other words, any of the
following three conditions implies that Li � Lj:

30 Chapter 2



1. Both xi > xj and pi > pj

2. pi ∼p pj and not xi ∼x xj, and also xi > xj

3. xi ∼x xj and not pi ∼p pj, and also pi > pj.

Example Let i be a preference represented by the utility function
pxα. Then i is consistent with (P-∗) where ∼x and ∼p are the λ and
λα ratio similarities. For example, condition (2) implies Li � Lj

because if pi ∼p pj, not xi ∼x xj, and xi > xj, then pixi
α > pi(λxj)α = (piλα)xj

α

≥ pjxj
α.

2.4 Analysis

We now turn to an analysis of the decision procedures deªned in
the previous section. Our general program, applied to the current
setting, includes the following questions:

1. Given a pair of similarity relations, are the decisions implied by
Steps 1 and 2 of (P-∗) consistent with the optimization of any
preference relation?

2. How does (P-∗) restrict the set of preferences that are consistent
with the procedure?

First, note the following simple observation. Unless we assume that
there is no x so that 0 ∼x x and no p so that 0 ∼p p, there is no
preference that is ∗(∼x, ∼p) consistent. Assume, for example, that x ∼x 

0 and x ≠ 0. Then, if there is a preference that is ∗(∼x, ∼p) consistent,
the degenerate lottery (0, 1) has to be preferred to (x, 1* − ε) for
some ε > 0 (by Step 2) and (x, 1* − ε) has to be preferred to (0, 0)
(by Step 1). Thus (0, 0) cannot be indifferent to (0, 1), as we assumed.

The next proposition provides an answer to the ªrst question.
For any pair of similarity relations there are preferences that do not
contradict the execution of the ªrst two steps of (P-∗) with those
two similarity relations. Thus, (P-∗) does not necessarily conºict
with the rational man paradigm.
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Proposition 2.1 Let ∼x and ∼p be similarity relations satisfying that
there is no x ≠ 0 or p ≠ 0 with 0 ∼x x or 0 ∼p p. Then, there are
functions u: X → R+ and g: P → R+, so that g(p)u(x) represents a
preference on X × P that is ∗(∼x, ∼p) consistent.

Proof Let λ > 1. From the previous section, there exist non-negative
strictly increasing continuous functions, u and g, with u(0) = g(0) =
0, so that (u, λ) and (g, λ) represent the similarities ∼x and ∼p,
respectively.
 The function g(p)u(x) assigns the utility 0 to all lotteries on the
axes. We will show that g(p)u(x) induces a preference that is ∗(∼x, ∼p)
consistent. Assume that both xi > xj and pi > pj; then g(pi)u(xi) >
g(pj)u(xj), thus Li � Lj. Assume that pi ∼p pj, not xi ∼x xj, and xi > xj;
then u(xi) > λu(xj), g(pi) ≥ (1/λ)g(pj), and hence g(pi)u(xi) > g(pj)u(xj);
so that, Li � Lj. ▫

Note that this proof implies that there are not only preferences
consistent with the ªrst two steps of the procedure but also prefer-
ences consistent with the ªrst two steps that have an additive utility
representation.

We now approach the second question. Proposition 2.3 shows
that few preferences are consistent with (P-∗). For any pair of
similarities ∼x and ∼p, the preference relation built in the last propo-
sition is “the almost unique” preference that is ∗(∼x, ∼p) consistent.
Thus the assumption that a decision maker uses a (P-∗) procedure
with a pair of similarity relations narrows down the consistent
preferences to almost a unique preference whose maximization
explains the decision maker’s behavior.

The following proposition provides the key argument:

Proposition 2.2 Consider a preference i on X × P that is ∗(∼x, ∼p)
consistent. For any (x, p) with x* < 1 and p* < 1, all lotteries that
dominate (x*, p*) (or (x*, p*)) are preferred to (x, p), and all lotteries
that are dominated by (x*, p*) (or (x*, p*)) are inferior to (x, p). (If

32 Chapter 2



the preference is continuous, then it follows that the preference
assigns indifference between (x, p) and (x*, p*).)

Proof By Step 2 of the procedure, (x, p) � (x∗ + ε, p*) for all ε > 0.
Any lottery that dominates (x*, p*) must also dominate some lottery
(x∗ + ε, p*) for ε small enough, thus is preferred to (x, p). Similarly,
(x, p) � (x*, p* − ε) for all ε > 0; thus, we also obtain that (x, p) is
preferred to any lottery that is dominated by (x*, p*). ▫

We will now show that for any two preferences i and i′, which
are ∗(∼x, ∼p) consistent, and for every pair of lotteries L1 and L2 so
that L1 � L2, there must be a lottery L2′ “close” to L2 so that L1 �′
L2′. Thus, although there may be many preference relations consis-
tent with the ªrst two stages of (P-∗), they are all “close.” The two
ªrst steps of the procedure “almost” determine a unique preference
where closeness is evaluated in terms of the similarity relations.

Proposition 2.3 If i and i′ are both consistent with the pair of
similarities (∼x, ∼p), then for any (x1, p1) and (x2, p2) satisfying (x1,
p1) � (x2, p2), there are x2′ ∼x x2 and p2′ ∼p p2 such that (x1, p1) �′
(x2′, p2′).

Proof Consider the ªgure 2.1.

By Proposition 2.2, any preference that is ∗(∼x, ∼p) consistent must
satisfy the condition that all points in area A are preferred to L1 =
(x, p) and L1 is preferred to any point in area B. (Actually, if the
preference is continuous, then its indifference curve, passing
through L1, includes the lotteries indicated by dots.) Thus, if both
i and i′ are ∗(∼x, ∼p) consistent, and L1 � L2 and not L1 �′ L2, then
L2 must be outside areas A and B. But then, there is a lottery L2′
“close to L2” in the sense that both the x and the p components of
L2 and L2′ are ∼x and ∼p similar, so that L1 �′ L2′. ▫

Discussion This proposition shows, in my opinion, that Steps 1 and
2 “overdetermine” the preference. Even before specifying the con-
tent of Step 3, we arrive at an almost unique preference that is

Modeling Procedural Decision Making 33



consistent with the choices determined by applying only Steps 1
and 2. The overdetermination result casts doubts as to whether
decision makers who use such a procedure can be described as
optimizers of preferences.
 However, one can interpret the analysis of this section as a deri-
vation of separable preference relations. Any preference consistent
with (P-∗) must be close to a preference relation represented by a
utility function of the type g(p)u(x). The key to this separability
result is that the similarities are assumed to be “global” in the sense
that when examining the two lotteries (x1, p1) and (x2, p2), the
determination of whether x1 is similar to x2 is done independently
of the values of the probabilities p1 and p2.

2.5 Case-Based Theory

We now turn to a short discussion of a formalization of “case-based
theory,” an interesting model of choice that captures procedural

Figure 2.1
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elements of decision making that are quite different from the ingre-
dients of the rational man procedure.

Case-based theory is designed to describe a decision maker who
bases decisions on the consequences derived from past actions
taken in relevant, similar cases. Take, for instance, the American
decision whether to send troops to Bosnia in late 1995. When
considering this problem, decision makers had in mind several
previous events during which American troops were sent on inter-
ventionary missions on foreign soil (Vietnam, Lebanon and the
Persian Gulf). Those instances were offered as relevant precedents
for the proposed action. The decision whether to interfere in Bosnia
was taken, to a large extent, on the basis of evaluations of the past
events and the assessment of the similarity of those cases to the
Bosnian case.

In the model, a decision maker has to choose among members of
a ªxed set A. Let P be a set whose elements are called problems. An
element in P is a description of the circumstances under which an
alternative from the set A has to be chosen. The problems in P are
related in the sense that the experience of one problem is conceived
by the decision maker as relevant for another problem. Let C be a
set of consequences; for simplicity, we take C = R, the set of real
numbers. Taking an action in a problem deterministically yields a
consequence, but the connection between the action and the conse-
quence is unknown to the decision maker unless he has already
experienced it.

An instance of experience, a case, is a triple (p, a, u) interpreted
as an event in which, at the problem p, the action a was taken and
yielded the consequence u. A memory, M, is a ªnite set of cases. Note
that the notion of memory here abstracts from the temporal order
of the experienced cases. An instance of decision is a pair (p*, M):
the decision maker has to choose an element from the set A, at the
problem p* ∈ P, given the memory M. We assume that for each
memory, all problems are distinct, that is, for any (p, a, u) and
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(p′, a′, u′) in M, p ≠ p′ (compare with Project 8). Finally, a choice
function assigns to each problem p* and memory M, an action in A.

The procedure described by Gilboa and Schmeidler (1995) is as
follows. The primitive of the procedure is a measure of closeness
between problems, s(p, p′). Each s(p, p′) is a non-negative number
with the interpretation that the higher the s(p, p′), more similar is
p′ to p. Given a problem p* and a memory M, each action a ∈ A is
evaluated by the number v(a, p*, M) = Σ(p,a,u)∈Ms(p*, p)u. In case
action a was not examined in the memory M, v(a, p*, M) is taken to
be 0. The decision maker chooses an action a ∈ A that maximizes
v(a, p*, M) (given some tie-breaking rule).

Recall that in this model, the set A is ªxed and a decision maker
bases his decision regarding one problem on past experiences with
other problems. The model allows phrasing of consistency condi-
tions that link different memories rather than different choice sets
as in the rational choice theory.

Gilboa and Schmeidler offer several axiomatizations of the above
procedure. The basic axiomatization is based on the following
(strong) assumption: A decision maker facing the problem p* and
having the memory M, “transforms” each action a into a vector z(a,
M) ∈ Z = RP (the set of functions that assign a real number to each
problem in P, the set of problems experienced in M). He does so as
follows: If (p, a, u) ∈ M, (that is, if the action a was taken when
confronting the problem p), then z(a, M)(p) = u; otherwise (that is,
if the action a was not attempted at the problem p), we take z(a,
M)(p) = 0. It is assumed that the decision maker has in mind a
preference relation ip* deªned on the set Z so that at the problem
p*, having the memory M, he chooses an action a* satisfying z(a*,
M) ip* z(a, M) for all a ∈ A.

Given this assumption, we are left with the need to axiomatize
the preference relation on Z. We have to show that there are coefª-
cients, {s(p, p*)}p,p∗∈P, so that this preference relation has a utility
representation of the type Σp∈Ps(p, p*)zp. This requires additional
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assumptions that induce a linearity structure. This can be done in
a variety of ways: for example, by requiring that i satisªes mono-
tonicity, continuity, and, most important, a property called
separability: for any x, y, w, z ∈ Z, if x i y and w i z, then x + w i
y + z (with strict preference in case w � z).

This axiomatization is quite problematic. A preference is deªned
on the large set Z. This implies that the decision maker is required
to compare vectors that cannot be realized in any memory (the
decision maker will never have two different cases, such as (p, a, u)
and (p, a′, u′) in his memory; yet the preference on the set RP exhibits
comparisons between vectors z and z′ with both zp ≠ 0 and z′p ≠ 0).
The separability axiom is quite arbitrary. As to the interpretation of
s(p, p*) as a “degree of similarity,” because the axiomatization treats
the behavior at any two problems completely separately, there are
no restrictions on the similarity function. It might be, for example,
that s(p*, p∗∗) = 1, whereas s(p∗∗, p*) = 0 making the interpretation
of the numbers {s(p, p′)} as a similarity measure questionable.

2.6 Bibliographic Notes

Sections 1–4 are based on Rubinstein (1988). For previous related
work, see Luce (1956) and Ng (1977). The role of similarities in
human reasoning was emphasized by Amos Tversky in a series of
papers. In particular, see Tversky (1969) and Tversky (1977).

Section 5 is based on Gilboa and Schmeidler (1995, 1997). See also
Matsui (1994).

2.7 Projects

1. Innovative Tversky (1977) shows that in some contexts similarity relations may
be asymmetric relations. Suggest a context in which such asymmetry is relevant to
choice.

2. Reading Why are two objects perceived to be similar? One response is that an
object a is similar to an object b when the number of properties (unary relations)
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that are satisªed by both a and b is “large enough.” However, Watanabe (1969)
argues against this concept through the “Ugly Duckling Theorem” (Section 7.6): If
the set of unary predicates is closed under Boolean operations, then the number of
predicates that satisfy any possible object is constant. Prove the theorem and explain
in what sense it is a blow to this approach.

3. Innovative Propose several examples of relations you would call “similarity
relations” in the natural language and ascertain whether they comply with the
deªnition of similarity relations given in this chapter.

4. Reading Read Luce (1956) and explain the connection between the formalization
of similarity relations and Luce’s concept of semi-order.

5. Exercise Fill in the gaps in the proof of the proposition stating that if ∼ is a
similarity relation, then for every λ > 1 there is a strictly increasing continuous
function H that takes values in the interval [0, 1] so that (H, λ) represents ∼.
Hint Deªne, by induction, a sequence (xn) such that x0 = 1 and xn + 1 = (xn)*. By
(S-3), xn+1 is well deªned. By (S-5), xn → 0. Deªne H(1) = 1. Deªne H: [x1, x0] → R
as any strictly increasing continuous function satisfying H(x0) = 1 and H(x1) = 1/λ.
For x ∈ [xn +1, xn], deªne H(x) = H(x*)/λ. By (S-6), the function H is strictly increasing.
If 0 is not similar to any x, deªne H(0) = 0 (otherwise there is an n such that xn =
0). Verify that (H, λ) represents ∼.

6. Exercise Assume that i is represented by the utility function g(p)u(x), where g
and u are positive, strictly increasing continuous functions. Show that if i is ∗(∼x, ∼p)
consistent, then there is a λ > 1 such that

x1 ∼x x2 iff 1/λ < u(x2)/u(x1) < λ and

p1 ∼p p2 iff 1/λ < g(p2)/g(p1) < λ.

Conclude that the vNM expected utility theory together with (P-∗) requires that ∼p

be a λ-ratio similarity relation. (Analogously, the dual expected utility theory, which
has a utility representation with the functional form g(p)x, requires that ∼x be a
λ-ratio similarity relation.)

7. Reading Read Azipurua, Ichiishi, Nieto, and Uriarte (1993), who extend the
results of this chapter to the case where the determination of whether x1 is similar
to x2 is not done independently of the relevant probabilities p1 and p2.

8. Innovative Consider the following variant of case-based theory where all prob-
lems are identical (therefore, we can omit the symbol P from the model). A memory
M is now a set of pairs (a, u) with the interpretation that action a was taken and
yielded payoff u. Retain the assumption that any action determines one conse-
quence: In a memory M, there are no two cases where (a, u) ≠ (a, u′). A choice
function here assigns an element in A to each memory. Note that in this con-
text, case-based theory is equivalent to the satisªcing procedure. Thus, a decision
maker chooses new alternatives until he ªnds an action with a strictly positive
consequence.
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  Check whether the following properties of a choice function c are satisªed by the
above procedure and whether the properties provide a proper axiomatization:

Neutrality (invariance to the names of the actions) If (c(M), u) is a case in M, then
for any σ, a permutation of A, c(σ(M)) = σ(c(M)) where σ(M) is the memory obtained
from M by replacing (a, u) with (σ(a), u).

Monotonicity Assume that M contains the case (c(M), u). Let M′ be a memory
identical to M except that the case (c(M), u) is replaced with (c(M), u′), where u′ > u.
Then c(M) = c(M′).

Independence of Irrelevant Alternatives If (c(M), u) is a case in M, then c(M′) = c(M)
for any M′ ⊆ M that contains the case (c(M), u).

9. Innovative For the model described in the previous project, construct plausible
alternative decision procedures and study their properties. (An idea for an alterna-
tive procedure: A function ε(a, a′) measures “distance” between pairs of actions a
and a′. Given a memory M, the decision maker chooses the action a* if the case
(a*, u*) is in M and for any other action a′, there is a case (a″, u″) in M with u* ≥ u″
+ ε(a′, a″). Otherwise, he chooses an action that was not experienced.)
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3 Modeling Knowledge

3.1 Knowledge and Bounded Rationality

In the previous chapters, we referred to the rational man as a
decision maker who holds preferences and chooses the best alter-
native from the set of feasible alternatives. But when economists
use the term “rationality,” they require not only that a chosen action
be the best possible given the decision maker’s knowledge, but also
that the knowledge employed be derived from coherent inferences.
Consider, for example, a decision maker who thinks that if it is not
raining, his window is dry, and that if it is raining, he might or
might not see drops of water on his window. Rationality implies
that if he sees drops of water on his window, he concludes that it
is raining. In contrast, models of bounded rationality are intended
to allow us to talk about agents who systematically do not make
correct inferences.

We will open this chapter by a short presentation of the model
of knowledge used in economics. This model will also serve as the
cornerstone for attempts to model systematic deviations from the
making of perfect inferences.

3.2 Information Structure

The following is the standard model of knowledge, associated
with Hintikka. An information structure is a pair (Ω, P) whose ªrst



component, Ω, is a set of states. Usually, we take a state to be a “full
description of the world” or, at least, the relevant (for decision
making) facts about the world. The states are taken to be mutually
exclusive. The second component is a function P that assigns to
each state ω a non-empty subset of states, P(ω). The major interpre-
tation of P is that at the state ω, the inference maker excludes all
the states outside P(ω), and does not exclude any states in P(ω). The
assumption that P(ω) ≠ ∅ means that the decision maker cannot be
so “wrong” as to exclude all possible states as being feasible.

The model is very simple and, as often happens with overly
abstract models, the overabstraction is a cause of vagueness in its
interpretation. The question “What is a state?” is at the center of
the controversy. What, precisely, do we include in the “full descrip-
tion of the world”? There are two major issues involved:

1. Clearly, we wish a state to include a description of the resolution
of all uncertainties that inºuence the decision maker’s interests.
However, within that “full description” we may also include the
evidence received by the decision maker and the inferences he does
or does not make. Thus, Ω may include a state “no rain” as well as
“rain1,” a state in which there is rain but the decision maker does
not observe any signal alluding to this fact; “rain2,” a state in which
he observes drops on the window and concludes that it is raining;
and state “rain3,” in which he sees the drops but does not conclude
that it is raining.

2. Does a full description of a state pertaining to a decision problem
also specify the action to be taken by the decision maker? If we
were to include the action within the description of a state, the
assumption would be, at least superªcially, in disharmony with the
notion of free will. Nonetheless, many recent papers that derive
game-theoretic solution concepts from models of knowledge take a
state to be “an ideal, full description of the world including the
choice of the decision maker.” Note that if we adopt this under-
standing, we have to talk about the rationality of a decision maker
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in reference to a speciªc state. It is possible that the decision maker
is rational in one state and is not rational in another state.
 The model does not specify the methods by which the decision
maker makes the inferences by which he excludes certain states.
More speciªcally, the content of the states reºects only the outcome
of the decision maker’s inference process. As such, the model has
to be thought of as a reduced form derived from a more complete
model, one that captures the decision maker’s inference process.

We now turn to a discussion of the three properties of informa-
tion structures usually associated with the term “rationality.”

P-1 ω ∈ P(ω).

P-1 expresses the condition that the decision maker never excludes
the true state from the set of feasible states.

P-2 If ω′ ∈ P(ω), then P(ω′) ⊆ P(ω).

It is impossible for a decision maker who satisªes P-2 to hold the
view that ω′ ∈ P(ω), despite there being a state z, so that z ∈ P(ω′)
and z ∉ P(ω). Assume that z ∈ P(ω′) and z ∉ P(ω). Then, at, ω a
rational decision maker could make the consideration: “The state z
is excluded. Were the state ω′, I would not exclude z. Thus, it must
be that the state is not ω′.” This inference contradicts the assump-
tion that ω′ ∈ P(ω).

P-3 If ω′ ∈ P(ω), then P(ω′) ⊇ P(ω).

Consider the case that ω′ ∈ P(ω) and there is a state z ∈ P(ω) that
is not in P(ω′). Then, at ω, a rational decision maker can con-
clude, from the fact that he cannot exclude z, that the state is not
ω′, a state at which he would be able to exclude z, contradicting the
assumption that ω′ ∈ P(ω).

Notice that if an information structure satisªes P-1 and P-3, it also
satisªes P-2: If ω′ ∈ P(ω), then by P-3 P(ω′) ⊇ P(ω), by P-1 ω ∈ P(ω),
and thus ω ∈ P(ω′) which, again by P-3, implies that P(ω) ⊇ P(ω′).
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Rationality regarding knowledge is deªned by an information
structure that satisªes the three properties P-1, 2, 3. Proposition 3.1
shows that the combination of these three properties is equivalent
to the assumption that the information structure is partitional,
namely, that there exists a partition of Ω (that is, a collection of
mutually exclusive subsets of Ω that completely cover Ω) such that
P(ω) is the set, within the partition, that includes ω.

Proposition 3.1 An information structure (Ω, P) is partitional if and
only if it satisªes P-1, 2, 3.

Proof Clearly, a partitional information structure satisªes the three
properties. On the other hand, if (Ω, P) satisªes P-1, 2, 3, deªne a
relation R by ω R ω′ if P(ω) = P(ω′). The relation R is an equivalence
relation and, therefore, induces a partition on Ω. Assume that ω ∈ X
where X is a set in this partition. We have to show that P(ω) = X.
If ω′ ∈ X, then P(ω′) = P(ω), and because by P-1, ω′ ∈ P(ω′), ω′ ∈
P(ω), and thus P(ω) ⊇ X. If ω′ ∈ P(ω), then by P-2 and P-3, P(ω′) =
P(ω) and thus ω′ ∈ X so that X ⊇ P(ω).  ▫

We now move to inspect examples of information structures. Each
example includes details about an inference method applicable in
a speciªc context. Some of the examples demonstrate systematic
imperfections in making inferences that reºect violations of P-1, P-2,
or P-3.

Examples

In the ªrst four examples, we take Ω to be the set of two digit-
numbers, {00, 01, . . . , 99}.

Example 1 The decision maker recognizes only the ones digit. Then
for any n ∈ Ω, P(n) = {n′ | the ones digit of n′ is identical to that
of n}. P is partitional and each cell contains ten states with the same
ones digit.
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Example 2 (Awareness) It often occurs that a decision maker is
becoming aware of an event when it happens but does not notice
the fact that the event does not happen when it does not happen.
For example, assume that the decision maker at state ω perceives
the ones digit and that he takes notice whenever the two digits in
ω are identical; but, when the two digits are different, he does not
pay attention to the ”same digits“ attribute. Thus, for example,
P(23) = {?3 | ? is a digit}, whereas P(33) = {33}. This information
structure satisªes P-1 and P-2 but does not satisfy P-3: 33 ∈ P(23)
but 23 ∈ P(23) and 23 ∉ P(33). The decision maker, at 23, makes no
inferences from the fact that he does not conclude that the state
is 33.

Example 3 (Accuracy) The states 00 to 99 are read on a meter with
a reading error of 1. That is, at state n, the decision maker can be
sure only that the real state is nothing but n − 1, n, or n + 1. Thus,
P(n) = {n − 1, n, n + 1} for all n except 00 and 99, where P(00) =
{00, 01} and P(99) = {98, 99}. This information structure satisªes P-1
but not P-2 or P-3.

Example 4 (Systematic Mistakes) The decision maker makes a sys-
tematic mistake in observation: he reads from right to the left
instead of left to right. Thus, for example, P(43) = {34}. This structure
does not satisfy any of the properties P-1, P-2, or P-3.

Example 5 Deªne a question to be a function with a domain Ω. Let
Q be a set of questions. In all states, the decision maker knows the
answers to all the questions. To each question q ∈ Q, he obtains the
answer q(ω). Assume that at each state, the decision maker excludes
any state for which one of the questions will give an answer differ-
ent from the answer obtained at that state. Thus, we have P(ω) =
{ω′ | q(ω′) = q(ω) for all q ∈ Q}. This information structure is
partitional.

Example 6 (Awareness) Modify the previous example so that the
set of questions, Q(ω), asked by the decision maker at ω varies
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with ω. Assume that the decision maker does not draw conclusions
from the list of asked questions. Then, P(ω) = {ω′ | q(ω′) = q(ω)
for all q ∈ Q(ω)}. This information structure satisªes P-1 but not
necessarily P-2.

Example 7 (Selective Memory) A student gets the pass/fail results
of an exam. He ”forgets“ bad news and remembers good news.
Thus, Ω = {G, B}, P(G) = {G}, P(B) = {G, B}. This information structure
satisªes P-1 and P-2; however, it does not satisfy P-3 (G ∈ P(B), B
∈ P(B) but B ∉ P(G)). At B, the decision maker does not conclude
that the state is B from the absence of knowledge of the good news.

Example 8 (Always Having a Clear Picture) Consider a decision
maker who always forms a clear picture of the world, even when
he does not have it. Such a decision maker is modeled by an
information structure P, with the property that P(ω) is a singleton
for all ω. Of course, the desire to always have such a picture of the
world yields an information structure that almost always does not
satisfy any of the three properties. Note that example 4 was a
special case of this example, although the psychological motive was
different.

3.3 The Set-Theoretical Deªnition of Knowledge

In the previous section, we discussed ”inference making.“ We will
now formulate the notion that a decision maker ”knows the event
E.“ The deªnition elaborated in this section is built upon the notion
of an information structure presented in the previous section.

Let (Ω, P) be an information structure (not necessarily partitional).
It is said that the event E is known at ω if the decision maker, at ω,
is able to exclude all states that are not in E, that is, if P(ω) ⊆ E.

This deªnition is less obvious than it seems. Its validity depends
on the procedure by which the decision maker concludes that he
knows E. The deªnition ªts a procedure by which the determina-
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tion of knowledge of E at ω is accomplished by reviewing all states
outside E and concluding that E is known at ω if all states outside
E can be excluded. On the other hand, consider a decision maker
who when at ω gets to know that the state is in P(ω). It is not
obvious that he will conclude that the state is in E when E ⊇ P(ω),
since this requires the ability to understand that P(ω) implies E.
Consider your relationship with a friend who occasionally calls
you. Your attitude to his call depends on your assessment of his
motives for making the call. It could happen that if you fully
describe all the states, you would discover that he calls you only
on those days when his boss is angry at him. Yet, it is not clear that
whenever he does call you, you conclude that his boss was angry
at him.

The deªnition of ”knowledge at a state“ induces a set-theoretical
deªnition of the term ”to know E.“ The statement ”the decision
maker knows E“ is identiªed with all states in which E is known,
that is, with the set K(E) = {ω: P(ω) ⊆ E}. This formula, with a
function P, deªnes the operator K, on subsets of Ω. If P is a partition,
then K(E) is the union of those cells in the partition that are con-
tained in E. Because K(E) is an event, the set K(K(E)) is also well
deªned and is interpreted as ”the decision maker knows that he
knows E.“ This interpretation is awkward since the meaning of a
sentence like ”I know that I know that I don’t know E“ in the natural
language is questionable.

The deªnition of the operator K implies, without any assump-
tions on the information structure, the following properties:

K-0 If E ⊆ F, then K(E) ⊆ K(F)

Proof If E ⊆ F and ω ∈ K(E), then P(ω) ⊆ E and thus P(ω) ⊆ F and
hence ω ∈ K(F).

K-0′ K(E � F) = K(E) � K(F)

Proof ω ∈ K(E � F) iff P(ω) ⊆ E � F iff both P(ω) ⊆ E and P(ω) ⊆
F iff ω ∈ K(E) � K(F).
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K-0″ K(Ω) = Ω.

Additional properties of the operator K are derived from assump-
tions about the information structure. The following three proper-
ties, K-1,2,3 (entitled the axiom of knowledge, the axiom of
transparency, and the axiom of wisdom, respectively) correspond
to the three assumptions P-1,2,3.

K-1 K(E) ⊆ E.
This is interpreted as ”the decision maker knows that E happens
only when E happens.“ To see that P-1 implies K-1, let ω ∈ K(E);
by deªnition, P(ω) ⊆ E; by P-1, ω ∈ P(ω) and thus ω ∈ E.

K-2 K(E) ⊆ K(K(E))
This means that knowledge of E implies knowledge of the knowl-
edge of E. To see that P-2 implies K-2, assume that ω ∈ K(E). We
need to show that ω ∈ K(K(E)), that is, P(ω) ⊆ K(E). Let ω′ ∈ P(ω).
Then, by P-2, P(ω′) ⊆ P(ω). Because ω ∈ K(E), then, by deªnition of
K(E), P(ω) ⊆ E and thus P(ω′) ⊆ E and hence ω′ ∈ K(E).

K-3 −K(E) ⊆ K(−K(E))
This has the interpretation that ”the decision maker is aware of
what he does not know.“ If he does not know E, then he knows
that he does not know E. The proof that P-3 implies K-3 is left as
an exercise.

Note that K-1 and K-3 imply K-2; by K-1 and K-3, for any event
E, −K(E) = K(−K(E)) and thus also K(E) = −K(-K(E)) and hence,
substituting −K(E) for E, K(−K(E)) = −K(−K(−K(E))). These imply
K(E) = −K(−K(E)) = K(−K(−K(E))) = K(K(E)).

3.4 Kripke’s Model

Let us go back to the interpretation of a state. A state is usually
thought of as a ”full description of the world.“ The meaning of the
term ”description“ depends on the language used, but the model
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of information structures discussed in the previous section does not
allow us to talk explicitly about language. In contrast, Kripke’s
model of knowledge is based on a precise deªnition of language.

Following is a short presentation of Kripke’s model, using the
tools of mathematical logic. We start with the notion of a language;
this consists of a set of formulas, each of which is a potential fact
that the decision maker relates to as ”true“ or ”false.“ Let Φ be a
set of symbols, called ”atomic propositions.“ A formula is a member
of the smallest set L satisfying:

•  All elements in Φ are in L.

•  If φ is in L, then (−φ) is in L.

•  If φ and ψ are in L, so are (φ → ψ), (φ ∧ ψ) and (φ ∨ ψ).

•  If φ is in L, so is (K(φ)).

Denote by L(Φ) the set of formulas. We sometimes omit parentheses
to simplify the reading of the formulas.

A Kripke structure is a triple (Ω, π, P) where:

Ω is a set; its elements are called states.

π: Ω × Φ → {T, F} is a truth assignment to every atomic proposition
in Φ at every state in Ω. π(ω, φ) = T means that the atomic propo-
sition φ is assigned by π the value T at the state ω.

P is a function that assigns to every state ω a subset of Ω, with the
same interpretation as in the set-theoretic model: ω′ ∈ P(ω) means
that ω′ is feasible (is not excluded) in ω.

Thus the primitives of the model comprise the set of atomic propo-
sitions that are true for each state, as well as a function that assigns
to each state the set of states that are not excluded from being
possible.

We now deªne the notion that ”a formula φ is satisªed by a
structure M = (Ω, π, P) at state ω,“ denoted by (M,ω) |= φ. The
deªnition is inductive because the notion of a formula is deªned
inductively:
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If φ is atomic then (M, ω) |= φ if π(ω, φ) = T.

If φ = −ψ, then (M, ω) |= φ if not (M, ω) |= ψ.

If φ = ψ1 ∧ ψ2 then (M, ω) |= φ if (M, ω) |= ψ1 and (M, ω) |= ψ2.

If φ = ψ1 ∨ ψ2 then (M, ω) |= φ if (M, ω) |= ψ1 or (M, ω) |= ψ2.

If φ = ψ1 → ψ2 then (M, ω) |= φ if either not (M, ω) |= ψ1 or
(M, ω) |= ψ2.

If φ = K(ψ) then (M, ω) |= φ if for all ω′ ∈ P(ω), we have (M, ω′) |= ψ.

The last condition is the main point of the model. It entails a
systematic method for assigning truth values to the members of
L(Φ) in a way that captures the intuition about what is knowledge.
The content of the statement ”the agent knows ψ at ω“ is taken to
mean that ”ψ is true in all states that are not excluded by the agent
at ω.“

The above deªnitions imply the following claims without making
any assumptions about the function P (their proofs are left as an
exercise):

Claim 0 for all (M, ω), we have (M, ω) |= (Kφ ∧ K(φ → ψ)) → Kψ

Claim 0′ for all (M, ω), we have (M, ω) |= (Kφ ∧ Kψ) → K(φ ∧ ψ)

Claim 0″ for all M, if (M, ω) |= φ for all ω then (M, ω) |= Kφ for
all ω.

These claims demonstrate that there are major aspects of bounded
rationality regarding knowledge that cannot be captured by the
model. Claim 0″ means that by deªnition, a fact that is true in all
states of the world must be known by the decision maker at each
state. In particular, the decision maker is capable of making unlim-
ited logical inferences. The deªnition of satisfaction of a formula
does not distinguish between more or less complicated formulas,
and thus we are unable to model the possibility that knowledge of
a proposition depends on its complexity.
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The next proposition connects properties of the information
structure P to the truth of formulas involving the knowledge sym-
bol ”K“:

Proposition 3.2 For any formula φ:

1. If P satisªes P-1, then (M, ω) |= Kφ → φ for all (M, ω)

2. If P satisªes P-2, then (M, ω) |= Kφ → K(Kφ) for all (M, ω)

3. If P satisªes P-3, then (M, ω) |= −Kφ → K(−Kφ) for all (M, ω)

Proof The proofs are rather simple. The following is the proof of
(1) (the proofs of (2) and (3) are valuable exercises):
By the deªnition of the satisfaction of an ”implication formula“ at
(M, ω), Kφ → φ is not satisªed at (M, ω) only if (M, ω) |= Kφ but not
(M, ω) |= φ. This is impossible because (M, ω) |= Kφ requires that (M,
ω′) |= φ for all ω′ ∈ P(ω); and because P satisªes P-1, it must be that
(M, ω) |= φ. ▫

The term ”full description“ is now well deªned. We can think about
a state in this model as the set of all formulas that are true at that
state. What set of formulas, then, can be a ”full description of the
world“? It is impossible that both φ and −φ will be included in such
a set. Proposition 3.2 demonstrated some other necessary con-
straints on a set of formulas to be the set of all formulas true at
some state in some model. The constraints depend on additional
assumptions on the information structure. The stronger the as-
sumptions made on the information structure, the more constraints
there are on what may be a feasible ”full description of the world.“

Let us conclude this section with a short comparison between
Kripke’s model and the set-theoretical model. Both include the
primitive of an information structure (a P function). The basic dif-
ference lies in the fact that Kripke’s model is more explicit regarding
the deªnition of a state. To clarify the exact connection between the
two models, let φ be a formula. The event Eφ = {ω | (M, ω) |= φ} is
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the set of all states in which φ is true. We will see now that EKφ =
K(Eφ); that is, every state in which Kφ is satisªed by Kripke’s model
is a state where Eφ is known in the set-theoretical model of knowl-
edge and vice versa. Formally:

ω ∈ EKφ iff (by deªnition of EKφ)

(M, ω) |= Kφ iff (by deªnition of (M, ω) |= Kφ)

(M, ω′) |= φ for all ω′ ∈ P(ω) iff (by deªnition of Eφ)

Eφ ⊇ P(ω) iff (by deªnition of K(Eφ))

ω ∈ K(Eφ).

3.5 The Impact of the Timing of Decisions and Having More
Information

We return now to decision theory. We will discuss two issues:

Timing of Decisions
In situations in which the decision maker anticipates obtaining
information before taking an action, one can distinguish between
two timings of decision making:

1. Ex-ante decision making. A decision is made before the informa-
tion is revealed, and it is contingent on the content of the informa-
tion to be received.

2. Ex-post decision making. The decision maker waits until the
information is received and then makes a decision.

In standard decision problems, with fully rational decision makers,
this distinction does not make any difference.

Having More Information
Basic intuition tells us that having more information is an advan-
tage for the decision maker. Exceptional circumstances are often
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discussed in applied game theory. In a game, it may occur that not
having access to some information is a blessing for a player. Some-
times player 1’s lack of information may ”guarantee“ that he will
not take a certain action, whereas without this guarantee, in order
to avoid player 1’s action, player 2 would have taken a preventive
action that is harmful to player 1.

We will see now that the two properties, ”making decisions
ex-post and ex-ante are equivalent“ and ”the advantage of having
more information,“ do not necessarily hold once we allow nonpar-
titional information structures. But, ªrst we need some additional
formal notions.

A decision problem (with imperfect information) is a tuple (A, Ω, P,
u, π) where:

1. A is a set of actions

2. (Ω, P) is an information structure

3. u is a utility function on A × Ω

4. π is a probability measure on Ω. For simplicity, we assume that
π(ω) > 0 for all ω.

Let P = {Z | there is an ω so that Z = P(ω)}. If P is partitional, P is a
partition. A decision rule is a function that assigns a unique action
a(Z) ∈ A to every Z ∈ P. Thus, a decision maker is required to
choose the same action in any two states, ω and ω′, for which
P(ω) = P(ω′).

A decision rule is ex-ante optimal if it maximizes Σωu(a(P(ω)), ω)π(ω).
A decision rule is ex-post optimal if, for every set Z in the range of
P, the action a(Z) maximizes Σωu(a, ω)π(ω | Z) where π(ω | Z) is the
conditional probability of ω given Z. The information structure P is
ªner than P′ if for all ω, P(ω) ⊆ P′(ω).

The next two propositions show the validity of the above two
properties for partitional information structures.
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Proposition 3.3 Let P be a partitional information structure. A
decision rule is ex-ante optimal iff it is ex-post optimal.

Proof This follows from the identity:

Σωu(a(P(ω)), ω)π(ω) = ΣE∈PΣω∈Eu(a(E), ω)π(ω)
           = ΣE∈Pπ(E)[Σω∈Eu(a(E), ω)π(ω | E)]. ▫

Proposition 3.4 Let P and P′ be two partitional information struc-
tures in which P is ªner than P′. Then, the (ex-ante) expected utility
of an ex-post maximizer of the problem (A, Ω, P, u, π) is at least as
large as the (ex-ante) expected utility of an ex-post maximizer of
(A, Ω, P′, u, π).

Proof By Proposition 3.3 it is sufªcient to note that the ex-ante
maximizer of the problem (A, Ω, P, u, π) is at least as good as the
ex-ante maximizer of (A, Ω, P′, u, π). This follows from the fact that
any decision rule that is feasible for the problem (A, Ω, P′, u, π) is
also feasible for the problem (A, Ω, P, u, π). ▫

Comment Consider the model with the requirement that the de-
scription of a state ω includes a speciªcation for each ω ∈ Ω of an
action a(ω) to be taken by the decision maker, without requiring
that a unique action be assigned to every set in the information
partition. A sensible deªnition of ex-post optimality is that for every
ω, a(ω) is optimal given P(ω). With this deªnition, it is not true that
”having more information“ cannot hurt. To see this point, let Ω be
a set which includes three equally likely states, ω1, ω2 and ω3; let
the set of actions be {x, y, z, n}; and let the utility function be
displayed by the following table:

    state
action

�1 �2 �3

x 3 0 0
y 0 3 0
z 0 0 3
n −3 2 2
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Compare the decision problem with the partitional information
structure P that induces the partition {{ω1}, {ω2, ω3}}, with the deci-
sion problem with the degenerate information structure P′ for
which P′(ω) ≡ Ω for all ω.

Consider ªrst the decision problem with P′: The action function
a′, deªned by a′(ω1) = x, a′(ω2) = y, and a′(ω3) = z, is optimal because
for any state ω, the action a′(ω) yields an expected utility of 3 and
is optimal given the decision maker’s belief that any state is equally
likely to be the one he is at.

Consider now the ªner partition P. The unique ex-post maxi-
mizer is a(ω1) = x and a({ω2, ω3}) = n, which yields an ex-ante
expected utility of only 7/3!

We now come to the main point of this section. When we depart
from the assumption that the information structure is partitional,
propositions 3.3 and 3.4 are no longer true, as the following example
shows. A seller offers a risk-neutral decision maker a bet, asserting
that acceptance will yield the decision maker $3 if the state is ω2

and −$2 if either of the other states, ω1 or ω3, occurs. All three states
are equally likely. If no additional information is given to the buyer,
the best option for him is to reject the offer. However, to persuade
the decision maker to accept the unfair offer, the seller commits to
supplying the decision maker with the following ”bonus“ informa-
tion. If the state is ω1, the decision maker is told that ω3 has not
occurred; if the state is ω3, the decision maker is told that ω1 has
not occurred. If the decision maker does not understand the rule
by which the bonus information is given, this information, although
true, distorts the decision maker’s beliefs so that, when given the
information, he always prefers to take the bet.

The phenomenon exhibited here is quite common. It corresponds
to all kind of situations where the decision maker gets information
about the state of the world from an ”interested party“ without
taking into account the source of information. If the decision maker
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takes note of the motivation behind the supply of information, he
escapes from the trap; if he does not make these inferences, the
additional information he obtains may worsen his situation.

Formally, let Ω = {ω1, ω2, ω3}, with π(ω) = 1/3 for all ω and A =
{n, y}. The utility function u(a, ω) and the information structures P
and P′ are displayed in the following table:

�1 �2 �3

n 0 0 0
y −2 3 −2
P {ω1, ω2} {ω2} {ω3, ω2}
P′ Ω Ω Ω

For the decision problem (A, Ω, P′, u, π), the ex-ante and the ex-post
optimal decision rule is a′ ≡ n, obtaining an expected payoff of 0.
The structure P is ªner than P′. The ex-post optimizer for (A, Ω, P,
u, π) is a ≡ y, obtaining the ex-ante expected utility of −1/3. Thus,
although the information structure P is ªner than P′, it induces a
decision rule that is, on average, worse.

The decision problem (A, Ω, P, u, π) demonstrates the difference
between ex-post and ex-ante optimality. The ex-post optimizer is
a(ω) ≡ y, which, of course, is different from the unique ex-ante
optimizer a({ω1, ω2}) = n, a({ω2}) = y, and a({ω3, ω2}) = n.

Comment Note a delicate point in the interpretation of the compari-
son between two different information structures with the same
state space. If a state is a full description of the situation, then there
is only one information structure associated with one state space.
We need to adjust slightly the notion ”P is ªner than P′“ in order
to cope with this problem.

3.6 On the Possibility of Speculative Trade

Speculative trade is an exchange of goods not motivated either by
different tastes regarding the exchanged goods or by different atti-
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tudes toward risk; rather, it is an outcome of differences in infor-
mation. Take, for example, the case where agent 1 holds a lottery
ticket, L, and agent 2 may be interested in buying it for the price α.
Assume that both are risk-neutral. Of course, trade is possible if the
two agents have different assessments of the underlying prob-
abilities that determine L’s payoff. But an intriguing question is
whether such a trade is possible when the two agents

1. have the same prior beliefs on the uncertain elements

2. have different information

3. have a mutual understanding of the information structures

4. take their partner’s willingness to trade into consideration. That
is, before agreeing to trade, each trader makes the right inference
from the willingness of the other trader to trade.

Point 4 is somewhat vague. Does agent 1 make the inference from
the willingness of agent 2 to trade with or without taking into
account agent 2’s considerations concerning agent 1’s willingness
to trade? For a precise formalization of point 4, we need the concept
of common knowledge. The concept has been extensively explored
in the last two decades. The following is a very short introduction
to the topic.

A Short Detour to the Concept of Common Knowledge

One deªnition of common knowledge, suggested by Lewis, was
formulated by Aumann using the set-theoretical model of knowl-
edge. Let Ω be the state space and K1 and K2 be two knowledge
functions (that is, Ki(E) is the set of states in which i ”knows that E
occurs“) representing the knowledge of two agents, 1 and 2, but
not necessarily satisfying the properties of ”fully rational knowl-
edge.“ An event E is common knowledge, between 1 and 2, in the
state ω if ω is a member of all sets of the type K1(E), K2(E), K1(K2(E)),
K2(K1(E)), and so on.
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Example Consider the following two partitions of Ω = {ω1, ω2, ω3,
ω4, ω5, ω6, ω7, ω8}:

P1 = {{ω1, ω2}, {ω3, ω4, ω5}, {ω6}, {ω7, ω8}}

P2 = {{ω1}, {ω2, ω3, ω4}, {ω5}, {ω6, ω7}, {ω8}} and the set E = {ω1, ω2,
ω3, ω4}.

The set E is not common knowledge in any state ω. Verify this by
the chain calculation:

K1(E) = {ω1, ω2} and K2(E) = E,

K2(K1(E)) = {ω1} and K1(K2(E)) = {ω1, ω2},

K1(K2(K1(E))) = ∅ and K2(K1(K2(E))) = {ω1}.

The set F = {ω1, ω2, ω3, ω4, ω5} (or any set that includes F) is common
knowledge in any of the states in F because for both i, Ki(F) = F;
thus KiKjKi . . . Ki(F) = KiKjKi . . . Kj(F) = F.

Note that underlying this deªnition of common knowledge is the
assumption that each agent understands the information structures
of both agents. For example, at ω1, agent 2 bases his knowledge that
agent 1 knows E on his understanding that both P1(ω1) and P1(ω2)
are subsets of E.

Deªne an event E to be self-evident for the information structures
P1 and P2 if, for all ω ∈ E and for both i, Pi(ω) ⊆ E. In other words,
a self-evident event is an event such that whenever it occurs, the
two agents know that it occurs. The following proposition provides
an alternative deªnition for common knowledge that is equivalent
to the previous one, as long as property P-1 (ω ∈ Pi(ω) for all ω) is
satisªed by the two information structures, P1 and P2.

Proposition 3.5 Assume that P1 and P2 are information structures
satisfying P-1. Let K1 and K2 be the knowledge functions induced
from P1 and P2, respectively. The set E* is common knowledge at ω
if and only if it includes a self-evident set E containing ω.
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Proof Assume that there is a self-evident event E so that ω ∈ E ⊆
E*. By the deªnition of a self-evident event, for both i, E ⊆ Ki(E)
and, by P-1, Ki(E) ⊆ E; thus Ki(E) = E for both i, which implies that
KiKj . . . . Ki(E) = KiKj . . . . Kj(E) = E. By K-0, since E ⊆ E* we have
Ki(E) ⊆ Ki(E*) and thus E = KiKj . . . . Ki(E) ⊆ KiKj . . . . Ki(E*) and
E = KiKj . . . . Kj(E) ⊆ KiKj . . . . Kj(E*). Hence, since ω ∈ E, ω is a
member of all sets of the type KiKj . . . . Ki(E*) and KiKj . . . . Kj(E*).
That is, E* is common knowledge at ω.
 Conversely, if E* is common knowledge at ω, take E to be the
intersection of all sets of the type KiKj . . . Ki(E*) and KiKj . . . Kj(E*).
Because E* is common knowledge at ω, ω ∈ E. By K-1, which follows
from P-1, E ⊆ E*. To show that E is a self-evident event, one just
has to verify that for any ω ∈ E, Pi(ω) ⊆ E. This follows from the
fact that because ω ∈ E, ω belongs to any set of the form Ki Kj . . .
Ki(E*). ▫

We are ready to return to the speculative trade question. Is it
possible that two agents, 1 and 2,

1. have the same prior beliefs on Ω,

2. have different information structures, P1 and P2,

3. have a mutual understanding of the information structures, and

4. share common knowledge at some ω that agent 1 believes that
the expectation of a given lottery L is strictly above α and that agent
2 believes that the expectation of the lottery L is strictly below α?

If the answer is positive, then at ω, an exchange of the lottery L for
α is acceptable for the two agents even after they both consider
taking the willingness to trade as an additional signal that may
modify their knowledge.

The answer to the above question is negative if the information
structures are partitional; consequently, ”speculative trade“ cannot
be explained as an outcome of different information structures.

Proposition 3.6 Assume that both information structures, (Ω, P1)
and (Ω, P2), are partitional. Let L be a lottery on the space Ω. Then,
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it is never common knowledge between the two agents that agent
1 believes that the expectation of the lottery L is above α and that
agent 2 believes that the expectation of the lottery L is below α.

Proof Assume that the event E* = {ω | agent 1 evaluates the lottery
L above α and agent 2 evaluates it below α} is common knowledge
at some state ω*. Then, there is a self-evident event E so that ω* ∈
E ⊆ E*, and since Pi(ω) ⊆ E, for all ω ∈ E, we have E = �ω∈EPi(ω). Be-
cause Pi is partitional, for each i, {Pi(ω)}ω∈E is a collection of disjoint
sets. For each ω ∈ E, the expected value of L, given P1(ω), is above
α and thus Ex(L | E) > α. Similarly, for each ω ∈ E, the expected value
of L given P2(ω) is below α and thus Ex(L | E) < α, a contradiction. ▫

However, the impossibility of speculative trade does not neces-
sarily hold if the information structure does not satisfy property
P-3. Consider the space Ω = {ω1, ω2, ω3} and a probability measure
π, that assigns equal probabilities to the three states. Assume

P1(ω) ≡ {ω1, ω2, ω3} and

P2(ω1) = {ω1, ω2}, P2(ω2) = {ω2} and P2(ω3) = {ω2, ω3}.

Both P1 and P2 satisfy properties P-1 and P-2, but P2 does not satisfy
P-3. Let L be the lottery L(ω2) = 1, and L(ω1) = L(ω3) = 0, and let α =
0.35. For all ω, agent 1 believes that the expectation of L is 1/3
(which is strictly less than 0.35), and agent 2 believes that the
expectation of L is 0.5 or 1 (which are strictly above 0.35). Thus, for
any state ω, it is common knowledge that agent 1 is ready to sell L
for 0.35 and that agent 2 is ready to pay this price. Thus, the absence
of a fully rational treatment of knowledge allows speculative trade.

3.7 Bibliographic Notes

The chapter began with the basic models of knowledge. The dis-
cussion of the set-theoretical model in Section 2 is based on Geanak-
oplos (1989) (see also Hintikka (1962)).
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Section 3 dwells on Kripke’s model, which was developed in the
late 1950s. An excellent presentation of the material is found in
Fagin, Halpern, Moses, and Vardi (1995). The comparison between
Kripke’s model and the set-theoretical model is based on their
presentation.

Geanakoplos (1989) is the source of much of the discussion in
Section 4.

Section 5 is based on Geanakoplos (1992) and (1994). Two classic
works on the notion of common knowledge are Lewis (1969) and
Aumann (1976). For work on speculative trade and common knowl-
edge, see Milgrom and Stokey (1982).

3.8 Projects

1. Innovative In this chapter, we discussed the notion of knowledge. Consider other
operators like: ”I believe that,“ ”I am pleased that,“ ”it is impossible that,“ and so
on. For each of these operators, assess the meaning of the sentence K(Kφ) and check
the validity of the propositions

Kφ ∧ K(φ → ψ) → Kψ

Kφ → φ

Kφ → K(Kφ)

−Kφ → K(−Kφ).

2. Exercise (Based on Geanakoplos [1994].) The following is another model of
knowledge. The primitives of the model are Ω, a set of states, and K, a function
that assigns to each event E a subset of states K(E), interpreted as the set of states
in which E is known. The following is a natural way to construct an ”equivalent“
information structure (Ω,P) from the model (Ω, K) so that K(E) = {ω | P(ω) ⊆ E}.
Given a function K, deªne P(ω) = �{E|ω∈K(E)}E. The idea of the construction is that at
ω, the decision maker excludes any state ω′ that does not belong to all known
events. Show that if K satisªes K-0 and K-0′, then K(E) = {ω | P(ω} ⊆ E}. Furthermore,
for any i = 1, 2, 3, the induced function P satisªes property P-i if the function K
satisªes property K-i.

3. Innovative As we emphasized, the models of knowledge we discussed do not
specify the process by which the knowledge is acquired. Invent some scenarios that
will include a speciªcation of the method by which knowledge is acquired and
investigate the properties of knowledge satisªed by those processes. Consult Lip-
man (1995b).

Modeling Knowledge 61



4. Reading Discuss the problem of Ulysses and the sirens in light of the material
presented in this chapter. See Geanakoplos (1992) and Elster (1979).

5. Exercise (Based on Rubinstein and Wolinsky (1990).) Let Ω be a ªnite space of
states. Let P1 and P2 be two information structures. Let F be the set of functions that
are deªned over the set of subsets of Ω and assign to every subset of Ω either the
value ”True“ (denoted by T) or the value ”Not True.“ We say that f ∈ F is preserved
under disjoint union if for all disjoint sets R and S such that f(R) = T and f(S) = T,
we have f(R � S) = T. We say that f is preserved under difference if for all R and S
such that R ⊇ S, f(R) = T, and f(S) = T, we also have f(R − S) = T. Prove and provide
applications for the proposition that if P1 and P2 satisfy conditions P-1 and P-2 and
f and g are two functions in F such that

1. there is no S for which f(S) = g(S) = T,

2. f and g are preserved under disjoint union,

3. f and g are preserved under difference,

then, there is no ω* at which the set {ω| f(P1(ω)) = T and g(P2(ω)) = T} is common
knowledge.
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4 Modeling Limited
Memory

4.1 Imperfect Recall

Memory is a special type of knowledge. It is what a decision maker
knows at a certain date about what he knew at a previous date.
Imperfect recall is a particular case of imperfection of knowledge
that lies at the heart of human processing of information. In this
chapter, we discuss some of the major differences between a deci-
sion problem with perfect recall and one with imperfect recall. We
will see that some basic properties that hold for decision problems
with perfect recall fail to hold with imperfect recall. We will also
question whether the model commonly used to discuss imperfect
recall is appropriate for modeling this phenomenon.

The common interpretation of a decision problem with imperfect
recall refers to a situation in which an individual has to carry out
several successive actions but faces memory limits. When the deci-
sion maker is an organization consisting of agents who possibly act
at different instances, the concept of imperfect recall may reºect
communication problems arising between the agents.

Note that placing constraints on the strategies of economic
agents, especially stationarity, which may be interpreted as express-
ing imperfect recall, is common in economics and game theory.
Usually, these limits result from difªculties in “solving” the model
and are not expressions of plausible assumptions about the decision



makers. The phenomena discussed in this chapter have been
avoided in the standard economic literature by assumptions like
the “stationarity of the environment” that guarantee that forget-
ting will be harmless as long as all the agents recall the same
information.

4.2 An Extensive Decision Making Model with Imperfect
Information

The standard framework to discuss decision making with imperfect
recall is the model of an extensive decision problem, which is a
conventional extensive game with one player. An extensive decision
problem is usually thought of as a description of the order of the
decisions that the decision maker may confront in the course of the
situation analyzed. In addition to the order of moves, the model
spells out the knowledge the decision maker obtains at each in-
stance at which he is required to move.

A (ªnite) decision problem (with imperfect information) is a ªve-
tuple Γ = (H, C, ρ, u, I) where:

1. H is a ªnite set of histories. We assume that the empty sequence,
∅, is an element of H and that if (a1, . . . , at) ∈ H and (a1, . . . , at) ≠
∅, then (a1, . . . , at−1) ∈ H.

We interpret a history (a1, . . . , at) ∈ H as a possible sequence of
actions that can be taken by the decision maker or by chance. When
presenting a decision problem diagrammatically, we draw H as a
tree whose nodes are the set of histories with root ∅, and each of
whose edges connects a node (a1, . . . , at) with a node (a1, . . . , at+1).

The history (a1, . . . , at) ∈ H is terminal if there is no (a1, . . . ,
at, a) ∈ H. The set of terminal histories is denoted by Z. The set of
actions available to the decision maker or to chance, following a
nonterminal history h, is A(h) = {a| (h, a) ∈ H}. We assume that A(h)
contains at least two elements.
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2. C is a subset of H − Z. Chance (that is, elements outside the
control of the decision maker) determines the way the situation
progresses at each history in C.

3. ρ is the decision maker’s belief about the chance player’s behav-
ior. ρ assigns a probability measure on A(h) to each history h ∈ C.
We assume that ρ(h)(a) is strictly positive for all h ∈ C and a ∈ A(h).

4. u: Z → R is a utility function that assigns a number (payoff) to
each of the terminal histories. In any case where the decision maker
has to choose among lotteries over the terminal histories, we as-
sume that he behaves as an expected payoff maximizer.

Thus, the set of histories H is partitioned into three subsets:

Z: the set of terminal histories;

C: the set of histories after which the chance player moves;

D = H − Z − C: the set of histories after which the decision maker
moves.

When the decision maker is about to move, he knows he is at one
of the histories in D, but the model allows him not to recognize the
exact history where he is. We adopt the previous chapter’s approach
and formulate knowledge as an information structure on the set D.

5. I, the set of information sets, is a partition of D. It is assumed
that for all h, h′ in the same cell of the partition, A(h) = A(h′), that
is, the sets of actions available to the decision maker at all the
histories in the same information set are identical.

We interpret the partition of D into information sets as a descrip-
tion of the knowledge provided to the decision maker. Although the
decision maker knows at which information set he is located, if the
set is not a singleton, he is not told (although he may infer) which
history led to it. If all the information sets are singletons, then we
say that the decision problem has perfect information.
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We now turn to the different notions of strategy. A (pure) strategy,
f, is a function that assigns an element of A(h) to every history h ∈
D with the restriction that if h and h′ are in the same information
set, then f(h) = f(h′). Any pure strategy f leads to a distribution over
the terminal nodes. For example, when there are no chance moves,
this distribution assigns probability 1 to the history (f(∅), f(f(∅)),
f(f(∅),f(f(∅))), . . . ).

Note that this deªnition of a strategy follows the game theoretic
tradition and requires that the decision maker specify his actions
after histories he will not reach if he follows the strategy. The more
natural deªnition of a strategy is as a plan of action: a function that
assigns an action only to histories reached with positive probability.
Formally, f is a plan of action if there exists a subset of histories H′
so that f(h) is deªned for all h ∈ H′ iff h is reached by f with positive
probability. The game theoretic concept of a strategy can be inter-
preted as “notes” from a reasoning process (such as “backward
induction”) in which the decision maker needs to specify what he
would do at histories he will not reach in order to determine that
he will not indeed reach those histories.

In game theory, we often talk about two extensions of the notion
of a strategy, each of which uses random factors: A behavioral strat-
egy, b, is a function such that for all h ∈ D, b(h) is a distribution over
A(h) such that b(h) = b(h′) for any two histories, h and h′, that lie
within the same information set. A mixed strategy is a distribution
over the set of pure strategies. (Note that in some of the litera-
ture, a mixed strategy is deªned as a distribution over behavioral
strategies.)

Thus, a behavioral strategy is a rule of behavior that assigns
(possibly random) behaviors to each of the information sets in the
decision problem. These random elements represent stochastically
independent factors. The element b(h) is the “order” given by the
decision maker to himself (or to an agent who acts on his behalf)
specifying the random device to use whenever he is at h in order
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to determine the action that will be taken at h. If the decision
problem does not rule out the possibility that the decision maker
will be at the same information set more than once (we will call this
“absent-mindedness”), then the random element in the behavioral
strategy is realized independently at each instance in which the
information set is visited. On the other hand, a mixed strategy is a
rule of behavior that uses a random device only once, prior to the
starting point of the problem. (As usual, the interpretation of the
random device does not have to be, literally, of a roulette wheel or
of a die. One can also take it as a rule of behavior that is dependent
on external random elements.)

A behavioral strategy b leads to a distribution of terminal nodes.
The strategy b* is optimal, if no other behavioral strategy yields a
higher expected utility. Thus, optimality is examined from the per-
spective of the point prior to the onset of the decision problem.

In Example 1 (ªg. 4.1), the decision maker has eight pure strate-
gies (and six plans of actions). A behavioral strategy for this deci-
sion maker is a triple of probabilities, one for each information set,

Figure 4.1
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and a mixed strategy is a lottery on the eight pure strategies. The
unique optimal strategy is to choose S at d1, C at d2 and R at d3.

4.3 Perfect and Imperfect Recall

Our understanding is that the knowledge expressed by the infor-
mation partition I results from a decision maker’s cognitive abilities.
This knowledge is imposed on the decision maker by his senses.
We use the term “to know ψ” as we did in the previous chapter. If
ψ is true for all histories in a certain information set, we say that
the decision maker at that information set knows ψ. In Example 1,
at the information set d3 = {(L, C), (R, C)}, the decision maker
knows on one hand that he played C at the ªrst stage since d3 ⊆
{(a1, a2, . . . , aK) | a2 = C}. On the other hand, at d3, he does not know
the chance move, which he did know at d1 and d2.

However, we sometimes talk about knowledge as it is perceived
after the decision maker has made further inferences regarding
where he is, which he makes on the basis of considerations such as
the knowledge of the strategy he is using. Thus, if he has decided
to play C at d1 and S at d2, at d3 he may conclude that he is at (L, C).
Therefore, we have to be careful and clarify the type of knowledge
we are referring to whenever we use phrases involving knowledge.

We are now ready to approach the main deªnitions of this chap-
ter, those of problems with perfect and imperfect recall. These
concepts refer to knowledge as expressed by the information sets
only. Deªne exp(h) to be the decision maker’s experience along the
history h, that is, the list of the information sets he encountered
along the history and the actions he took at each of these informa-
tion sets.

A decision problem with perfect recall is one in which exp(h) = exp(h′)
for any two histories, h, h′ ∈ D, that lie in the same information set.
(The condition of equality of the sequences exp(h) and exp(h′) im-
plies that the information sets appear in the same order in those
sequences.) Thus, in a decision problem with perfect recall, the
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decision maker “remembers” the actions he took in the past and
whatever information he obtained about chance moves. A decision
problem that does not satisfy the above condition is called a deci-
sion problem with imperfect recall.

Example 1 is the most common example of imperfect recall. The
decision maker perceives some valuable information at a certain
stage, information that may be useful at a later stage, but he will
not perceive this information later. More speciªcally, the decision
maker can obtain the payoff 2 at date 1 or choose to make a choice
at date 2 between L and R, which may yield a payoff lower or higher
than 2. At the ªrst date, “somebody” tells the decision maker what
action he should take at date 2, but he will not remember the
content of what he is told when he reaches the later date. For-
mally, the decision problem is of imperfect recall, because both
histories, (L, C) and (R, C), are in d3, but exp(L, C) = (∅, {L}, C) while
exp(R, C) = (∅, {R}, C).

In Example 2 (ªg. 4.2), the decision maker has to choose a pass-
word, L or R, and then he has to repeat it in order to achieve a
non-zero payoff. If he repeats L twice, he gets 1; if he repeats R
twice he gets 2 (that is, he has some reason to prefer using the
password R rather than L). When the time comes to repeat the
password, the decision maker knows that he has chosen a password
but does not recall whether it is L or R. Formally, the problem is
one with imperfect recall because exp(L) = (∅, L) ≠ exp(R) = (∅, R).

Example 3 is the least standard example. Consider an absent-
minded driver who, in order to get home, has to take the highway
and get off at the second exit. Turning at the ªrst exit leads into a
bad neighborhood (payoff 0). Turning at the second exit yields the
highest reward (payoff 4). If he continues beyond the second exit,
he will have to go a very long way before he can turn back home
(payoff 1). The driver is absent-minded and is aware of this fact.
When reaching an intersection, his senses do not tell him whether
he is at the ªrst or the second intersection; that is, he cannot re-
member how many he has passed. Here, the decision maker does
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not distinguish between the history φ and the history (C); in par-
ticular, at (C), he forgets that he already took one action. This
decision problem is an example of a decision problem exhibiting
absent-mindedness; that is, the decision problem has an information
set containing both a history h and a subhistory of h. Note that
decision problems with absent-mindedness were ruled out in
Kuhn’s original formulation of extensive games.

At this point, we turn to a discussion of a series of properties that
hold for decision problems with perfect recall yet fail to hold for
general decision problems with imperfect recall. These properties
are so elementary that they are seldom mentioned in the literature.
They “justify” ignoring some potential procedural elements in the
analysis of rational decision making.

4.4 Time Consistency

Our deªnition of optimality refers to ex-ante considerations, those
arising before the decision problem is initiated. That is, the decision

Figure 4.2
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maker makes a plan, before the decision problem begins to unfold,
regarding what to do in each possible scenario that may arise. But
what happens if such a stage does not transpire and the decision
maker makes his decisions as the situation unfolds? Or, if he does
make a plan in advance, can he decide “not to decide” and to
postpone his decisions regarding future events to another stage?

When we usually analyze conventional decision problems with
perfect recall, these issues are ignored. The reason for this neglect
is that they appear to be insigniªcant. Yet, we will see that these
issues may be critical for the analysis of decision problems with
imperfect recall. We will not address these issues directly; instead,
we will analyze the property of time consistency whose absence
makes them relevant.

In order to formalize the notion of time consistency, we need to
describe the decision maker’s belief updating method. A belief
system is a function µ that assigns to any information set X and any
history h ∈ X, a non-negative number µ(h | X) such that
Σh∈Xµ(h | X) = 1. It has the interpretation that when arriving at X,
the decision maker assigns the probability µ(h | X) to the possibility
that he is actually at h. For decision problems with perfect recall, it
is common to assume that the belief system must conform with
the principles of Bayesian updating. Extending the principles of
Bayesian updating to decision problems with absent-mindedness is
not conceptually trivial. Here, we will follow one approach that
generalizes Bayesian updating. Given a behavioral strategy b, a
consistent belief system µ assigns to every information set X reached
with a positive probability, and to every h ∈ X, a number, µ(h | X).
This number is required to be the long-run proportion of instances
at which a decision maker who follows b and “visits” the informa-
tion set X, is at h out of the total number of “visits” in X. That is,
for consistent µ, µ(h | X) = p(h | b)/Σh′∈Xp(h′ | b) where p(h | b) is the
probability of reaching the history h when employing the behav-
ioral strategy b. Note that for any case that does not involve absent-
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mindedness, the consistency requirement is equivalent to Bayesian
updating. With absent-mindedness the meaning of Bayesian updat-
ing is not clear and the requirement of consistency of beliefs extends
beyond the Bayesian requirement. For instance, in Example 3, if the
behavioral strategy selects C with probability of 1/2, a consistent
belief at d1 assigns probability 2/3 to being at the ªrst intersection.

We say that a strategy is time-consistent if at no information set
reached as the decision problem unfolds does reassessing the strat-
egy for the remainder of the decision problem lead to a change in
the plan of action. That is, a behavioral strategy b is time-consistent
if there is a belief system µ consistent with b such that for every
information set X that is reached with positive probability under b,

Σh∈Xµ(h)Σz∈Zp(z | h, b)u(z) ≥ Σh∈Xµ(h)Σz∈Zp(z | h, b′)u(z),

for any behavioral strategy b′, where p(z | h, b) is the probability of
reaching the terminal history z when employing b, conditional on
h having occurred.

Note that the deªnition of time-consistency does not make any
requirement of optimality ex-ante. Nevertheless, a well-known fact
about decision problems with perfect recall is that a strategy is
optimal if and only if it is time-consistent. Actually, we can prove
this equivalence for a larger set of decision problems. In order to
state the result, we need one deªnition: A decision problem is said
to satisfy condition (∗) if for any information set X and two histories
h′, h″ ∈ X that split at h ∈ C, the information sets that appear in
exp(h′) are the same as in exp(h″). In other words, in any problem
satisfying condition (∗), it is impossible for the decision maker to
have different information regarding a chance move along two
histories that lie in the same information set. Example 2 is a decision
problem with no absent-mindedness, satisfying (∗). Example 1 does
not satisfy this condition: The histories (L, C) and (R, C) are split by
a move of chance but the list of information sets along the two
histories is not the same. Of course, any problem with perfect recall
satisªes condition (∗).
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Proposition 4.1 Consider a decision problem without absent-
mindedness that satisªes condition (∗). Then, a strategy is optimal
if and only if it is time-consistent.

We will not prove this proposition here: we will make do with
reviewing several problems with imperfect recall for which time
consistency and optimality are not identical properties.

Consider Example 1. The optimal strategy is to choose S at d1, C
at d2, and R at d3. It yields an expected value of 3. However, upon
reaching d1, the decision maker, if he is able to review his strategy,
would prefer changing it to C at d1 and L at d3. Thus, the optimal
strategy here is not time-consistent.

Let us go back to the procedural aspects of decision making and
see how these details inºuence the analysis of the situation.

Planning Stage If there is a planning stage at which the strategy is
determined then the best expected payoff for the decision maker is
3. In contrast, in the absence of a planning stage prior to the begin-
ning of the situation, then the decision maker does better as he is
able to make superior plans about how to play at d3 given the
information that he has reached d1 or d2.

Postponing Decision If there is a planning stage and the decision
maker is able to make a decision regarding when to decide about
the move at d3, he is better off if he postpones his decision regarding
d3 to d1 or d2.

The next example (ªg. 4.3) shows that a strategy may be time-
consistent but not optimal.

A decision maker has two opportunities to stop the game. Con-
sider the strategy where the decision maker plays C at both infor-
mation sets. The only belief consistent with this strategy assigns
probability 1/2 to each of the histories in each of the information
sets. The strategy always to continue is optimal at each of the
information sets and thus is time-consistent. However, the optimal
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strategy in this problem is to choose S in each of the information
sets.

The strategy to play C at both information sets seems to describe
a “bad equilibrium” prevailing in the decision maker’s mind. In this
example, if the decision maker does not have a planning stage
before the chance player moves, he must form beliefs at one infor-
mation set about what he would have done if he had reached the
other information set. Believing at each information set that had he
visited the other set, he would have chosen C is an “equilibrium”
(even if the decision maker is able, at d1, to control his future
behavior at d2 if it is reached).

For decision problems with absent-mindedness, the consistency
problem is more severe. If the driver in Example 3 plans his trip in
advance, he must conclude that it is impossible for him to get home
and that he should not exit when he reaches an intersection. That
is, his optimal plan is to choose C, yielding a payoff of 1. Now,
suppose that he reaches an intersection. Should he remember his
strategy, he would conclude that he is at the ªrst intersection with
probability 1/2. Then, reviewing his plan, he would conclude that

Figure 4.3
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it is optimal for him to leave the highway since it yields an expected
payoff of 2. Thus, despite no new information and no change in his
preferences, the decision maker is tempted to change his initial plan
once he reaches an intersection!

The driver’s example has a certain paradoxical ºavor owing to
the conºict between two ways of reasoning at an intersection. The
ªrst instructs the decision maker to follow his initial decision not
to exit, following an intuitive principle of rationality that unless
new information is received or there is a change in tastes, previous
decisions should not be changed. The second way of reasoning,
maximizing the expected payoff given the belief, suggests he
should deviate from his initial decision.

Note that this is not a standard economic example of time incon-
sistency. Usually, time inconsistency is obtained as a consequence
of changes in preferences (tastes) during the execution of the opti-
mal plan. Here, the inconsistency arises without any change in
information or preferences.

4.5 The Role of Randomization

In standard decision theory, it is assumed that a decision maker
uses a strategy that does not employ random devices. Two ration-
ales underlie this assumption. First, people tend not to use such
random devices. Second, for decision problems with perfect recall,
even if a player is allowed to use a random device to determine his
action at every history, he would not be able to obtain an expected
payoff higher than what could be obtained without the random
device.

Let us expand on the last point. We have mentioned two ways
of using random devices, expressed by the notions of mixed and
behavioral strategies. A mixed strategy induces a linear combi-
nation of the lotteries induced by pure strategies and thus (for
problems with either perfect or imperfect recall), if the decision
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maker is an expected utility maximizer, a mixed strategy cannot
induce a payoff strictly higher than the payoff to any pure strat-
egy. However, can a behavioral strategy be better than any pure
strategy?

Proposition 4.2 (Isbell (1957)) For any decision problem with no
absent-mindedness, no behavioral strategy is strictly better than all
pure strategies.

The idea of proof For a problem that does not exhibit absent-mind-
edness, the expected payoff is linear in the probability that is as-
signed to each action at every history; thus, for such a problem, it
cannot be beneªcial to use behavioral strategies.

In contrast, consider again the absent-minded driver example (Ex-
ample 3). The optimal pure strategy is to choose C. However, the
behavioral strategy in which the decision maker equally mixes the
two actions yields the higher expected payoff of 1.25. The optimal
behavioral strategy is actually to choose C with the probability p
that maximizes p2 + 4p(1 − p). That is, the optimal strategy is p =
2/3, yielding an expected payoff of 4/3.

The above example is not coincidental. One can show that:

Proposition 4.3 For any four-tuple (H, C, ρ, I) with absent-mind-
edness, there is a payoff function u so that for the decision problem
(H, C, ρ, I, u) there exists a behavioral strategy strictly better than
all pure strategies.

Thus, the question whether or not a decision maker considers the
use of random devices is crucial only for the analysis of decision
problems with absent-mindedness.

Note that the time inconsistency in the absent-minded driver
example persists when we allow the decision maker to choose
behavioral strategies. Given his optimal behavioral strategy of not
exiting with probability 2/3, let α be the probability he assigns to
“being at the ªrst intersection.” Then, on reviewing his plan, he
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should maximize α[p2 + 4(1 − p)p] + (1 − α)[p + 4(1 − p)], where p
is the probability of not exiting, and conclude that the optimal p is
max{0, (7α − 3)/6α}. This is inconsistent with his original plan
unless α = 1. In other words, his original plan is time-consistent if
and only if he holds the unreasonable belief (given his strategy) that
there is no chance that he has passed the ªrst intersection. Consis-
tent beliefs must assign a probability to the second intersection
that is 2/3 times the probability assigned to the ªrst intersection,
that is, α = 0.6. Actually, the only strategy that satisªes the consis-
tency requirement here is p = 4/9 (the solution of the equations α =
1/(1 + p) and (7α − 3)/6α = p).

The Equivalence Between Behavioral and Mixed Strategies

A consequence of the Kuhn (1953) theorem is that for any decision
problem with perfect recall, a distribution over the terminal histo-
ries can be induced from a mixed strategy if and only if it can be
induced by a behavioral strategy.

We have already seen that with imperfect recall, a behavioral
strategy may be better than all mixed strategies; thus, not all be-
havioral strategies can be mimicked by mixed strategies. We will
show now that in decision problems with imperfect recall, it can
also occur that a mixed strategy may not be mimicked by a behav-
ioral strategy. This is insigniªcant for decision makers who are
expected utility maximizers; in such a case, no mixed strategy is
better than any pure strategy. But once we move to other theories
of decision under uncertainty (like maxminimization), this fact is
signiªcant.

Consider Example 2 once again. The mixed strategy 1/2[L, L] +
1/2[R, R] induces the distribution (1/2, 0, 0, 1/2) on Z. However,
a behavioral strategy ((p, 1 − p), (q, 1 − q)) induces a distribution
that places probability 0 on (L, R) only if p(1 − q) = 0, that is, only
if either p = 0 or q = 1, in which case the probability of either (L, L)
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or (R, R) must also be zero. This observation helps to highlight
hidden assumptions of the model. When using the mixed strategy,
the decision maker does “remember” the outcome of the random
factor, which determines whether he is playing “twice L” or “twice
R.” On the other hand, if at d1 he employs a behavioral strategy in
which he chooses L or R with some probabilities, he is not able to
recall the outcome of his randomization at d1 once he reaches d2.
This fact reºects a more general point: The model does not allow
us to refer to restrictions on the memory of the strategy.

4.6 The Multiselves Approaches

Is a decision maker at one history able to control his actions at
another history? In our discussion of time consistency, we assumed
that when a decision maker reassesses his behavior at any particular
information set, he may consider changing his planned actions at
other information sets as well. This approach is in contrast with an
alternative ªrst suggested by Strotz (1956) as a framework for ana-
lyzing dynamic inconsistencies. In this alternative view, the deci-
sion maker at one information set is unable to control his behavior
at future information sets. A decision maker is a collection of hypo-
thetical agents (selves) whose plans form an equilibrium in the
decision maker’s own mind. Formally, for any decision problem Γ,
deªne G(Γ) to be the extensive game in which each information set
of Γ is assigned a distinct player, and all players have the same
payoffs the decision maker has. The behavior of the decision maker
in Γ is then analyzed as an equilibrium of G(Γ).

If the decision problem is one with perfect information, the game
G(Γ) has a subgame perfect equilibrium. It is well known that any
optimal play for Γ is the play induced by some subgame perfect
equilibrium of G(Γ), and any subgame perfect equilibrium of G(Γ)
corresponds to an optimal strategy. This is a consequence of what
in game-theoretic jargon is called the “one-deviation property.”
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An analogous result holds for decision problems with perfect
recall and imperfect information. In this case, we use the solution
concept of sequential equilibrium, which combines sequential ra-
tionality with the requirement of consistent beliefs. The set of dis-
tributions over the terminal nodes generated by the sequential
equilibria of G(Γ) is identical to the set of distributions generated
by the optimal strategies of Γ (see Hendon, Jacobsen, and Sloth
[1996]).

The equivalence of the single-self and the multiselves approaches
for decision problems with perfect recall breaks down when we
analyze decision problems with imperfect recall. Consider Example
2. The multiselves approach does not rule out the inferior strategy
(L, L): conditional upon being at d1, the choice of L is optimal if the
decision maker treats his behavior at d2 as unchangeable and be-
lieves that at d2 he will play L. Nevertheless, the optimal strategy
(R, R) is an equilibrium of the multi-selves game as well.

When coming to decision problems with absent-mindedness, the
situation seems to be more complicated. It seems that for such
problems we have to reconsider the deªnition of the multiselves
approach. If each information set is modeled as one player, we
implicitly assume that a “player” who is able to change his action
in an information set is also able to control his behavior during
other visits to this information set. If we postulate that a decision
maker at each instance can control his behavior only at that in-
stance, we are led to an alternative deªnition. We say that a strategy
b is modiªed multiselves-consistent if for any information set X, chang-
ing the action assigned by b to the information set X is not
proªtable, when the decision maker assumes that in all other infor-
mation sets or in any other visits to the information set X, he will
continue to follow b.

Formally, b is modiªed multiselves-consistent if there exists a
belief µ, consistent with b, such that for every information set X
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reached with positive probability and for every action a ∈ A(X) for
which b(h)(a) > 0 for h ∈ X, there is no a′ ∈ A(X) such that

Σh∈Xµ(h)Σz∈Zp(z | (h, a′), b)u(z) > Σh∈Xµ(h)Σz∈Zp(z | (h, a), b)u(z).

Consider once again the absent-minded driver’s problem. The
optimal strategy is to continue with probability 2/3. The consistent
beliefs assign a probability of 0.6 to the ªrst intersection. If the
decision maker anticipates that his “twin-self,” if it exists, will use
p = 2/3, then it is optimal for him to use p = 2/3 (or any other
behavioral strategy) because he is indifferent between exiting
(yielding the expected payoff 0.6[0] + 0.4[4] = 1.6) and continuing
(yielding an expected payoff of 0.6[(1/3)4 + (2/3)1] + 0.4[1] = 1.6).
Actually, the following is true for every decision problem:

Proposition 4.4 If a behavioral strategy is optimal, then it is
modiªed multiselves-consistent.

Comment  Some claim that Proposition 4.4 “solves” the paradoxical
aspects of the absent-minded driver’s example. I doubt it, because
this “resolution” is based on a particular assumption about the
decision maker’s control of his future behavior that cannot be
justiªed by principles of rationality. There are many situations in
which a player is able to determine his actions in future instances.
If we adopt the assumption that a decision maker at one point of
time cannot control his behavior at any other point of time, we then
ªnd ourselves in the ridiculous situation presented in Example 2,
in which nothing distinguishes between the strategy (L, L) and the
superior strategy (R, R). Under circumstances in which a decision
maker cannot indeed control his behavior beyond the instance in
which he operates, the situation is reduced to a multiplayer game.
But, I do not see why we should always make such an assumption.
Moreover, in general terms, it seems important to keep the deªni-
tion of a single player to be an entity that considers its present and
future actions to be under its control at any one time but assumes
that it does not affect the actions taken by other players.
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4.7 On the Problematics of Using the Model

In the previous three sections, we pointed out three elements miss-
ing from the model that were immaterial regarding decision prob-
lems with perfect recall but that may be crucial to the analysis of a
problem with imperfect recall. This leads us to question the appro-
priateness of the extensive decision problem model for analyzing
imperfect recall.

Another major problem to be raised is the question of the mem-
ory of a strategy. When discussing time consistency, we assume that
the decision maker’s beliefs are consistent with the strategy, and
when we talk about deviation from a strategy, we assume that the
decision maker remembers the change he makes. The model is
“silent” about the question whether the decision maker can remem-
ber the strategy he has chosen and whether he is able to recall a
change in strategy if he makes one.

There are other aspects of decision making in which the model
is narrow. For example, sometimes a decision maker knows that he
may one day doubt the information he possesses. This fear of
becoming confused is an important element in daily life and often
motivates decision makers to prefer modes of behavior that keep
things simple as a means to avoid the harm resulting from confu-
sion.

Modeling confusion within an extensive decision problem is
problematic. Consider the following variant of the absent-minded
driver’s problem (ªg. 4.4): A driver is at point A and wishes to reach
point C. He could drive to C via the long route, which would bring
him to his destination directly without having to make any further
decisions, or he could use a short but unmarked road, in which case
he would have to make a turn at the second intersection. If he
arrives at point B or if he misses the second intersection and reaches
point D, he will be stuck in trafªc and hence waste several hours
in returning to C.
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The driver knows that he is able to identify the exit to B (herein-
after #1) but that when he arrives at the exit to C (hereinafter #2),
he will become confused and believe that there is a probability of
0.1 that he has not yet passed the ªrst intersection. The driver
believes that once he ªnds himself in this state of doubt, he will
become alert and no longer confused. The driver does not conclude
from his state of doubt (which would occur only at the second
intersection) that he is actually at the second intersection.

Note the difference between this problem and the absent-minded
driver’s problem. In the latter, the decision maker does not distin-
guish between the two intersections. Here he does recognize the
ªrst intersection but is confused when he arrives at the second.

To model the situation as an extensive decision problem, we may
depart from the assumption that the informational structure is
partitional. The player’s beliefs are consistent with an information
structure, P(#1) = {#1}, P(#2) = {#1, #2}, deªned on the probabil-
ity space Ω = {#1, #2} with π(#1) = 0.1 and π(#2) = 0.9. However,
note that game theory is not developed for games with such non-
partitional information structures (for an exception see Geana-
koplos (1990)).

Figure 4.4
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Recall that usually we take the extensive decision problem (or
extensive game) to represent the physical order of events. If we
allow the extensive problem to be a description of the decision
maker’s process of reasoning, then the following problem (ªg. 4.5)
seems to capture the decision maker’s considerations:

Note that any presentation of the situation as a decision problem
has to include a node, v1, in which the choice between the short and
long routes is made; a node, v2, that corresponds to the decision
problem at the turn to B; and an information set that corresponds
to the state of doubt. The two nodes in this information set, v3 and
v4, must be different from v2 because at v2 the decision maker does
not have any doubts about his location. A chance player, which
precedes this information set, enables us to model the assumption
that the decision maker believes with probability 0.9 that he is at
the turn to C (and will not have any further decisions to make) and
with probability 0.1 that he is at the turn to B (and he will have one
more decision to make at the turn to C if he continues). When

Figure 4.5
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considering his action at this information set, the decision maker
realizes that he may pass through the intersection to C later on as
well; thus, the tree must include another successor node, v5. Notice
that by introducing this modeling device we loosen the interpreta-
tion of a history from a “possible sequences of actions.” In addition,
in such a case a strategy cannot be interpreted as a plan of action.
Looking at the map (ªg. 4.4), we observe that the decision maker
could make at most three decisions (at A, at the turn to B, and at
the turn to C) on one excursion. In the above problem, there is a
path (v1, v2, v4, v5) in which the driver has to make four decisions.
Thus, in practice, the node v5 is unreachable. The decision at v5 is
not part of the plan of action made at A. It is added to the problem
merely to allow us to discuss the decision maker’s reasoning when
in a state of doubt.

Thus, although this decision problem involving “confusion” can
be modeled using the tools of an extensive decision problem, I am
confused about the extent of its effectivity.

4.8 Bibliographic Notes

Most of the material in this chapter is based on Piccione and
Rubinstein (1995). Section 7 is based on Rubinstein (1991).

The pioneering distinction between perfect and imperfect recall
as well as the formalization of extensive games is due to Kuhn
(1953).

The presentation of the notion of an “extensive problem” in this
lecture follows the presentation of the material in Chapter 6 of
Osborne and Rubinstein (1994).

4.9 Projects

1. Exercise Discuss the absent-minded driver’s problem with the additional infor-
mation that the driver is hired by an employer who, prior to the trip, gives the
driver instructions as to how to behave along the highway. The driver is unable to
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distinguish between the two intersections. The employer, after giving the instruc-
tions, will fall asleep and with probability ε > 0 may awaken at each of the
intersections without knowing where he is, but he will be capable of changing his
initial instructions. If he is awakened once he will not be awakened again.

2. Exercise Assume that the driver in Example 3, before starting his drive, can
choose a “strategy” according to which he will initially follow the strategy of
“exiting with probability α,” but once reaching an intersection, with probability ζ,
he will change his strategy to “exit with probability β.” If such a “strategy” is
optimal among its class, does α = β?

3. Innovative Formulate and analyze situations such as the following: A decision
maker has to choose, at two points of time, an action from a given set of alternatives
with the aim of choosing the same action twice. There is a possibility that when he
makes the second choice, he will get confused and will become uncertain about his
choice in the ªrst stage.

4. Reading Consider a decision problem with perfect information. The reduced
decision problem is the choice from among a set of lotteries that can be obtained
by employing a pure strategy. Discuss and criticize the axiomatization of Thompson
(1952) for the equivalence of a decision problem to its reduced decision problem in
light of the “bounded rationality” perspective. (For a presentation of Thompson’s
axiomatization, see Osborne and Rubinstein (1994), section 11.2.)

5. Innovative (Based on Rubinstein (1990).) Discuss the following two-person two-
stage scenario:

Stage 1 Player 1 has to announce a string of 15 digits (0’s and 1’s).

Stage 2 Player 2 has to announce a string of 15 digits.

Player 2 wins if he exactly repeats the string of digits announced by player 1. If he
fails, player 1 wins.

 What is the conventional game theoretical treatment of the scenario? If asked,
would you prefer to have the role of player 1 or of player 2? Suggest a way to
model the situation to capture your answer.
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5 Choosing What to Know

5.1 Optimal Information Structures

There could be numerous causes for the existence of constraints or
costs on the information held by a decision maker: the acquisition
of information is not a free operation; the information acquired
often has to be stored in memory before use, and memory is not
unbounded; and, further, when the decision maker consists of a
collection of agents, information is received through a process of
communication that has its own limits. The existence of constraints
raises the issue of deciding “what to know.” In this chapter, we
analyze the problem of choosing the best information structure,
given the constraints.

A formal model that can be used to analyze the problem of the
optimal choice of information structure includes:

•  a set of actions, A

•  a set of states, Ω
•  a probability measure π on Ω and

•  a utility function, u deªned on A × Ω.

An information function, P, will complete (A, Ω, u, π) to a decision
problem. If the decision maker chooses the information function P
and the state ω occurs, then the decision maker is informed “P(ω)”



and chooses an action, a(P, ω), that maximizes expected utility,
given the probability π conditional on the event P(ω). The value of
the information partition P is thus Ex[u(a(P, ω), ω)]. A constraint on
the feasible information structures is modeled by specifying a set
of information structures S. We are interested in the problem
maxP∈SEx[u(a(P, ω), ω)].

In the rest of this chapter, we limit ourselves to partitional infor-
mation structures. A set of information structures S will reºect
constraints on the information structures originating from a given
bound on the set of partitions that the decision maker can use. We
will not discuss the potential tradeoff between obtaining better
payoffs and expanding the set of feasible information structures.

Two economic examples are analyzed in this chapter. The selec-
tion of the economic issues as well as the “bounded rationality”
elements introduced in the two examples are, admittedly, arbitrary
and meant only to allow us to clarify the logic of the problem. In
both examples, the decision maker does not have full information
on the existing price. The reader may wonder why there should be
any difªculty in fully recognizing a price; after all, a price is only a
number. However, recall that it is rare for a price of a product to
comprise just one number. Often, a price entails a long list of ªgures
corresponding to features such as service fees, payment arrange-
ments, and the length of the warranty. The multiplicity of such
details makes the calculation of the “price ªgure” a nontrivial task.
Furthermore, recognizing a price involves more than simply per-
ceiving the posted price. In our examples, the price may depend on
the state of nature and the decision maker may be interested in
making inferences from the price about the prevailing state of
nature. This is an even less trivial operation.

The analysis in this chapter may be relevant to the discussion of
“models of rational expectations,” in which economic agents de-
duce valuable information from the realized equilibrium prices. A
common criticism of these models attacks their assumption about
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the economic agents’ unlimited ability to deduce information from
actual prices. This is actually a complex operation requiring both
skill and comprehensive knowledge of the model. Because the rea-
soning process is not spelled out in rational expectations models,
the differing abilities of economic agents in deducing information
from prices do not enter into the conventional analysis. Embedding
“bounded rationality” elements into a rich “rational expectations”
model is certainly a serious challenge that this chapter does not
even begin to address.

5.2 What Is “High” and What Is “Low”?

We often summarize our impression of a good in a store by state-
ments such as “the price there is high” or “the price there is low.”
Why do we not use other terms for summarizing our experience
(e.g., “the price is extreme” or “the price is a prime number”)?
Moreover, what determines whether a certain price is perceived as
“high” or “low”? We will deal with these questions within the very
narrow context of a buyer who has to buy a good in one of two
stores. However, our discussion is part of an ambitious research
program that proposes to explain, by the use of “economic-like”
considerations, the classiªcation systems employed for other types
of objects (such as why the class of “furniture” is divided into the
set “chairs” and the set “tables” and not into two other sets,
“chables” and “tairs,” each of which contains some chairs and some
tables.)

By the approach used here, the contents of the terms “high price”
and “low price” are designed to enable the decision maker to act
optimally, given existing constraints on the information he can
perceive or the information he can transfer from the moment he
has access to information about the price in one store to the instant
in which he has to take an action. This must sound too abstract, so
let us move to a discussion of the following simple scenario.
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A decision maker must buy one unit of an indivisible good in one
of two stores. The decision maker approaches the two stores se-
quentially. He believes that the prices offered in the two stores, ω1

and ω2, are drawn from two independent (not necessarily identical)
distributions, π1 and π2 accordingly. Let Ωi be the (ªnite) set of all
possible prices that may be offered in store i.

The decision maker who uses an information structure (Ω1, P1)
for observing the ªrst price will go through the following four
stages:

Stage 1 He observes the ªrst price ω1 ∈ Ω1.

Stage 2 He classiªes ω1 into cell P1(ω1). He carries with him only
the name (and the meaning) of the set, P1(ω1), to the next stage.

Stage 3 He observes the second price ω2 ∈ Ω2.

Stage 4 He makes a decision on the basis of what he remembers
about ω1 (the cell P1(ω1)) and the price ω2; he buys the good from
store 2 if and only if ω2 is lower than the expected price of ω1

conditional on being in P1(ω1).

We assume one nondegeneracy assumption that guarantees that the
decision maker may be interested in carrying the information from
the ªrst store to the second; that is, there are ω1

H, ω1
L ∈ Ω1 and

ω2 ∈ Ω2 so that ω1
H > ω2 > ω1

L.
The problem we focus on is the rational choice of P1, the parti-

tional information structure of Ω1. We impose a constraint on the
choice of P1: the number of cells in the partition it induces on Ω1 is
two. (The number two is taken here only for the sake of simplicity;
the extension of the example to an arbitrary number of cells is
simple.) The names of the cells in the partition are taken to be H
and L. With no loss of generality, we assume that EH = Ex(ω1 ∈ H) ≥
Ex(ω1 ∈ L) = EL. No constraints are imposed on the sets H and L.

To embed the problem in the more general framework described
in the previous section, let Ω = Ω1 × Ω2 and π(ω) = π1(ω1)π2(ω2). The
set of information structures, S, comprises those induced from a
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partition of Ω, of the type �ω2∈Ω2
 {I1 × {ω2}, I2 × {ω2}}, where {I1, I2}

is a partition of Ω1. Thus, an information structure P satisªes P(ω1,
ω2) = P1(ω1) × {ω2}. An action is the name of the store in which the
item is bought, that is, A = {1, 2}. The payoff function is u(a, ω) =
−ωa. Given the choice of the information structure P, the chosen
action a(P, ω) is 1 if Ex(ω1 | P1(ω)) ≤ ω2 and 2 otherwise.

Figure 5.1 illustrates the choice at the second stage. Note, how-
ever, that we did not assume that the entire set H is to the right of
the set L (as exhibited in the diagram).

Remarks The following are three interpretations of the model
which correspond to the three potential sources, delineated in Sec-
tion 1, for the existence of constraints on the decision maker’s
information structure:

1. Memory constraints One can think about the model as a model
of search for the lowest price, in which the decision maker faces
memory constraints. After observing the price ω1, he can remember

Figure 5.1
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only whether the price belongs to a certain category or not. Note,
however, that the term “search” is usually associated with a situ-
ation in which the decision maker is allowed to decide when to stop
the search. In contrast, in this model, the decision maker cannot
stop the search at the ªrst store even if he believes he has obtained
the lowest possible price.

2. Communication constraints Think about the decision maker as a
team consisting of two agents. Agent 1 observes the price in the
ªrst store and sends a message to agent 2, who has the power to
make decisions after he observes the second price. With this inter-
pretation, the information constraints reºect the constraints on the
set of messages (words) that can be sent from one individual to
another.

3. Information acquisition constraints (suggested to me by Kathy
Graddy) A decision maker must purchase one unit of a good that
is sold in the market on two successive dates. At date 1, he obtains
the market price of date 1, and acquires additional information
about the anticipated price at date 2. On the basis of this informa-
tion, he has to decide whether to buy the good at the ªrst or at the
second date (if he does not buy the good at date 1 he must buy the
good at date 2). The constraints on the information about the future
price reºect the decision maker’s difªculties in analyzing the mar-
ket. Here, the decision maker can receive an answer, true or false,
to only one question of the type “Will the price at the second date
be in the set X?” The decision maker’s problem is to choose the set
X. To ªt this scenario into the model, identify the price in date 1
with ω2, and the price in date 2 with ω1!

We now turn to the analysis of the model. What can be said about
the optimal partition of Ω1? The following result “justiªes” the use
of the names “high price” and “low price” for the two sets.

Proposition 5.1 Let {H, L} be an optimal partition of Ω1. Any price
ω1 > λ* = Ex{ω2 | EL < ω2 ≤ EH} is in H and any price ω1 < λ∗ is in L.
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Proof First, note that if {H, L} is an optimal partition of Ω1, then
there is a price ω2 ∈ Ω2 in the interval (EL, EH]. If there is no such
ω2, then the optimal decision is independent of the information
obtained about ω1. This cannot be an optimal behavior because of
the nondegeneracy assumption (given the existence of ω1

H,ω1
L ∈ Ω1

and ω2 ∈ Ω2 so that ω1
H > ω2 > ω1

L, it would be better for the decision
maker to put one of the two prices, ω1

H or ω1
L, into one cell and all

the rest in the other).
 Assume now that there is λ ∈ Ω1 so that λ < λ∗ and λ ∈ H. Transfer
λ to the set L. Even if the action decision is not updated (that is, the
decision maker continues to choose store 2 if and only if ω1 ∈ H
and ω2 < EH or ω1 ∈ L and ω2 < EL), the transition by itself reduces
the expected price (and may reduce it even further if the decision
at the second store adjusts to the change in the content of the
partition of Ω1). This is because the only change in the action taken
occurs when ω1 = λ and EL ≤ ω2 < EH. The decision maker formerly
chose store 2 and now chooses store 1, and by the assumption that
λ < Ex{ω2 | EL < ω2 ≤ EH}, the change reduces his expected payment.
An analogous argument applies to λ > λ∗. ▫

The proposition shows that the optimal way to partition the prices
in the ªrst store is into two categories, “high” and “low,” where a
“high” price means that it is above some cutoff point and a “low”
price means that it is below that cutoff point. The proposition also
provides a qualitative characterization of the cutoff point in terms
of the price distributions. At the optimal partition, the cutoff point
has to be the expectation of ω2 conditional on the interval (EL, EH].

5.3 Manipulating Informational Restrictions

In almost all models in economic theory, behavioral differences
among agents are attributed to differences in preferences or in the
information they possess. But there are economic phenomena better
attributed not to these factors but to differences in the ability to
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process information. Rarely do two readers of the same morning
newspaper, who wish to make money in Wall Street, interpret what
they read identically and then make the same decisions.

In this section, like the previous one, each economic agent has to
choose an information structure, subject to the constraints that
express his ability to process information, and in response to the
environment in which he operates. Economic agents will differ in
their constraints imposed on the information structures they can
use. Other, quite sophisticated economic agents will take advantage
of the differences.

We start from the following simple model of a market with a
single good produced by a single seller, and two buyers, each of
whom is interested in consuming only one unit of the commodity
(ªg. 5.2). The economic parameters of the market depend on the
state of nature, which may be either ωH or ωL. All agents share the
initial belief that the two states are equally likely. Production ensues
after an order is received. In state ωL, the seller’s production costs,
cL, are constant zero. In state ωH, the seller’s production costs de-
pend on the identity of the consumers who purchase the commod-
ity (this assumption ªts a service good in particular). Let ci be the
cost of producing a unit for consumer i in state ωH. A consumer
purchases the good if and only if the expected surplus is strictly
positive, where the surplus derived from consuming one unit of the
commodity at state s for the price p is vs − p. We restrict the values
and the costs so that c1 > vH > c2 > vL > 0.

The basic seller’s dilemma is that at state ωH, he cannot gain from
selling the good to consumer 1 inasmuch as the cost of producing
that good is higher than the maximum price consumer 1 is ready
to pay. Therefore, at state ωH, the seller would like to sell the good
only to consumer 2. However, the price mechanism does not enable
the seller to discriminate between agents. A unique price must
prevail in each instance. It is assumed further that conditional on
state ωH, the seller prefers not to sell any amount over selling two
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units even for the maximum price of vH, that is, 2vH < c2 + c1. The
order of events in the market is assumed to be as follows:

Stage 1 The seller announces a price policy that is a speciªcation
of a “lottery” of prices (a probability measure with ªnite support)
for each of the states of nature. The seller’s announcement is a
commitment to supply the good, if demanded by any of the consum-
ers at the price resulting from the lottery following the realization
of the state of nature.

Stage 2 Nature selects the state of nature and the seller’s offer is
determined by the probabilistic device to which the seller has com-
mitted himself.

Stage 3 The consumers are informed about the realization of the
lottery. On the basis of the posted price and the announced price

Figure 5.2
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policy, each consumer has to make a decision whether to accept or
reject the offer.
 Up to now, the model is a conventional leader-followers (Stackel-
berg) situation, in which the seller is the leader who chooses the
price policy and the two consumers are the followers who choose
the acceptance rules. It can easily be veriªed that the seller’s upper
bound on his expected proªts is vL. To see that he can (almost)
achieve this level of proªts, notice that by charging vL − ε in state
ωL and charging a price above vH in state ωH, the seller’s expected
proªts are close to vL (we forgo the details of the uninteresting proof
that the seller cannot indeed achieve proªts above vL by any price
strategy, even if he employs random devices).

Remarks

1. The seller’s strategy is the choice of a random device for every
state of nature. In reality, such a seller’s strategy can be obtained,
for example, through contracting with a retailer in a manner de-
pendent on random elements. Although he employs random de-
vices, the seller’s strategy is a pure strategy, not a mixed strategy.
The strategy determines the consumers’ beliefs and behavior, and
therefore the seller may strictly prefer a strategy with stochastic
elements over any strategy that speciªes a deterministic price for
each state.

2. Given the consumers’ purchasing strategies, the seller may be
better off by not following the announced price policy after the state
of nature is realized. But the seller is committed to the policy he
has announced and the posted price must be determined according
to the random device that the announced strategy has assigned to
the realized state of nature.

3. This construction avoids the need to discuss “out-of-equilib-
rium” prices. Because the price policy is a commitment, only prices
in the support of the equilibrium price policy can be materialized.
The seller’s announcement forces all fully rational consumers to
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hold the same beliefs abut the state of nature after the realization
of the price.

We are ready to add the “bounded rationality” feature to the basic
economic model—the imperfection in the consumer’s ability to rec-
ognize the price. A decision maker has to choose “what to know”
about the price. Given the information he will receive, he will have
to take an action (“buy” or “don’t buy”). We constrain the informa-
tion structures available to the consumer to those in which the
partition of the potential prices consists of connected intervals. An
agent’s ability is modeled by the number of sets in the partition
(that is, the number of cutoff points plus 1).

Assume that consumer 1 is able to determine only one cutoff
point, that is, he can split the price space into only two connected
sets, whereas consumer 2 is able to determine two cutoff points,
which split the price space into three connected sets. The assump-
tion that the cost of production for consumer 1 (the less able con-
sumer) is higher than for consumer 2 (the more able consumer)
especially ªts for commodities like education and consulting serv-
ices. The selection of the partition is carried out by each of the
consumers between stages 1 and 2, that is, after the buyers learn
the announced price policy and before the realization of the price.
The decision concerning the partition is subject to the personal
restrictions imposed. The order of events in the modiªed model is
as follows:

Stage 1 The seller announces a price policy.

Stage 1.5 Each consumer selects a partition (given the constraints
determined by the consumer’s abilities).

Stage 2 Nature selects the state and the price is determined.

Stage 3 Each consumer is informed of the cell in his partition that
includes the announced price and decides whether to purchase the
good.
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Discussion

In terms of the general framework described in the ªrst section, the
state space Ω consists of all pairs (s, p), where p is a price that may
be offered in state s ∈ {ωH, ωL}. The seller’s price policy determines
the probability distribution over Ω. A partition on the price space
induces a partition of Ω.

The restriction on the information partitions can be thought of as
a bound on the complexity of the consumer’s acceptance strategy.
Consumer 1 has only two categories of prices, “high” and “low,”
and his decision whether or not to accept the offer depends on the
price being in one of these categories. Consumer 2 can classify
prices into three categories—“high,” “medium,” and “low”—and
thus can also adopt an acceptance rule of the type “buy if the price
is medium and don’t buy otherwise.” The designation of a price as
“high,” “medium,” or “low” is chosen by the consumer.

Note that we assume that the decision maker has a restricted
ability to “know” or to “recognize” the price, but, at the same time,
is able to make complicated calculations in order to determine the
optimal partition. Actually, the contrast in the model between the
decision maker’s constraints on knowledge and, concurrently, his
unlimited ability to optimize is a “tension” prevailing in many
models of bounded rationality. One may wonder about this as-
sumption. Allowing full rationality on one level and partial ration-
ality on another level is, in my opinion, a sound assumption for
modeling situations in which the decision maker faces a routine
decision problem and, from time to time, gives thought to the rule
of behavior he uses regularly while taking into account the con-
straints he faces regarding the rules he can implement.

Analysis

We now come to the main point of this section. It will be shown
that the seller can utilize the differences between consumers to
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obtain proªts arbitrarily close to his ideal proªt level, Π∗ = vL + (vH −
c2)/2. The idea is quite simple: Choose “small” positive numbers εL

and εH so that εL > εH and choose the probability number π slightly
above max {2εH/(vH − vL), εL/[εL + (vH − vL)/2]}. Note that π can be
chosen to be arbitrarily small.

Consider the following price strategy:

•  In state ωH, charge the price vH − εH with probability 1;

•  In state ωL, charge the price (vH + vL)/2 with probability π and
vL − εL with probability 1 − π.

Given this strategy, the price space is {vL − εL, (vH + vL)/2, vH − εH}.
The price (vH + vL)/2 is a “mine” put by the seller. A buyer who
buys the good at this price suffers a “big” loss because it is offered
only in state ωL, where the value of the good is vL. The appearance
of the other two prices are correlated with the state so that a
purchase yields a positive surplus.

Consumer 2 is able to partition the price space into three sets and
to purchase the good only at the proªtable high and low prices.
Conversely, consumer 1 can place only one cutoff point. We distin-
guish between two cases.

Case i Consumer 1 places the cutoff point between vL − εL and
(vH + vL)/2. Hence, if the price falls in the low category, he infers
that the state is ωL, the price is vL − εL, and he buys the good. If the
price falls in the high category, he cannot infer whether the state is
ωH (and the deal is proªtable) or the state is ωL (and the deal is
disastrous); having π > 2εH/(vH − vL) makes consumer 1 prefer to
reject the offer.

Case ii Consumer 1 chooses a cutoff point between (vH + vL)/2
and vH − εH. He then buys the good if the price is high and does
not if the price is low, because π > 2εH/[εL + (vH − vL)/2].

Thus, for consumer 1, the choice of a cutoff point amounts to the
choice between either purchasing the good at ωL for the price vL −
εL with probability (1 − π)/2 or at ωH for the price vH − εH with
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probability 1/2. One can choose π, εH and εL so that the former is
better for consumer 1, so both consumers buy in state ωL and only
consumer 2 buys in state ωH, and the seller’s proªts are arbitrarily
close to Π∗.

5.4 Perceptrons

It has already been mentioned that one of the origins of the difªcul-
ties in processing information about a price is that in real life, a
price is often a vector of components. In this section, we continue
to use the basic economic model described in the previous section,
but with one major change: It is assumed explicitly that the seller
splits the price of the commodity into K components. A realized
offer is a K-tuple (p1, . . . , pK). A consumer who accepts the seller’s
offer (p1, . . . , pK) pays Σpk. The manner in which the sum Σpk is
divided among the K components may contain relevant information
concerning market conditions. Agents may experience difªculty in
decoding that information from the vector and they may differ in
their ability to do so.

The consumers in the current model will employ a certain type
of machine to make their calculation. The computing machine is
called a perceptron. Its characteristics are a threshold number, α*,
and a set of sensors, φ1, . . . , φM. In the ªrst stage of the perceptron’s
operation, the sensors operate in parallel on the realized price
vector. Each φm is a function that operates on some of the compo-
nents of the price vector, receives the values of those components
as input, and provides a real number as an output. In the second
stage, the sum of the sensors’ outputs, Σm φm, is calculated in the
“center” and its value is compared with α*.

Figure 5.3 is a schematic illustration of a perceptron.
Of course, no claim is made that this computational device is part

of the “true” description of the human processing of a vector of
price components.
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We are now ready to insert the imperfection in the consumers’
calculations into the model. Consumers are bounded in the com-
plexity of the perceptrons they can use. The complexity of a per-
ceptron, its order, is taken as the number of components in the
domain of its sensors. If each φm depends on only one of the pk’s,
then φ is a perceptron of order 1; if each φm is a function of two
prices, the perceptron is of order 2. Consumers have no restrictions
on the number of sensors, and they have perfect ability to calculate
the sum and to compare it with the threshold level, α*. The ªnal
action (to accept or reject the offer) may depend on only this com-
parison. Thus, the complexity of a perceptron reºects the complex-
ity of the sensor, the unit that executes the basic calculation
performed by the perceptron, and the complexity of the sensor is
measured by the number of variables involved in the calculation.
(This is somewhat similar to the comparison between personal
computers on the basis of the complexity of the basic processor.)

Consumers differ with respect to the orders of the perceptrons
they are able to employ. Consumer 2 is able to employ perceptrons
of order 2 whereas consumer 1 is constrained to use only percep-
trons of order 1.

To summarize the structure of the model, as in the previous
section the seller ªrst announces a price policy that assigns a lottery
of price vectors to every state. The seller is committed to that policy.
Next, every consumer has to choose a perceptron (constrained by

Figure 5.3
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the order he can use). Finally, the price vector is realized and each
consumer decides, on the basis of the information computed by his
perceptron, whether to purchase the commodity or not.

In the following, we will see that in this model as in the previous
section, the seller can approach his maximal expected proªts level,
Π∗. Consider the following price strategy: The seller splits the price
of the commodity into two components. Let a = vH/2 − εH and b =
vL/2 − εL. In state ωH, the seller chooses the vector (a, a) with
probability 1. In state ωL, he chooses the vector (b, b) with prob-
ability 1 − δ, and each of the vectors (a, b) and (b, a) with probability
δ/2.

Consumer 2 is able to avoid the trap of purchasing the good for
the price a + b at state ωL by employing, for example, a perceptron
of order 2, with one sensor, which gives the value 1 for the vectors
(a, a) and (b, b), and the value −1 for the vectors (a, b) and (b, a),
setting α* = 0. (Alternatively, since p1 = p2 iff p1

2 + p2
2 − 2p1p2 =

(p1 − p2)2 ≤ 0, he can use a perceptron with one sensor of order 2
and two sensors of order 1.)

Consumer 1 cannot pursue a strategy in which he buys the
commodity only at the price vectors (a, a) and (b, b). If such a
purchasing strategy existed, there would be two sensors (more than
two will not help), φ1 and φ2, and a number α* so that the sums
φ1(b) + φ2(b) and φ1(a) + φ2(a) would be on one side of α* and the
sums φ1(a) + φ2(b) and φ1(b) + φ2(a) on the other. This is clearly
impossible.

Now, we can choose arbitrarily “small” numbers, δ, εH and εL,
εL > εH, so that consumer 1

1. would prefer to avoid purchasing the commodity with prob-
ability δ/4 for the price a + b, even if he were to buy the commodity
at state ωH for the price a + a, and

2. would prefer to purchase the good for the price b + b in state ωL

rather than purchasing the good for the price a + a in state ωH.
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Thus, as in the previous section, the seller forces consumer 1 to
focus attention on escaping the trap he has prepared for him by
(sometimes) offering a high price in ωL. Being preoccupied with this
fear, consumer 1 cannot devote his limited computational resources
to the task of identifying the conditions under which it is desirable
for him to purchase the commodity for a high price. In contrast,
consumer 2 is able to infer the true state from the seller’s price
strategy and is able both to escape the trap and to identify the
conditions under which paying a high price is proªtable.

Remark Within the context of “Industrial Organization,” the model
shows that the complexity of the price scheme can be used strate-
gically by price setters. Casual observation conªrms that price
schedules are complex and that the complexity of the price structure
affects the behavior of economic agents. The closest relevant eco-
nomic literature concerns equilibrium in markets with search. In
these models, a consumer makes his purchasing decision through
a search process. Search in these models is not necessarily a physical
activity, but can be thought of as a mental process. Consequently,
the search costs can be interpreted as the costs associated with the
searcher’s difªculties in recognizing prices as opposed to physical
sampling costs. Within the literature attempting to explain price
dispersion, the closest to our approach is Salop (1977), where all
consumers know the prices available in the market but do not know
what store charges what price. A consumer has to choose either to
purchase the good at random or to incur an exogeneously given
cost in obtaining the information about the location of the store
charging the lowest price. The cost associated with getting the
information is heterogeneously distributed among the consumers.
Assuming a correlation between the consumer’s search cost and
other consumer characteristics, Salop (1977) shows that the model
allows an optimal strategy for a monopolist where more than one
price is charged.
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5.5 Bibliographic Notes

Section 2 is based on Dow (1991). Sections 3 and 4 are based on
Rubinstein (1993).

Related papers to Section 2 are Fershtman and Kalai (1993),
Meyer (1991), Rosenthal (1993), and Yampuler (1995). For an intro-
duction to the notion of perceptrons, see Minsky and Papert (1988).

5.6 Projects

1. Exercise (Based on Yampuler [1995]). An employer wishes to employ one of two
agents 1 and 2. If he employs agent i, he obtains vi, which is the realization of a
random variable distributed uniformly in the interval [0, 1]. The realization of vi is
private information held by agent i. The employer can force agent i to reveal vi, or
he can leave it to the agent to decide whether to disclose vi or not. If an agent
chooses to disclose vi, he can do it only truthfully. The constraint on the employer’s
ability to process information is that if both agents submit reports, he is able to
“read” only one of the reports. The employer’s aim is to maximize the expected
value he obtains from the agent whom he employs. Each agent has lexicographic
priorities: primarily to be employed, secondarily not to submit a report (there are
implicit costs associated with the submission). Thus, if an agent has no chance of
being employed, he would prefer not to submit the report.
  Show that there is a “mechanism” (in which agents are not required to disclose
their values, although they are permitted to do so) in which the employer’s equi-
librium expected proªts are strictly higher than those obtained by using any mecha-
nism that requires the two agents to disclose their values.

2. Reading Read Meyer (1991). Provide an explanation for the advantage often given
in the second round of a two-round competition to the winner of the ªrst round.
For the explanation, construct a model in which A and B are two competitors. The
true relative strength of the competitors (the state) may be either A++ = “A is much
better,” A+ = “A is better,” B+ = “B is better,” or B++ = “B is much better.” Initially,
the probability of each of the relative strengths is 1/4. The chances of a competitor
to win a match depend stochastically on the relative strength and on the type of
the match. In a “fair match,” the chances of A winning in state A++ (or A+) is equal
to the chances of B winning in state B++ (or B+). Giving an advantage to competitor
X is viewed as biasing the probabilities in favor of X. Assume that the design of a
two-round competition is aimed to increase the probability that the better competi-
tor will be declared the winner. Show that the optimal competition is to have a fair
match at the ªrst round followed by a match in which the winner of the ªrst match
gets an advantage.
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3. Reading Read Fershtman and Kalai (1993) and build a game-theoretical model
in which (a) a player is constrained in the complexity of the strategy he can use, in
the sense that he can choose a strategy dependent on a limited number of contin-
gencies, and (b) the more sophisticated a player, the better his equilibrium situation.

4. Innovative Try to ªnd an economic model (better than the model presented in
Section 3) in which the heterogeneity of agents’ abilities to behave in an economic
situation will play a key role in explaining some interesting economic phenomena.

5. Exercise In the model presented in Section 4, the seller’s strategy uses four price
vectors: (a, a), (b, b), (a, b), and (b, a). Investigate whether both of the two consumers
can determine the realized cell of each of the following partitions:

1. {{(a, a), (b, b)}, {(a, b), (b, a)}}

2. {{(a, a), (a, b), (b, a)}, {(b, b)}}

3. {{(b, b), (b, a), (a, b)}, {(a, a)}}

4. {{(a, b)}, {(a, a), (b, a), (b, b)}}.

6. Innovative Construct a model in which opinions of group members are aggre-
gated in order to determine a group decision and the aggregation is accomplished
by a perceptron. Use the model to derive interesting results about aggregation rules.

7. Reading Read Cho (1995) and ªnd another economic model in which the behav-
ior of economic agents is fruitfully described by perceptrons.
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6 Modeling Complexity in
Group Decisions

6.1 Introduction

When we talk about a “decision maker” in economics, we often
refer not to a single individual but to an entity that produces a
decision in a process involving more than one individual. In this
chapter we will refer to such a decision maker as an organization.

In most economic models, organizations that make decisions are
treated as if they were rational individuals, maximizing a well-
deªned numerical function. In contrast, here we are interested in
the way that organizations operate. In real life, organizations that
make decisions are often also involved in their implementation.
This activity, however, does not lie in the scope of the present
discussion. Instead, we focus on activities like collecting informa-
tion and computation. The discussion falls into the “bounded ra-
tionality” agenda because the design of an organization is typically
motivated by concerns such as its “complexity,” the cost of its
operation, and the speed by which a decision is made.

We will discuss three models, each of which captures different
bounds on the operation of an organization. In the ªrst, the model
of teams, each agent has to take an action based on information that
he has observed or received through a costly communication chan-
nel from other members of the team. In the second model, Radner’s
model of organization, the group has to pursue an action based on



information it gathers from many sources. In the third, that of social
choice, a collective decision has to be made on the basis of infor-
mation obtained about the members’ preferences.

Some of the questions posed here are similar to those asked
regarding individual decision makers. When discussing the team
model, we will ask, “Does the decision process lead to a rational
decision?” and “Does decentralization lead to centralized optimiza-
tion?” When discussing an organization as a mechanism for collect-
ing information, we will view the organization as a process of
production and investigate the shape of its production function.
Regarding social-choice rules, we will try to identify rules that are
relatively simple.

A close connection exists between the models discussed in this
chapter and the design of automatic systems as discussed in com-
puter science. Of course, the constraints on a computer system are
dictated by its special hardware limitations. Nevertheless, in both
ªelds, the information is held initially by numerous agents and has
to be collected and processed to produce the desired output. Note,
however, an important difference: In automatic systems, the de-
signer does not have to take into account the possibility that the
“agents” will not obey the instructions they receive. In building
human organizations, a basic concern involves the provision of the
correct compliance incentives to the agents.

6.2 The Model of a Team

In this section, we will discuss brieºy a simple version of one of
the pioneering models of organizations, Marschak and Radner’s
model of a team. A team consists of a group of agents N = {1, . . . ,
n}. Each agent i has to take an action ai from among a given set Ai.
All the agents share the same preferences. Let u(a1, . . . , an, ω), be
the von Neumann-Morgenstern utility obtained from the proªle of
actions (ai)i∈N at the state ω ∈ Ω. Each member i has access to a
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signal xi. Ideally, if there were no constraints or costs on the infor-
mation, all members would be asked to share the information they
acquire. However, two types of costs are involved: costs of obser-
vation and costs of communication. These costs provide the ration-
ale for the use of a partial communication network.

The team operates in three successive stages: At each stage, the
designated actions are undertaken simultaneously:

1. Information Acquisition Each agent i can choose to observe his
signal xi at a cost ci.

2. Communication If there is an open channel from agent i to agent
j, and if i observes his signal, that signal is transferred to agent j as
well. A cost di,j is attached to a channel of communication from i to
j. The existence of any channel of communication is independent
of the value of the signals received.

3. Actions Each agent takes an action ai from Ai. The sets of actions
are ªxed and no option is available for delegating authority to take
actions to other agents.

A protocol is a speciªcation of three items: (1) a set of agents who
make observations, (2) a set of communication channels, and (3) for
each agent i, instructions dictating what action to take contingent
on the information he acquires or receives. The team’s problem is
to ªnd the best protocol. Note the difference between the team
problem and the classical implementation problem, which focuses
on strategic issues.

Although highly speciªc, the model is quite rich and allows for
a variety of protocols reminiscent of real life organizations. For
example, a “routine” is a protocol where no information is acquired
and no communication is transferred; a “decentralized team” is a
protocol where each agent receives a signal and no channel of
communication to other agents is open; an “incomplete centralized
information” protocol is one where only one agent observes a signal
and sends it to all other agents.
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What can be accomplished by this model? Of course, one can try
to characterize optimal protocols under speciªc assumptions. We
can also ask whether the team can work without a central planner
and whether the team can exhibit intransitivities. In the rest of this
section, we will brieºy touch on these issues.

Is Centralization Needed?

Let us take the information acquisition and the communication
stages as ªxed and focus on the action instructions. First, note that
no agent should deviate from the instructions if they result from
the team’s expected utility maximization and if an agent, when
evaluating the execution of the instructions given to him, maxi-
mizes his expected utility given the information he possesses and
assumes that all other agents follow the instructions given to them.

Without instructions, agents’ decision problems as to what ac-
tions to take form a game situation with the n agents being the
players, all of whom have the same utility. Of course, a non-optimal
equilibrium might exist. Consider the complete information case of
a two-agent team that has to coordinate its actions. Let A1 = A2 =
{a, b} with the utilities u(a, a) = 1, u(b, b) = 2, and u(a, b) = u(b, a) =
0. Then (a, a) is a non-optimal equilibrium.

Some similarity can be found between the decentralization prob-
lem of a team and the analysis of decision problems with imperfect
recall. Like the multiselves in a decision problem with imperfect
recall, agents in an organization share the same payoffs but do not
share the same information. Solving the team problem is, therefore,
analogous to the choice of an ex-ante optimal strategy. Neverthe-
less, only a few decision problems with imperfect recall have coun-
terparts to teams since in the team model, each agent moves only
once and all agents move simultaneously. Thus, for example, a team
cannot exhibit absent-mindedness.
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A Team Decision May Look Intransitive

Team choices may exhibit intransitivity. Consider a team that has
to make three choices, one from each of the sets {a, b}, {b, c} and
{a, c}. There are four equally likely states: α, β, γ, and δ. The team
consists of three agents, 1, 2, and 3; each gets a signal telling him
whether a certain state, α, β or γ, respectively, occurs or not. The
acquisition of the signal is “cheap,” but communication is “expen-
sive.” Each agent can choose an action of the type (S, x), where S
is one of the three choice problems and x ∈ S. The interpretation of
“agent i chooses (S, x)” is that agent i takes responsibility for the
choice problem S and picks x ∈ S. Assume that the payoff to the
team is the sum of the payoffs it gets from the three sets. If no i
chooses (S, x) or if there are two agents i and j who choose (S, xi)
and (S, xj) respectively, the payoff accumulated by the team from
the set S is 0. If only a single agent chooses (S, x) then a payoff
u(x, ω) is obtained according to the following table:

� � � �

a 1 2 0 0
b 0 1 2 0
c 2 0 1 0

Clearly, the best protocol calls for agent 3 to decide about {a, b}
because a should be chosen unless the state is γ and agent 3 is the
only agent informed about γ. Similarly the best protocol calls for
agent 1 to decide about {b, c}, and agent 2 to decide about {a, c}.
However, this means that in the state of nature δ, the decisions will
exhibit intransitivity: The action a is chosen from {a, b}, b from {b, c}
and c from {a, c}.

Collecting Information

Consider a team that is designed to guess the value of a variable
ω0 based on the “noisy” signals (xi)i∈{1,2, . . . ,n} received by the agents
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(n is taken to be an odd number). The value of ω0 is either 0 or 1,
each with probability 1/2. A state is a vector ω = (ωi)i=0,1, . . . ,n ∈
{0, 1}{0,1, . . . ,n}, where ωi is the value of i’s signal (that is, xi(ω) = ωi).
The probability of the state (ωi)i=0,1, . . . ,n is 1/2[p]#{ i|ωi=ω0

}[1 −
p]#{ i|ωi≠ω0

} that is, the value of agent i’s signal is ω0, with probability
p. We assume p > 1/2. For each i, Ai = {0, 1} is interpreted as the set
of recommendations available to agent i. The recommendation of
the majority determines the team’s guess. The utility u(a1, . . . , an, ω)
is 1 if the team’s guess is equal to ω0 and 0 otherwise. Assume that
no cost is involved in agent i’s acquisition of his own signal and
that communication is possible only between agent i and his “two
neighbors,” i − 1(mod n) and i + 1(mod n).

One may believe that opening the channels from agent i’s neigh-
bors to agent i cannot be harmful, because if agent i knows more,
the quality of his recommendation can just be improved. This is not
true. The protocol in which each agent gets to know his two neigh-
bors’ signals and recommends the majority of the three signals he
is exposed to is strictly worse (at least for n ≥ 9) than the no-
communication protocol in which each agent recommends his own
signal. (To see this, note for example that if (ω0; ω1, . . . , ω9) = (0; 1, 1,
0, 1, 1, 0, 0, 0, 0), the protocol with communication causes the wrong
recommendation to be accepted.)

The Limitations of Simultaneous Communication

In the team model, the content of the message sent from i to j can
be only the content of i’s signal. This is not a limitation under the
assumption of simultaneous communication. However, if commu-
nication could be conducted sequentially, a message from one agent
to another might reºect more than the information about the agent’s
own signal. It could include information derived from other agents’
signals as well. For example, consider a three-agent team problem
where the team’s decision is about “the team member who will
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receive one unit of an available indivisible object.” Assume that
agent i’s value of the unit, vi, can be either 0 or vi

∗, where v1
∗ > v2

∗ >
v3* > 0. Agent i freely receives the information about vi. Assume
that the cost of three or more communication channels is too high
to be worthwhile. As to the actions to be taken, assume that each
agent can either “claim” the object or not. In the case where more
than one agent claims the object, the object “disintegrates.” Clearly,
by using two communication channels there is no way to allocate
the object with certainty to the member who values it most. But, if
the agents communicate in two stages, agent 1 ªrst sends a message
about his value to agent 2, who sends a message to agent 3 about
the max{v1, v2}: the “ªrst best” allocation can then be obtained.

6.3 Processing Information

In this section, we discuss a model in which an organization is
viewed as a collection of computational devices that can carry out
a certain type of calculation. In the model, each pair of units can be
instructed to execute a simple operation (such as adding two values
registered in the two units and storing the outcome in one of the
units). The organization’s performance will be evaluated by the size
of the input it processes and the speed by which the calculation is
done.

More speciªcally, the task of the organization is to compute a
function f(x1, . . . , xn). The basic binary operation is g(x, y). The
discussion is applicable to any case in which g is commutative
(g(x, y) = g(y, x)), and associative (g(g(x, y), z) = g(x, g(y, z))), and
the function f can be expressed as the composition of n − 1 iterations
of the binary operation g.

A primary example is the function f(x1, . . . , xn) = min{x1, . . . , xn}
with the binary operation g(x, y) = min{x, y}. An interpretation
offered for this example is that of choosing the best (cheapest) ele-
ment from a group of alternatives by a process of binary com-
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parisons. Other examples are summing up n numbers (f(x1, . . . ,
xn) = Σixi with g(x, y) = x + y), and collecting information from n
sources (xi being a set of facts, f(x1, . . . , xn) = �ixi, and g(x, y) =
x � y).

In this section, an organization is a set of registers combined with
a program that determines its operation. The registers are divided
into three types:

1. I, a set of input registers, in which the input is initially stored.

2. P, a set of computing registers capable of making the basic calcu-
lation.

3. O, a (unique) output register, which obtains the output of the
calculation.

All input registers start with some values and all other registers
start “empty.”

A command p → q is a pair where p ∈ I � P and q ∈ P � {O}. A
command p → q is interpreted as an operation in which:

1. If q is “empty,” “take the value from p and put it in q.”

2. If q is not empty, “put g(x, y) in q, where x is q’s value and y is
p’s value.”

A program is a list of sets of commands, (S1, . . . , ST+1) (the set St is
the set of commands executed at date t) satisfying:

1. If p → q is in St and p ∈ P, then there exists t′< t so that p′ → p
is in St′.

2. If p → q and p′ → q′ are in St, then {p, q} and {p′, q′} are disjoint
sets.

3. ST+1 includes a unique command of the type p → O and is the
only set that includes a command involving the output register.

By (1), a register is used only after it receives a value. By (2), any
register can be involved in the execution of only one command in
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any unit of time. By (3), the program stops as soon as the output
register gets a value.

The execution of a program, whatever the input is, must yield an
output. This is so because there is at least one chain of commands,
(pi → pi+1), starting with an input register ending with O so that
(pi → pi+1) is a command in Sti with ti < ti+1. Thus, each program
induces a function that assigns an output value to every n-tuple of
input values. We say that the program calculates the function f if its
output for any n-tuple of values x1, . . . , xn is f(x1, . . . , xn).

We evaluate a program by n, the size of I, and the length of the
calculation, T.

Comments Notice two of the implicit assumptions of the deªnition
of a program. First, there is only one output outlet. In many real-life
organizations, an output can be produced by several units (for
example, each agent can call the ªre department without having to
go through the whole internal hierarchy). Second, each command
is independent of the values stored in the registers. In contrast, one
can imagine an organization that collects information in which the
“address” for the content in p depends on the content itself.

Proposition Let m be the number of registers in P and assume that
m < n. Then, the minimal delay for calculating f is [n/m]− + [log2(m +
n(mod m))]+, where [x]− is the maximal integer ≤x and [x]+ is the
minimal integer ≥x.

Proof For a program to execute the calculation of f(x1, . . . , xn) it
must be that for every p ∈ I, there is a chain of commands {pi →
pi+1}i=0, . . . ,K with p0 = p and pK+1 = O where pi → pi+1 is in Sti with ti

< ti+1.

Consider a program that calculates the function f(x1, . . . , xn) with
minimal delay using m computing registers. We will show that such
a program exists and satisªes the following properties:
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1. For any p ∈ I, there is a unique q so that p → q is a command.
Start with a minimal delay program that calculates f: for each p ∈ I,
eliminate from the program all commands p → x excluding one
which is part of a chain from p to O. Then, eliminate successively
all commands that cannot be executed (any x → y in St so that x is
empty at the tth stage). We are left with a program that computes
the function f satisfying property (1).

2. For any p ∈ P for which there is a command q → p, there is a
unique p′ so that p → p′ is in the program.
 The proof is similar to that which guarantees a minimal delay
program satisfying (1).
 We say that p is unemptied at date t* if the latest command prior
to t* involving p is of the form p′ → p. The register p is idle at t if
there is no command in St that involves p.

3. There is no period t, command p → q in St with p, q ∈ P, and
input register x which is unemptied at t.
 If so, we can add x → q to the set St, eliminate p → q, and replace
x → y in St′ (t′ > t) with p → y.

4. At no period t are there two idle unemptied registers, p and q.
 If there are two unemptied registers, p and q, that are idle at
period t, we can add the command p → q to St and delete the
command p → y in St′ (t′ > t).

These four steps guarantee that there is a minimal delay program
in which at the ªrst t = [n/m]− steps, n − n(mod m) input registers
are emptied into the m computing registers. After this ªrst phase,
we are left with nt = m + n(mod m) unemptied registers, and [nt/2]−
commands can be executed, leaving us, at the beginning of date
t + 1, with nt+1 = [nt/2]+ unemptied registers, and so on. After an
additional [log2(m + n(mod m))]+ stages, we are left with one register
that is emptied into O. ▫
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Note that the expression [n/m]− + [log2(m + n(mod m))]+ is a con-
cave function of n (modulo the integer problem). This means that
in terms of “time costs” the calculation exhibits decreasing returns
to scale. This property is, of course, critical to the traditional eco-
nomic issue of whether competitive markets can efªciently control
activities such as collecting information. Furthermore, the formula
exhibits tradeoffs between the size of the data n and the number of
registers m, but there is a lower bound, 1 + log2

n, on the delay
involved in its calculation, whatever the number of computing
registers.

6.4 Aggregating Preferences

Social choice rules are methods for aggregating individuals’ prefer-
ences into collective action. Simplicity is particularly signiªcant for
a social choice rule because the rule has to be communicated to all
members of the group. Social choice theory is not explicit about
simplicity considerations, but such considerations underlie the the-
ory. For example, one interpretation of Arrow’s axiom of inde-
pendence of irrelevant alternatives is that it expresses a simplicity
requirement: The comparison between any two alternatives, a and
b, must depend on agents’ comparisons of only those two alterna-
tives. The neutrality axiom is an even stronger condition of simplic-
ity: It requires the existence of a unique principle on the basis of
which comparisons between any two alternatives can be made.

The aim of the rest of this discussion is to clarify an intuition that
the majority rule is a simple collective-decision rule. We will conªne
ourselves to the case of two social alternatives, 0 and 1. Preferences
are assumed to be strict. A social choice rule is a function that
attaches to each proªle of 0’s and 1’s (where i’s component is i’s
preferred outcome) a value, 0 or 1.

When considering the complexity of a social choice rule, imagine
that the computation of the rule is carried out by a machine (ªnite
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automaton), M = (Q, q0, µ, F), where Q is a set of states, q0 is the
initial state, µ(q, a) is the state that the machine moves to if it was
in q and observes an input a ∈ {0, 1}, and F is a subset of states such
that if the machine reaches any state in F, it stops with the answer 1.
The information about the individuals’ preferences is given as a
sequence x ∈ {0, 1}{1,...,n}. Starting with the state q0, that machine
moves to qt+1 = µ(qt, xt) and continues until it reaches either a state
in F or the end of the input sequence. If the machine stops at F, the
outcome is 1. In any other state, the outcome is 0. A machine M and
a proªle of votes x determine a unique outcome, fM(x).

Next we have to deªne what we mean by the complexity of a
machine. In later chapters, we will focus on measuring complexity
by the number of states in the machine. Here, we will take a
different approach, similar to that discussed in Chapter 5, where
we evaluated the complexity of perceptrons. The complexity of a
machine is evaluated by the maximal complexity (order) of a state
in the machine, independent of the number of states. The logic is
similar to the one used to rank the complexity of perceptrons.
Complexity here is linked to the ability to execute the basic opera-
tions of the machine and not to the number of times the operations
are completed.

The states are ranked as follows: The simplest states, of order 0,
are the absorbing states, those that do not even respond to the fact
that an input has been read. A state of order 1 is one that triggers
a transition to another state independently of the input content. A
state of order 2 triggers the machine to move to another state only
when it reads a speciªc input. A state of order 3 triggers a move to
another state depending on the input it reads. An order 2 state is
simpler than an order 3 state in the sense that an order 2 state
searches for the one particular input that will trigger a transition,
whereas an order 3 state responds differently to each of the two
input bits it may receive.
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q is of order The condition
0 µ(q, a) ≡ q for any input a
1 µ(q, a) ≡ q′ for all a (q′ ≠ q)
2 ∃a* so that µ(q, a*) = q′ (q′ ≠ q) and µ(q, a) = q

otherwise
3 ∃q′ ≠ q″ different from q, so that µ(q, 0) = q′ and

µ(q, 1) = q″

For every social choice rule f, we can ask: What machine, M, is of
the lowest complexity, so that fM = f? We will now see that the
machine that stops as soon as it identiªes [n/2]+ 1’s is the simplest
machine producing a social choice rule, f, that satisªes the consen-
sus requirement that f(1, 1, . . . , 1) = 1 and that is symmetric in the
two alternatives, that is, f(−x1, . . . , −xn) = −f(x1, . . . , xn) for any
proªle of opinions x, where the “−” stands for negation (−1 = 0 and
−0 = 1).

Obviously any machine of complexity 1 produces constant social
choice rules. For any complexity 2 machine, there must exist a
sequence (a1, . . . , aK) with 0 ≤ K ≤ n, so that the output of the
machine with the input vector x is 1 if and only if x is of the form
([a block of −a1], a1, [a block of −a2], a2, . . . , [a block of −aK], aK) (each
block may be empty). For a complexity 2 machine M to satisfy the
condition fM(1, . . . , 1) = 1, it must be that (a1, . . . , aK) = (1, . . . , 1).
That is, M’s output is 1 if and only if there are at least K 1’s in the
vector x. Among these rules, the only one that treats the two alter-
natives symmetrically is the one with K = [n/2]+, that is, majority
rule.

6.5 Bibliographic Notes

Section 2 is based on Marschak and Radner (1972), with the excep-
tion of point (b), which is based on van Zandt (1996). Section 3 is a
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simpliªcation of the model presented and analyzed in Radner
(1993). Section 4 is inspired by Varian (1972).

For an overview of the subject, see Radner (1992).

6.6 Projects

1. Innovative Suggest an alternative deªnition of a team that will suit situations
where more than one agent can activate an “output register” (like pulling a ªre
alarm).

2. Innovative In the model presented in Section 3, note an interesting difference
between the operation g1(x, y) = min{x, y} and the operation g2(x, y) = x + y: Whereas
min{x, min{x, y}} = min{x, y}, it is not true that x + (x + y) = x + y. Explain why this
difference does not inºuence the discussion in Section 3. Construct a model of
organization in which such a difference will be signiªcant (idea: consider the
possibility of mistakes in the process).

3. Reading From the Gibbard-Satterthwaite theorem, we know that when the num-
ber of alternatives is larger than 2, nondictatorial social choice rules are exposed to
the possibility of manipulation. Read Bartholdi, Tovey, and Trick (1989). Try to
simplify their model in order to express the idea that complicated social choice
rules are less easy to manipulate and thus may be desirable.

4. Exercise Study a variation of the model in Section 4 in which a machine is
(Q, q0, µ, λ), where λ is a function that assigns to each state an output, 0 or 1, with
the interpretation that if the machine terminates reading the input vector when it
is at the state q, the output of the machine is λ(q). Characterize the set of machines
of order 2 in this setup.
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7 Modeling Bounded
Rationality in Games

7.1 Introduction

The discussion in previous chapters was conªned to pure decision-
theoretical situations. The second part of the book deals with the
incorporation of procedural rationality considerations into models
of interactive situations, mainly games. We focus on three bounded-
rationality themes:

1. In standard game-theoretic analyses, each player behaves ac-
cording to the rational man paradigm. In this chapter we study
several models of interaction in which a player, when making a
decision, follows a decision procedure that is not consistent with
the rational man paradigm.

2. Even if the agents are rational, they may take into account pro-
cedural elements connected with their decision. For example, they
may be concerned about the complexity of the strategy they employ.
We show (Chapters 8 and 9) that the tradeoff between “optimality”
and “complexity” can inºuence dramatically the outcome of the
interaction in a class of repeated games.

3. The rational behavior of a player in a game requires his calcula-
tion of the other players’ behavior. If the opponents are rational, the
calculation of their actions requires working out the rational strat-
egy of the ªrst player. The self-referential nature of the concept of



“rationality” in interactive situations raises the question (discussed
in Chapter 10) as to whether the limits on computability impose
fundamental constraints on the existence of “rational strategies.”

Many other issues of modeling bounded rationality in games will
not be discussed in this book. Some of the omitted topics have
counterparts in decision theory (such as the limits on information
processing and imperfect recall), and some are unique to game
theory (for instance, the ability of a player to analyze his opponents’
behavior).

In the course of the discussion, I will refer to two different inter-
pretations of game theoretical solutions. Under one interpretation,
a player is an agent who operates in an environment determined
by the other agents’ behavior and who takes the behavior of the
other agents as an input to his decision problem. Under this inter-
pretation, a solution describes a player’s behavior when he takes
the other agents’ behavior as “known.” Under the other interpreta-
tion, a solution strategy entails the behavior of a player who does
not know the other players’ strategies but reasons about them from
the model’s primitives (i.e., the preferences and the informational
structures). These two different interpretations of equilibrium pro-
duces tension into any game theoretical discussion, and is unavoid-
able once bounded rationality elements have been introduced into
the model.

7.2 Interactions Between Luce Players

The model introduced in this section is based on Luce’s model of
choice. The model describes behavior that is stochastic in a system-
atic way. Let A be a space of alternatives. The decision maker
attaches to each alternative a ∈ A a non-negative number v(a) so
that given a set of alternatives A ⊆ A, he selects each action a* from
A with probability v(a*)/Σa∈Av(a). For the case where the set A is
the set of lotteries over a set of consequences C, the function v has
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a more detailed structure. There are value numbers, (u(c))c∈C, at-
tached to each of the possible consequences so that v(L) is the
expected u-value of the lottery L. When the decision maker chooses
from the set of lotteries A, he chooses the lottery L* ∈ A with
probability v(L*)/ΣL∈Av(L). Note that “Luce numbers” are inter-
preted differently from von Neumann-Morgenstern (vNM) utilities.

Our interest in Luce’s model is not due to its attractiveness.
Although Luce provided an axiomatization for this theory, its ap-
peal from a procedural point of view remains to be substantiated.
Luce’s theory is used here only as a tool for demonstrating how the
Nash equilibrium type of analysis can be applied to decision theo-
ries other than vNM expected utility maximization.

Consider a situation where each player i ∈ N has to choose an
action from a ªnite set of actions Ai and where his choice adheres
to Luce’s theory. Player i bases his decision on a function, ui, which
assigns a non-negative number, ui(a), to every possible outcome a ∈
×i∈NAi. For any vector σ−i of mixed strategies for all players except
i, any action ai ∈ Ai induces a lottery; the expected value of this
lottery is ui(ai, σ−i) = Σa−i

ui(ai, a−i)Πj≠iσj(aj). Player i’s choice is a mixed
strategy, σi, in which the ratio between the probabilities of any two
possible actions, ai and ai′, is equal to the ratio between ui(ai, σ−i)
and ui(ai′, σ−i). An equilibrium is a proªle of mixed strategies, (σi

∗)i∈N,
such that for all i and for all ai ∈ Ai, σi

∗(ai) = ui(ai, σ−i
∗)/Σα∈Αι

 ui(a,
σ−i

∗); that is, given the other players’ strategies, σ−i
∗, player i’s choice

is σ−i
∗. A straightforward application of Brouer’s ªxed point theorem

guarantees the existence of an equilibrium.
Note that in this model, the only way that an action gets a zero

weight in equilibrium is if it yields a zero payoff. Thus, the game

 C  D

C 2, 2 0, 3

D 3, 0 1, 1
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which looks like the Prisoner’s Dilemma, has two equilibria. One is
the regular Nash equilibrium, and the other (more interesting one)
is the mixed strategy equilibrium in which each player takes action
C with probability 1/4. Adding a constant ε > 0 to all payoffs will
change the set of equilibria: the pure equilibrium disappears and
the unique equilibrium, when ε goes to inªnity, converges to σi

∗ =
(1/2, 1/2) for both i.

7.3 A Game with Procedurally Rational Players

In this section, we analyze the interaction between players who use
a decision procedure whose primitives include the players’ prefer-
ences on the set of outcomes, but differs from that of the rational
man. Here, a decision maker, when having to choose from a set of
actions A with uncertain consequences in a set C, constructs a
deterministic action–consequence relationship and takes the action
with the best attached consequence. The chance that a certain con-
sequence c ∈ C will be attached to a ∈ A is taken to be the frequency
with which c is observed with a. Thus, the action–consequence
relationship, being random, yields random behavior.

To demonstrate, assume that action a leads, with equal prob-
abilities, to the monetary consequences $0 or $2, whereas action b
leads, with equal probabilities, to the consequences $1 or $3. As-
sume that the payoffs from the two actions are independent. Then,
with probability 1/4, the decision maker attaches to action a the
consequence $2 and to action b the consequence $1, and thus
chooses a; any of the other three possible action–consequence rela-
tionships leads to the choice of b. Thus, the behavior induced from
this procedure will be the choice of a with probability 1/4 and b
with probability 3/4.

The simplest version of this game model applies to a symmetric
two-player game, (A, u), where each player has to choose an action
from a set A; his payoff, if he chooses the action x ∈ A and his
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opponent chooses the action y ∈ A, is u(x, y). A candidate for the
solution is a mixed strategy α* (a lottery on A). Given α*, for each
x ∈ A, let L(x, α*) be the lottery that induces the consequence u(x, y)
with the probability α*(y). Our equilibrium requirement is that for
all a ∈ A, the number α*(a) is the probability that the action a gets
the highest value from among all independent realizations of
{L(x, α*)}x∈A, breaking ties evenly among all actions that yield the
maximal payoff.

Unlike the rational player in game theory, in this model, a player
does not start by constructing a conjecture about his opponent’s
action. Instead, he links each of his possible actions to a conse-
quence. When doing so, he does not take into account any strategic
considerations of the other players.

Example 1 To illustrate the solution concept, let us calculate the
equilibria of the symmetric game with A = {a, b} and the utility
function given in the table:

a b 

a 2 4

b 3 1

Denote p = α*(a). The probability that L(a, α*) will be higher than
L(b, α*) is p(1 − p) + (1 − p). Thus, in equilibrium, p = p(1 − p) +
(1 − p); that is, α*(a) = (√5 − 1)/2 ≈ 0.62.

This equilibrium concept has two interpretations. For the “real
experimentation interpretation,” imagine the existence of a large
population of individuals, pairs of which are occasionally matched
and interact. Upon joining the population, a new arrival does the
following: he samples every action once and attaches to each action
the consequence he obtained. Then, he chooses forever the action
that yields the best consequence. Under this interpretation, an
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equilibrium corresponds to a steady state in which the probability
that a new player chooses a certain action is equal to the fraction
of the population associated with that action.

An alternative interpretation, preferable to my mind, takes the
experimentation idea less concretely. A player forms an action-con-
sequence linkage in a mental process. The probability that he at-
taches consequence c to action a is not arbitrary; it is assumed that
the attachment reºects the true (probably stochastic) pattern ac-
cording to which his opponent plays the game. It is assumed that
he attaches consequence (a, b) to action a with the probability by
which action b is taken.

Note that the equilibrium notion we are talking about requires
the full speciªcation of each player’s ranking of all the outcomes,
whereas the standard notion of a pure Nash equilibrium requires
that each player rank the outcomes exclusively for a ªxed oppo-
nent’s action.

It is easy to see (using Brouer’s ªxed point theorem) that for ªnite
games, the existence of an equilibrium is guaranteed.

Example 2 Assume that A = {a, b} and that the action a weakly
dominates the action b, with u(a, a) > u(b, a) and u(a, b) = u(b, b), so
that the game can be written as

a b

a 1 x

b 0 x

Note that we have here ªve different games (according to whether
x > 1, x = 1, 0 < x < 1, x = 0 and x < 0). Let α* be an equilibrium
and p = α*(a). The conclusion that p = 1 follows from the fact that
for all values of x, 1 − p ≤ (1 − p)2/2 + p(1 − p). To see this inequality,
note that the action b can be selected only if:
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•  b ties with a, because the consequence x is attached to both actions,

•  x ≥ 1 and the consequence 1 is attached to the action a and the
consequence x to b, or

•  x ≤ 0 and x is attached to action a and 0 to action b.

Example 3 Consider the case where a weakly dominates b and u(a,
a) = u(b, a), that is, the game is one of the ªve games having the
structure:

a b

a x 1

b x 0

Then, the unique Nash equilibrium outcome, α*(a) = 1, is never an
equilibrium.

Example 4 For two-action games, if a strictly dominates b, the only
equilibrium is α*(a) = 1 (conªrm!). However, for symmetric games
with more than two actions, the dominated action can appear in
equilibrium with positive probability. Consider the game:

a b c

a 2 5 8

b 1 4 7

c 0 3 6

This game carries the interpretation of a voluntary exchange game
between two traders, each holding two units of a good worth 1 to
the initial holder and 3 to the other. The game has two equilibria:
one is the pure strategy equilibrium, α*(a) = 1 (with no trade); the
second is approximately (0.52, 0.28, 0.20), in which both dominated
actions occur with positive probability.
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 The extension of the solution concept to asymmetric situations is
straightforward. It allows the application of the concept to an ex-
tensive game through its normal form.

Example 5 Consider the single-round version of the centipede
game (ªg. 7.1) which has the reduced normal form:

 S  C

S 1 0 1 0

C 0 3 2 2

Denote by p and q the probabilities that players 1 and 2, respectively,
stop the game. For (p, q) to be an equilibrium, it has to be that p = q
(player 1’s action S wins only if player 1 attaches the consequence
0 to the action C) and q = (1 − p) + p2/2. Thus in equilibrium p =
q = 2 − √2.

In the T-round centipede game, there are two players, alternating
in order, each of whom has an opportunity to stop the game.
Available to each player are T + 1 plans (“always continue” and
“stop at the tth opportunity” for t = 1, 2, . . . , T). The preferences
have the property that at each history it is best for the player who
has to move to stop the game if and only if he expects that in the
event he continues the game will end at the next stage (by the other
player stopping the game or by the termination of the game).

An interesting fact about the T-round centipede game is that
when the number of periods goes to inªnity, the equilibrium (as

Figure 7.1
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deªned in this section) probability that player 1 stops the game
immediately goes to 0! To see this, denote by p the probability that
player 1 stops the game at the ªrst period and by q the probability
that player 2 chooses to stop the game at his ªrst opportunity.
Player 1’s strategy of stopping at the ªrst period is the winner only
if he attaches to his other T strategies the consequence associated
with player 2 stopping the game immediately. Thus p = qT. Player
2’s strategy of stopping at the ªrst node (if reached) is the winner
with a probability that does not exceed (1 − p) + pT+1/(T + 1) because
for this strategy to win it is necessary that player 2 attaches to
stopping a scenario that involves player 1’s not stopping the game
earlier (probability 1 − p) or that he attaches to the consequence that
player 1 stops the game at the ªrst period to all his T + 1 strategies
(a case where all his T + 1 strategies tie). It is simple to verify that
for every ε > 0, there is a T* large enough so that if (p, q) is a solution
of p = qT and q ≤ (1 − p) + pT+1/(T + 1) and if T ≥ T* then p ≤ ε.

This result is appealing as a potential resolution of the paradoxi-
cal aspects of the centipede game. But notice that this argument
follows from treating the game as a strategic game, losing informa-
tion included in the extensive game. Going back to the single-round
version of the game (Example 5), player 2 ªnds the strategy “con-
tinue” to be better than the strategy “stop” only when he attaches
the scenario that player 1 has already stopped the game to “stop”
and he attaches the scenario that player 1 did not stop the game to
“continue.” A more natural mode of reasoning for player 2 in
Example 5 would involve his taking into account the facts which
forced him to move; that is, that player 1 has not stopped the game.
The solution concept described in this section, because it applies
only to the strategic game, misses this point.

7.4 Limited Foresight in Extensive Games

One of the most interesting modeling issues in the study of games
with boundedly rational players is that of modeling players who
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have limited ability to understand the extensive game they face.
The game of chess is a good example for illustrating some of our
concerns. In game theoretical terms, chess is a ªnite, zero-sum,
two-player game with perfect information. At the outset of the
game, one of the players (“white”) has to make a move, and at each
of the subsequent histories, the other player (“black”) has to move,
and so on, in alternating order. Attached to each of the terminal
histories is one of three consequences: “white wins,” “black wins,”
and “draw.” The preferences of the players are naturally deªned.
Chess has a ªnite number of histories because of the rule stating
that if the same position is repeated three times in the course of a
play, then the outcome of that play is a draw.

At the beginning of the twentieth century, Zermelo proved a
proposition which can be interpreted, “chess is a trivial game.” To
see this we can use the backward induction technique: Assign to each
history h a number, d(h), which is the length of the longest path
from h to one of the terminal histories. A history h with d(h) = 0 is
a terminal history. Assign a “value,” v(h), to each terminal history
h, equal to the consequence attached to that history. Continue in-
ductively. At each history h, with d(h) = d, one player, i, has to choose
from a ªnite number of actions. Each action ai leads to the history
(h, ai) with d(h, ai) ≤ d − 1, for which we have already assigned a
value. Deªne player i’s strategy at h to be an action, ai*, so that
v(h, ai

∗) is at least as good for player i as any other v(h, ai). Set v(h)
= v(h, ai

∗). This procedure ends after a ªnite number of steps. The
value of the game is the value assigned to the initial history. The
procedure also constructs a pair of strategies that can easily be
shown to form a (subgame perfect) equilibrium. Furthermore, be-
cause the game is a zero-sum game, each of these strategies has the
property that its holder can make sure that whatever his opponent
does, the outcome of the game will be at least as good for him as
the game’s value. That is, if the value of the game is “white wins,”
then the strategy that we have just deªned ensures white’s victory.
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If the value of the game is “black wins,” then black can assure
himself to win. If the value is a draw, each player can employ a
strategy that would secure him at least a draw.

The striking fact about chess is that although we can easily prove
that the game has a value, we can calculate neither that value nor
the maxmin strategies. In the preceding proof we assumed that each
player, when making a choice at a particular history of the game,
is able to calculate correctly the consequences following each of his
possible actions. But this calculation requires going through a huge
number of steps, something no human being can accomplish. By
the way, it might still be the case that chess will one day be “solved”
without applying the backward induction technique, but by some
bright idea based on a thorough understanding of the game.

A maxmin strategy is not necessarily the rational strategy to
follow. If the value of chess is a draw, the case may be that when
playing against a weak player, a player will do better by using
another strategy, one allowing him to win. Note that even if the
value of chess were known, people would not necessarily stop
playing the game, just as they continue to play a simple game like
tic-tac-toe despite its value being a draw. The fact that the maxmin
strategies are known does not mean that everyone is familiar with
a speciªc maxmin strategy or able to execute it.

Much has been said about the way people and computer pro-
grams play chess (or similar board games). It seems that people
typically “check out” several likely scenarios and that they enter-
tain some method to evaluate the endpoint of each scenario (like
counting the pieces in chess). People differ in the depth of their
inquiry, the quality of the “typical scenarios” selected, and the way
they evaluate their endpoint positions. They also exhibit differ-
ences in the ways in which they make mistakes. (Actually, it
is not at all clear that mistakes are necessarily bad; for example,
sometimes a less conventional move can throw an opponent off
balance.)
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Modeling “chesslike” behavior in games is still a puzzle. I am not
aware of any analytical model that deals satisfactorily with this
issue. I will make do with demonstrating some of the modeling
difªculties by using a very special case of an extensive game with
perfect information (and a chance player) having the following
payoff structure: A proªle of payoffs is attached to each action and
each player’s payoff at a terminal history is the sum of the payoffs
he collected along the history.

Assume that each player’s foresight horizon is K. This means that
he decides what his behavior will be at each history solely on the
basis of considerations regarding the next K periods. How does he
go about it? Here are two possible approaches. Common to both
approaches is the assumption that at each history a player compares
scenarios within the foreseen horizon by weighting the sums of
payoffs he expects to collect in the next K moves of the game.

Under one approach, an equilibrium is a proªle of strategies,
(f i

∗)i∈N, such that for all i and for any history h in which player i has
to move, f i

∗(h) is the action that leads to the maximization of the sum
of payoffs at the foreseen horizon, given the equilibrium actions
taken both by the player and his opponent, in the histories found
within distance K from the history h. Thus, under this approach,
each player at every history in which he has to move is analyzed
as if he were an autonomous player who moves only once and has
preferences represented by the sum of his payoffs in the foreseen
K stages of the game. This analysis is in the spirit of Strotz’s treat-
ment of decision problems with changing tastes, discussed earlier
in the context of imperfect recall.

To demonstrate this approach, consider the following one-player
extensive game:

Example 1 A decision maker has at each period the option of taking
one of two possible actions, 0 or 1. At period t, the action 0 yields
the stage payoff 0, whereas the action 1 yields the stage payoff δt,
where δ > 1 (!). To make the game stop in ªnite time, assume that
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at each period the “game” may cease with probability ε > 0 (where
ε is “small”). Assume that the decision maker’s horizon is K = 2.
The following strategy is an equilibrium: The decision maker
chooses 1 if and only if the length of the consecutive string of
previous 0’s is odd. This strategy produces the path (0, 1, 0, 1, . . . ).
After a history in which this strategy calls for him to take the action
0, the decision maker does not do better by taking the action 1, since
if he takes the action 1 he expects to take the action 0 one period
later, and the string of payoffs (0, δt+1) is better for him than the
string of payoffs (δt, 0). When he has to take the action 1, he expects
the string (1, 0), which is better for him than the path (0, 0), which
is the path expected if the action 0 is taken.

Under a second approach, player i, at the history h in which he
has to move, takes an action that constitutes the ªrst step of a
strategy that maximizes player i’s sum of payoffs in the next K
stages, taking as given the other players’ behaviors in his foreseen
horizon and absent any restrictions on his own planned actions.
The equilibrium concept that ªts the second approach is a proªle
of strategies, (f i

∗)i∈N, such that for every history h, after which player
i has to move, we have f i

∗(h) = fi(h), where fi is some strategy that
maximizes the sum of the payoffs in the K horizon given the other
players’ strategies.

There is no reason to expect that this type of equilibrium will
yield an optimal strategy. Even for a single-agent decision problem,
this approach does not necessarily lead to a “good path” as the
player might enter a “trap” he has not perceived.

Going back to Example 1, according to the second approach, the
only equilibrium is for the decision maker always to choose the
action 1. To appreciate the differences between the two equilibrium
concepts, let us review one more example.

Example 2 Consider a two-player situation where the players alter-
nately choose one of two actions, G (for “giving”) or NG (for “not
giving”). Assume that the “stage” payoffs are such that if the player

Modeling Bounded Rationality in Games 133



who has to move chooses G, he loses 2 units of payoff and the other
player gets 3; if he chooses NG, both get a payoff of 0. Assume that
at each stage, there is probability ε that the game ends (where ε is
positive and “small”).

Consider the model with K = 3. Let (f 1
∗, f 2

∗) be the pair of strategies
deªned by f i

∗(h) = NG if the history h contains at least one play of
NG, and f i

∗(h) = G otherwise. To see that (f 1
∗, f 2

∗) is an equilibrium
according to the second approach, consider a history after which
player i has to move. First, assume that in h, the action NG was
chosen at least once. Player i then anticipates that irrespective of
what he does, player j will play NG at the next period; thus, his
best plan for the forthcoming three periods is to play NG in the ªrst
and the third periods. Next, assume that the history h is a constant
play of G. Player i anticipates that if he chooses G in the ªrst period
within his horizon, player j will play G as well, and thus he can
achieve the stream (−2, 3, 0). If he plays NG at the ªrst period, player
j will play NG as well, and he will be able to obtain only the inferior
stream of payoffs (0, 0, 0).

This pair of strategies, (f 1
∗, f 2

∗), is not an equilibrium according to
the ªrst approach. The optimality of playing G was based on player
i’s plan to choose NG at the third period, though he will actually
choose G. By the ªrst approach, player i has the “correct expecta-
tions” about himself if he plays G, which leads to the stream (−2,
+3, −2), which is inferior to the stream (0, 0, 0) that follows if he
chooses NG.

To conclude, I believe that the two approaches fall short of cap-
turing the spirit of limited-foresight reasoning. By the ªrst ap-
proach, a player treats his future behavior as given, though he can
inºuence it. By the second approach, he treats the other players’
plans as known, though he does not know his own moves. Model-
ing games with limited foresight remains a great challenge.
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7.5 Bibliographic Notes

Section 2 is based on Chen, Friedman, and Thisse (1997); see also
related earlier work by Rosenthal (1989) and McKelvey and Palfrey
(1995). Section 3 is based on Osborne and Rubinstein (1997). The
last part of Section 4 is based on ideas that emerged from a research
project jointly conducted with Asher Wolinsky. Jehiel (1995) ana-
lyzes the multiselves approach with respect to a family of alternat-
ing-moves games with “limited foresight.” For Luce’s choice model,
see Luce (1959).

7.6 Projects

1. Innovative Consider a scenario where two prisoners who were arrested on
January 1 decide to coordinate an escape on the morning of April 13. They have
been placed in two separate cells. They do not have a calendar or any writing
device, but they can observe every sunrise. During the ªrst few days, they keep
track of the exact date and are certain that their calculations are correct. But as time
passes, their degree of conªdence diminishes. Try to model this situation in game
theoretic terms. Compare it with the situation where a single prisoner has to escape
by himself on April 13.

2. Innovative Read the axiomatization of Luce’s decision theory (see Luce (1959))
and try to give the axioms procedural interpretations.

3. Reading Read Rosenthal (1989) and McKelvey and Palfrey (1995), and compare
the decision procedure there with that of Chen, Friedman, and Thisse (1997).

4. Exercise Consider the effect of duplicating an action in the two game theoretic
models discussed in Sections 2 and 3. Provide an interpretation for your ªndings.

5. Exercise (Based on Chen, Friedman, and Thisse [1997].) Consider a modiªcation
of the Luce model: Player i’s behavior is a mixed strategy, σi, in which the ratio
between the probabilities of any two possible actions, ai and ai′, is equal to the ratio
between ui(ai, σ−i)µ and ui(ai′, σ−i)µ. Provide an interpretation for the µ coefªcient and,
in particular, for µ = 0 and a “very high” µ.

6. Exercise (Based on Osborne and Rubinstein (1997).) Consider the model of a
game with procedurally rational players, as described in Section 3, in regard to a
situation where two sellers of a commodity “Bertrand compete” in the market.
Denote by 0 < p1 < p2 . . . < pK < 1 the K possible prices. Denote by u(p, p′) the proªt
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of a seller who charges the price p when his opponent charges the price p′. Assume
that the set of prices is dense enough that u(pk, pk) < u(pk−1, pk) for each k ≥ 2. Show
that the only equilibrium in this model is for the two sellers to charge p1.

7. Exercise For the class of symmetric games, analyze the procedure in which each
player “samples once” his opponent’s action and takes a best response to this action.
Deªne an equilibrium concept and examine some examples.
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8 Complexity
Considerations in
Repeated Games

8.1 Introduction

In this chapter, we will incorporate a special type of procedural
consideration into the model of repeated games. We will see that
when players take this procedural consideration into account, the
analysis is changed dramatically.

At the heart of our discussion in this chapter is the tradeoff often
facing a decision maker when choosing a strategy. On one hand, he
hopes his strategy will serve his goals; on the other hand, he would
like it to be as simple as possible. There are many reasons why a
player may value simplicity: a more complex plan of action is more
likely to break down, is more difªcult to learn, and may require
more time to be implemented. We will not examine these reasons
here but simply assume that complexity is costly and under the
control of the player.

One may study the interaction of agents who account for the
complexity of their rule of behavior in the context of any model. It
is particularly appropriate in the context of an extensive game,
where a strategy determines a player’s actions in various circum-
stances and thus can be viewed as a rule of behavior. Within the
set of extensive games, we will study the model of inªnitely re-
peated games. There are several reasons for this choice. First, the
model allows the use of strategies that are intuitively very simple,



as well as those that are intuitively very complicated. Thus, the
tradeoff between the optimality and the simplicity of the strategies
would seem to be signiªcant. The second is the popularity of this
model in economics and other social sciences. But, most important,
it works—that is to say, the analysis does yield rich results.

8.2 The Model of the Repeated Game: A Brief Review

The model of repeated games relates to situations in which each
player takes into account the effect of his “current” behavior on the
other players’ “future” behavior. The model allows us to examine
the logic of long-term interactions. Its aim is to explain phenomena
such as cooperation, revenge, and threats.

The basic point of the analysis of the repeated game model is
illustrated by the scenario in which two individuals repeatedly play
the Prisoner’s Dilemma.

 C  D

C 3, 3 0, 4

D 4, 0 1, 1

Action D strictly dominates action C for each player, thus the stage
game has a unique Nash equilibrium in which each player chooses
D. If the game is played repeatedly, then the mutually desirable
outcome (C, C) can be sustained under the condition that each
player believes that a defection will result in an eventual loss that
outweighs the immediate gain.

When studying a repeated game (with perfect information), we
have in mind a scenario in which the players play a basic strategic
game at each period (which we will refer to as the one-shot game).
In each period all the players simultaneously choose an action
available in the one-shot game. At the end of each period, the
actions taken by the players are revealed.
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We distinguish between inªnitely and ªnitely repeated games. The
difference lies in whether the players are aware of the existence of
a ªnal period of interaction. The naive interpretation of the
inªnitely repeated game is that of a one-shot game played in-
deªnitely. However, a preferable interpretation is that of a game in
which after each period the players believe that the interaction will
continue for an additional period. Even if a game really does have
a terminal period, the model of an inªnitely repeated game is
appropriate, in my opinion, when the players do not incorporate
the existence of that endpoint into their strategic reasoning. In
contrast, a ªnitely repeated game is an appropriate model when the
players assign a special status to the endpoint in their strategic
considerations.

The two models are very different. The existence of an endpoint
is a crucial factor in the analysis of the ªnitely repeated game. For
example, it is easy to see that the ªnitely repeated Prisoner’s Di-
lemma, in which a player’s payoff is the accumulated sum of the
G-payoffs in the T periods, has a unique Nash equilibrium outcome
(as well as a unique subgame perfect equilibrium) that constitutes
the constant repetition of (D, D), independently of T. In contrast,
the inªnitely repeated game may exhibit equilibria of a very differ-
ent nature, including a constant play of the (C, C) outcome.

In this chapter we deal mainly with the inªnitely repeated model.
The cornerstone of this model is a one-shot strategic game, G =
(N, {Ai}i∈N, {ui}i∈N). For the sake of simplicity, we conªne ourselves
to the case of two-player games so that the set of players is taken
to be N = {1, 2}. Ai is the set of i’s actions. Player i’s payoff is
represented by a utility function, ui: A1 × A2 → R. The utility
numbers will soon become the basis for the construction of time
preferences. A G-outcome is a member of A = A1 × A2.

A strategy of player i in the repeated game is a function that assigns
an action in Ai to every ªnite sequence (a1, . . . , at) of G-outcomes.
 In order to complete the description of the inªnitely repeated
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game model, we must specify the players’ preferences on inªnite
sequences of G-outcomes. It is assumed that each player i evaluates
a sequence of G-outcomes (at) by applying an evaluation criterion
to the induced sequence of utility numbers (ui(at)). We will discuss
two types of evaluation criteria:

Discounting There is some number δ ∈ (0, 1) (the discount factor)
such that the sequence (vi

t) is evaluated by Σtδtvi
t. We refer to (1 −

δ)(Σtδt−1vi
t) as player i’s repeated game payoff in the repeated game

with discounting.

Limit of means A sequence (vi
t) is evaluated by its limiting average,

limT→∞Σt=1,...,Tvi
t/T. (In the following analysis we will not have to be

concerned with the possibility that this limit may not be well
deªned.) We refer to this limit as player i’s repeated game payoff
in the repeated game with limit of means.

Notice that the discounting criterion assigns diminishing impor-
tance to payoffs the later they are realized, whereas the criterion of
the limit of means treats all periods symmetrically. Any change in
the payoff in any single period affects the discounted sum. In
contrast, the limit of means criterion ignores payoff differences in
any ªnite number of periods.

Within the theory of repeated games, the fundamental results are
the Folk Theorems. These are characterizations of the payoff vectors
that can be sustained as an outcome of a Nash equilibrium. The
Folk Theorems show that a huge set of outcomes (including, for
example, the repeated play of the cooperative outcome in the Pris-
oner’s Dilemma) can be sustained in equilibrium.

For a description of the basic Folk Theorem we require some
notation. Denote by u(a) the pair (ui(a))i∈N. We call a vector v ∈ RN

a payoff proªle of G if there is an a ∈ A so that vi = ui(a) for both i.
A vector v ∈ R2 is a feasible payoff proªle of G if it is a convex
combination of payoff proªles of outcomes in G, that is, if v =
Σa∈Aαau(a) for some collection {αa}a∈A of non-negative rational num-
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bers αa with Σa∈Aαa = 1. (In the literature, the coefªcients αa are
allowed to be any real, not necessarily rational numbers. This gen-
eralization slightly complicates the argument without adding any
substance.)

Player i’s minmax payoff in G, henceforth denoted by vi, is the
lowest payoff that the other player, j, can force upon player i:

vi = minaj∈Aj
maxai∈Ai

ui(aj, ai).

A payoff proªle w in G for which wi ≥ vi for both i ∈ N is called
enforceable; if wi > vi for both i ∈ N, then w is strictly enforceable.
Denote by σ−i ∈ Aj a solution for the minmaximization problem,
that is, σ−i is a most severe punishment strategy of j against i.

It is easy to see that if v is a payoff vector of some Nash equilib-
rium (for the repeated game with either evaluation criterion), v
must be feasible and enforceable. This fact, together with the fol-
lowing, more interesting result, comprises the essence of the Folk
Theorem.

Proposition 8.1 Let w be an enforceable feasible payoff proªle of
G. There is a Nash equilibrium of the repeated game with a limit
of the means which induces w as a payoff vector.

A proof of this proposition is very simple. It reduces to the
construction of a pair of strategies which can be shown to be a Nash
equilibrium of the repeated game. In such a pair of strategies, the
players cyclically play a sequence of outcomes that, on average,
yield the vector w. As soon as a deviation is made by any of the
players, the other will forever “minmax” the deviator.

In the case of discounting, we have to be a little more careful with
the details but the same proposition essentially holds for a “large
enough” discount factor (its proof is left as an exercise).

Proposition 8.2 Let w be a strictly enforceable feasible payoff
proªle of G. For all ε > 0, there is some δ′ such that for any δ > δ′,
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there exists a payoff proªle w′ of G for which |wi′ − wi| < ε for both
i and w′ is a payoff proªle of a Nash equilibrium of the discounted
inªnitely repeated game of G.

Thus, the Folk Theorems conªrm that socially desirable outcomes
that cannot be sustained if players are short-sighted, can be sus-
tained in equilibrium if the players have long-term objectives.

One of the difªculties with the proof of the Folk Theorem is that
the proªle of strategies used may involve threats that are not cred-
ible. Although this does not occur in the Prisoner’s Dilemma, a
situation may occur in Nash equilibrium where one player is sup-
posed to respond to another player’s deviation by means of a
noncredible punishment plan. The requirement that punishment
threats be credible is expressed by the notion of subgame perfect
equilibrium. Apparently, the Folk Theorems continue to hold even
when the term “Nash equilibrium” is replaced by the term “sub-
game perfect equilibrium” (for the discounting case, it requires a
weak constraint on the set of games). We will not expand on this
point; the reader can ªnd an extensive discussion of the issue in
any modern book on game theory.

Note that Folk Theorems are statements about the payoff vectors
that can be sustained in equilibrium. However, the institutions that
sustain equilibria are not exhibited by the equilibrium payoff vec-
tors themselves but by the equilibrium strategies. Understanding the
logic of long-term interactions requires, in my opinion, the charac-
terization of the equilibrium strategy scheme. In referring to a strat-
egy scheme, I am alluding to its structure, stripped of the details
arising from the particular payoff to be supported. The repeated-
games literature has made little progress toward this target.

In the rest of this chapter, we will seek ways to reªne the huge
set of Nash equilibria and to derive necessary conditions on the
equilibrium strategies by appending to the players the desire to
reduce the complexity of their strategy. In order to reach these
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targets, we will ªrst replace the notion of a “strategy” with the
notion of a “machine.”

8.3 Strategies as Machines in Inªnitely Repeated Games

At this point, we depart from the conventional literature on re-
peated games and replace the notion of a strategy with that of a
machine. A machine is meant to be an abstraction of the process by
which a player implements a rule of behavior in a repeated game.

A machine (ªnite automaton) for player i in an inªnitely repeated
game of G is a four-tuple (Qi, qi

0, fi, τi) where

Qi is a ªnite set of states,

qi
0 ∈ Qi is the initial state,

fi: Qi → Ai is an output function that assigns an action to every state,
and

τi: Qi × Aj → Qi is the transition function that assigns a state to every
pair of a state and an action of the other player.

The set Qi is unrestricted. From the point of view of the deªnition
of a machine, the names of the states have no signiªcance. The fact
that we call a state “cooperative,” for example, does not mean that
the behavior associated with it is in fact cooperative; however, we
will attempt to attach names to states that correspond to their
intuitive meaning.

A machine operates as follows: In the ªrst period, the state is qi
0

and the machine chooses the action fi(qi
0). If aj is the action chosen

by the other player in the ªrst period, then the state of player i’s
machine changes to τi(qi

0, aj) and, in the second period, player i
chooses the action dictated by fi in this state. The state again changes
according to the transition function, given the other player’s action,
and the process continues. Thus, whenever the machine is in some
state q, it chooses the action fi(q) while the transition function, τi,
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speciªes the machine’s move from q (to a state) in response to the
action taken by the other player.

Note that the transition function depends only on the present
state and the other player’s action. This formalization ªts the natu-
ral description of a strategy as player i’s plan of action, in all
possible circumstances, that are consistent with player i’s plans.
This interpretation of a strategy well suits our purposes in this
chapter. In contrast, the notion of a game theoretic strategy for
player i requires the speciªcation of an action for any possible
history, including those that are inconsistent with player i’s plan of
action. The game theoretic notion of a strategy is required in order
to allow the application of the notion of subgame perfect equilib-
rium. The deªnition of Nash equilibrium, however, requires only
the speciªcation of behavior following histories that are consistent
with a player’s rule of behavior. (As an aside, in order to formulate
a “game theoretic strategy” as an automaton, the only change re-
quired is to construct the transition function such that τi: Qi × A →
Qi rather than τi: Qi × Aj → Qi.)

The following are several machines available to a player in the
repeated Prisoner’s Dilemma game.

Example 1 The following machine (Qi, qi
0, fi, τi) carries out the

(“grim”) strategy that chooses C so long as both players have
chosen C in every period in the past, and chooses D otherwise.

Qi = {qC, qD}.

qi
0 = qC.

fi(qC) = C and fi(qD) = D.

τi(q, aj) = 




qC   (q, aj) = (qC, C)
qD   otherwise.

This machine is illustrated in the ªgure 8.1. Each circle corresponds
to a state; the name of the action taken at that state appears below
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each circle. The initial state is indicated by an arrow. The arrows
correspond to the transitions.

This machine is, of course, not the only one which implements
the “grim” strategy, but it is certainly the most natural and, in some
sense, the simplest.

Example 2 Player 1’s machine M1, shown in ªgure 8.2, plays C as
long as player 2 plays C and plays D for three periods if player 2
plays D when the machine is in state qC. After three periods, the
machine reverts to state p0, whatever actions the other player takes.
(We can think of the other player as being “punished” for playing
D for three periods and then “forgiven.”) Notice that a machine
must have at least four states in order to carry out this strategy.

Example 3 The machine M2, shown in ªgure 8.3, starts by playing
C. The machine continues to play C if the other player chooses D.
If the other player chooses C, then M2 switches to q1 and plays D
until the other player chooses D, at which time M2 reverts to q0.

In order to illustrate the evolution of play in a repeated game in
which each player’s strategy is carried out by a machine, suppose

Figure 8.1

Figure 8.2
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that player 1 uses the machine M1 and player 2 uses the machine
M2. The machines start in the states p0 and q0, respectively. The
outcome in the ªrst period is (C, C) because the output function of
M1 assigns the action C to state p0 and the output function of M2

assigns the action C to state q0. The states in the following period
are determined by the transition functions. The transition function
of M1 leaves the machine in state p0 because the outcome in the ªrst
period was (C, C), whereas the transition function of M2 moves the
machine from q0 to q1 in response to this input. Thus, the pair of
states in period 2 is (p0, q1). The output functions determine the
outcome in period 2 to be (C, D), so that M1 moves from p0 to p1

and M2 remains in q1. The play continues through period 6 accord-
ing to the following table:

Period
State of
M1

State of
M2 Outcome

Payoff 
vector

1 p0 q0 (C, C) 3, 3
2 p0 q1 (C, D) 0, 4
3 p1 q1 (D, D) 1, 1
4 p2 q0 (D, C) 4, 0
5 p3 q0 (D, C) 4, 0
6 p0 q0 (C, C) 3, 3

In period 6, the pair of states is the same as it was in period 1; the
states and outcomes then continue to cycle in this manner. The fact
that cycles are generated is obviously not peculiar to this example—

Figure 8.3
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whenever each player uses a ªnite state machine, a cycle is even-
tually attained, though it may not necessarily start at period 1.

Generally, every pair (M1, M2) of machines induces a sequence
(at(M1, M2))t=1,2,... of outcomes of G and a sequence (qt(M1, M2))t=1,2,...

of pairs of states deªned as follows:

qi
1(M1, M2) = qi

0

ai
t(M1, M2) = fi(qi

t(M1, M2))

qi
t+1 (M1, M2) = τi(qi

t(M1, M2), aj
t(M1, M2)) (where j ≠ i).

Every machine induces a strategy (in the “rule of behavior” sense).
Of course, any strategy can be executed by a machine with an
inªnite number of states (each representing one history of the re-
peated game). But not every strategy in a repeated game can be
executed by a ªnite machine. For example, consider player 1’s
strategy to play C, then D, followed by C and twice D, followed by
C and thrice D, and so on, independently of player 2’s behavior. It
is easy to see that this strategy cannot be carried out by a machine
with a ªnite number of states.

We are now ready to discuss a new game in which the set of
repeated game strategies is replaced with a set of machines. We
refer to this game as a machine game. The machine game is a two-
player strategic game in which each player chooses a (ªnite) ma-
chine to play the inªnitely repeated game. The set of strategies
for player i in the machine game is the set of all ªnite machines
for player i, denoted by Mi. The players’ preferences are taken to
be those that are induced from the original repeated game: that
is, player i prefers the pair of machines (Mi, Mj) to (Mi′, Mj′) if in
the repeated game, he prefers the sequence of outcomes (at(M1,
M2))t=1,2... to the sequence of outcomes (at(M1′, M2′))t=1,2,... . Denote by
Ui(M1, M2) the repeated game payoff of player i if the players use
the machines M1 and M2.
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By moving from strategies to machines, the only change we have
made is that we have restricted the set of strategies to those that
can be executed by ªnite machines. Before moving on to our main
objective, that of embedding the complexity of strategies within the
model, let us verify that we did not inºuence the Folk Theorem by
limiting the set of strategies.

First, let us demonstrate that whatever player j’s machine is,
player i can design a machine such that the induced sequence of
payoffs is at least as good as the constant sequence of the minmax
level, vi. Let Mj = (Q, q*, f, τ) be a machine for player j. The following
machine, Mi, chooses player i’s best response to the action taken by
player j’s machine in every period. It does so by “following the
moves of player j’s machine” and responding with the myopic best
response. Formally, choose Mi such that the set of states is Q and
the initial state is q*, the same as those of the machine Mj. Deªne
fi(q) to be i’s best response to j’s action fj(q) in the one-shot game G.
From q, player i’s machine always moves to τ(q, fi(q)). Thus, any
equilibrium of the repeated game with either limit of means or a
discounting criterion must yield a payoff vector that is enforceable.
Note that Mi is not necessarily the best response to Mj in the sense
of a machine game, that is, with regard to the repeated game
preferences.

The following is the basic Folk Theorem stated for the limit of
means criterion in the machine game.

Proposition 8.3 Let w be an enforceable feasible payoff proªle of
G. A Nash equilibrium of the machine game with the limit of means
exists that induces w as a payoff vector.

Proof There is a sequence of outcomes a1, . . . , aK, so that w =
Σk=1,...,Ku(ak)/K. We construct an equilibrium consisting of a pair of
“grim” strategies. The machine for player i is:

•  The set of states {Norm1,. . . . , NormK, p}.

•  The initial state Norm1.
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•  The output function At the state Normk, play ai
k. At the state p, play

σ−j (a maxmin strategy against player j).

•  Transition From state Normk, if the opponent played aj
k (which he

was meant to play) move to Normk+1(mod K); otherwise move to p.

Thus, the machine for player i plays the “master plan” until player
j deviates in which case player i forever chooses σ−j. Since w is
enforceable this constitutes an equilibrium. ▫

The analogous result holds for the discounting case. Thus the re-
striction of the set of strategies to those implemented by machines
(with ªnite number of states) does not affect the content of the Folk
Theorem.

To summarize, we brieºy described the “Folk Theorems,” theo-
rems that, under a variety of assumptions concerning the players’
preferences, establish that a large set of payoff vectors can be ob-
tained by Nash (and even subgame perfect) equilibria in an
inªnitely repeated game with the limit of means or when δ is large
enough. A proof of a Folk Theorem entails the construction of some
equilibria that generate the required outcomes but without any
requirements being imposed on either the complexity or the sound-
ness of the strategies involved.

We are now ready to proceed toward our main objective in this
chapter: the analysis of the repeated game model in which players
take into account the complexity of the strategies they employ.

8.4 Complexity Considerations in Repeated Games

We have seen that the restriction that strategies be implementable
by machines does not alter the Folk Theorem. If, however, we
assume that each player values both his payoff in the repeated game
and the simplicity of his strategy, then we obtain results that are
very different from the Folk Theorem.

We ªrst have to deªne what we mean by the complexity of a
strategy. We adopt a naive approach: The complexity, c(M), of the
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machine M = (Q, q0, f, τ) is taken to be its number of states (the
cardinality of Q). The analysis is sensitive to the measure of com-
plexity that is used. This should be considered a merit of the model.
The measure of complexity is an additional piece of information
concerning the strategic reasoning involved in the situation, and
should reºect the relevant difªculties of the player in carrying out
a strategy. It seems intuitive that different complexity considera-
tions may have different effects in different circumstances.

We began the chapter with the one-shot game G and the repeated
game. We then analyzed the machine game with no complexity
considerations. We have now reached the ªnal destination of this
chapter: a machine game with complexity considerations. This game
is almost identical to the machine game without complexity con-
siderations. Each of the two players simultaneously chooses a ma-
chine. A player’s preferences are positively sensitive to his payoff
in the repeated game played by the machines. The new feature is
that a player’s preferences are also negatively sensitive to the com-
plexity of the machine.

Deªnition A machine game of an inªnitely repeated game of G =
(N, {Ai}, {ui}) with the complexity measure c(M), is a strategic game
with the set of players N, in which for each player i:

•  The set of strategies is Mi, the set of all ªnite machines for player
i in the inªnitely repeated game.

•  Each player i’s preferences over the pairs of machines, ii, is
increasing with player i’s payoff in the repeated game and is de-
creasing with the complexity of his machine. In other words, (M1,
M2) �i (M1′, M2′) whenever either Ui(M1, M2) > Ui(M1′, M2′) and c(Mi)
= c(Mi′) or, Ui(M1′, M2′) = Ui(M1′, M2′) and c(Mi) < c(Mi′).

In one special case each player’s preferences are represented by the
function Ui(M1, M2) − γc(Mi) with some γ > 0, interpreted as the cost
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of each state of the machine. Another special case is one in which
the preferences are lexicographic, such that each player is concerned
ªrst with his payoff in the repeated game and second with the
complexity of his machine. This case is especially interesting be-
cause lexicographic preferences are those closest to the preferences
in the standard model of a repeated game in which complexity
considerations are absent. We shall see that even in this case, the
set of Nash equilibria payoff vectors is dramatically smaller than
the set of all enforceable payoff vectors.

Suppose that the game G is the Prisoner’s Dilemma, and consider
the two-state machine M that implements the “grim” strategy of
Example 1. If the players’ common discount factor δ is not too small,
then, in the δ-discounted repeated game of G, this machine is a best
response to the other player using M. Even by using a more com-
plex machine, player 1 cannot achieve a higher payoff in the re-
peated game. However, although there is no machine that yields
player 1 a higher payoff in the repeated game than does M, given
that player 2 uses M, there is a machine with one state in which C
is played, and it yields player 1 the same payoff and is less complex.
The state qD in the machine M is designed to allow a player to
threaten his opponent but, in equilibrium, this threat is redundant
since each player always chooses C. Thus, either player can drop
the state qD without affecting the outcome; hence, (M, M) is not a
Nash equilibrium of the machine game.

On the other hand, consider the following machine, M, presented
in ªgure 8.4. The behavior this machine generates can be inter-
preted as beginning with a display of the ability to punish. Follow-
ing this display, the player begins a cooperative phase in which he
plays C, threatening to punish a deviant by moving back to the
initial state. If both players use this machine, then the sequence of
payoffs in the repeated game is 1 followed by an inªnite sequence
of 3’s.
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If the players’ common discount factor δ is not too small, then
(M, M) is a Nash equilibrium of the machine game if the players’
preferences give relatively low weight to complexity (as is the case
if their preferences are either lexicographic or additive with a small
cost of complexity). The argument goes as follows. To increase his
payoff in the repeated game, a player must sometimes choose D
when his opponent plays C. Any such choice of D causes the other
machine to choose D for at least one period, so that when δ is close
enough to 1, a player does not gain by such a maneuver (4 + δ < 3
+ 3δ for δ > 1/2). Thus, for a large enough δ, a player cannot increase
his payoff in the repeated game with any machine, however com-
plex. It is clear that a player in the repeated game cannot achieve
the same payoff by using a less complex machine.

8.5 The Structure of Machine Game Equilibria

In this section, we will restrict our attention, for simplicity’s sake,
to an inªnitely repeated game in which the players’ preferences are
represented by the discounting criterion. We will study the players’
behavior in a two-player δ-discounted inªnitely repeated game.

Our aim is to characterize the properties of the structure of
machine game Nash equilibria. In what follows, (M1

∗, M2
∗) is an

equilibrium of the machine game. The analysis is divided into three
stages.

Figure 8.4

152 Chapter 8



Stage 1 The number of states in the two machines is equal
and the equilibrium of the machine game is an equilibrium of
the repeated game.
First, note that in equilibrium, all states are used at least once: For
every state qi of the machine Mi

∗, there exists a period t such that
qi

t(M1
∗, M2

∗) = qi. Otherwise, player i can omit the state qi, thereby
reducing the complexity but not reducing the repeated game’s pay-
off.

Second, let us now turn to a somewhat technical but important
observation. For any strategy sj of player j in the repeated game,
denote by Uj(Mi

∗, sj), player j’s payoff in the repeated game when
he uses a strategy sj and player i uses the strategy that corresponds
to Mi

∗. Since Mi
∗ is ªnite, player j’s problem max sj

Uj(Mi
∗, sj) of ªnding

a best response (ignoring complexity) to the machine Mi
∗ in the

repeated game has a solution (see Derman [1970, Theorem 1, p. 23]).
We are also capable of characterizing the response in the following
way: Having Mi

∗ = (Qi, qi
0, fi, τi), for each q ∈ Qi, let Vj(q) =

max sj
Uj(Mi

∗(q), sj), where Mi
∗(q) is the machine that differs from Mi

∗

only in the initial state, q. For each q ∈ Qi, let Aj(q) be the set of
solutions to the problem:

maxaj∈Aj
uj(fi(q), aj) + δVj(τi(q, aj)).

Player j’s strategy is a best response, in the repeated game, to the
strategy which corresponds to Mi* if and only if the action he takes
when player i’s machine is in state q is a member of Aj(q).

Consider now the problem maxMj
Uj(Mi

∗, Mj). This problem differs
from max sj

Uj(Mi
∗, sj) only in that instead of choosing a strategy,

player j has to choose a machine. However, even in the restricted
scope of the optimization, player j can obtain max sj

Uj(Mi
∗, sj), by the

machine in which the set of states and the initial state are the same
as in Mi

∗, the output function fj is deªned by fj(q) = aj
∗(q) ∈ Aj(q), and

the transition function τj is deªned by τj(q, x) = τi(q, fj(q)) for any
x ∈ Ai.
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This machine carries out a strategy that is optimal from among
all strategies (and thus also solves the problem maxMj

Uj(Mi
∗, Mj)).

Note that the number of states used by this machine is not higher
than the number of states in Mi

∗.
We are now able to conclude stage 1 of the analysis.

Proposition 8.4 If (M1
∗, M2

∗) is a Nash equilibrium of a machine
game, then c(M1

∗) = c(M2
∗) and the pair of strategies in the repeated

game associated with (M1
∗, M2

∗) is a Nash equilibrium of the repeated
game.

Proof For every i, the solution to the problem maxMj
Uj(Mi

∗, Mj) (the
problem in which the complexity element is ignored) does not
involve more than c(Mi*) states. Therefore, it must be that in equi-
librium (where the complexity element is not ignored) c(Mj

∗) ≤
c(Mi

∗). Hence, c(M1
∗) = c(M2

∗). Further, because player j can use a
machine with c(Mi*) states to achieve a payoff in the repeated game
equal to max sf

Uj(Mi
∗, sj), it follows that each of the machines corre-

sponds to a best response strategy in the repeated game. ▫

Stage 2 The One-to-One Correspondence Between Actions on
the Equilibrium Path
We will now derive a result that has strong implications on the set
of Nash equilibria of a machine game. To obtain some intuition of
this result, consider the pair of machines for the inªnitely repeated
Prisoner’s Dilemma shown in ªgure 8.5.

This pair of machines generates a path in which there are initially
k ≥ 2 periods with the outcome (D, D) (the players display their
threats), followed by a cycle of length four with the outcomes (C, C),
(C, C), (C, D) and (D, C), which is repeated indeªnitely. Any devia-
tion by a player from the prescribed behavior in the cycle causes
his opponent’s machine to go to its initial state, thereby punishing
the deviant for k periods. The reader can conªrm that the pair of
machines is a Nash equilibrium of the repeated game when the
discount factor δ is close enough to 1. However, the machines do
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not constitute an equilibrium of the machine game. To see this,
consider M1 above. In each of the three states, q1, q2, and q3, player
1 takes the same action; he needs the three states in order to “know”
when to choose the action D. However, he could adopt the machine
M1′, in which the three states, q1, q2, and q3, are replaced by a single
state q, in which he chooses C. If M1′ reaches q, it stays there so long
as player 2 chooses C and switches to q4 if player 2 chooses D. The
transitions from the state Ik, if player 2 plays D, and from q4, if player
2 plays C, are corrected to q. Then, (M1′, M2) generates the same
sequence of G-outcomes as does (M1, M2); thus, in the machine
game, player 1 can proªtably deviate to M1′.

The situation is similar to that in which one paratrooper has to
jump after counting to 100 while another has to jump after counting
to 101. If the second paratrooper counts, then he can monitor the
ªrst paratrooper and make sure he jumps on time. However, count-
ing is costly in the tense environment of the plane, and the second
paratrooper can avoid the burden of counting by simply watching
his friend and jumping immediately after him.

In general, we can show that if a Nash equilibrium pair of ma-
chines generates outcomes in which one of the players takes the
same action in two different periods, then the other player takes

Figure 8.5
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the same action in those two periods (contrary to the behavior of
the players in periods k + 2 and k + 3 of the example we have just
discussed). We can now complete stage 2 of the analysis.

Proposition 8.5 If (M1
∗, M2

∗) is a Nash equilibrium of a machine
game, then there is a one-to-one correspondence between the ac-
tions of player 1 and player 2, prescribed by M1

∗ and M2
∗: that is, if

ai
t(M1

∗, M2
∗) = ai

s(M1
∗, M2

∗) for some t ≠ s, then aj
t(M1

∗,M2
∗) = aj

s(M1
∗, M2

∗).

Proof Let Mi
∗ = (Qi, qi

0, fi, τi). By proposition 8.4, Mj
∗ is a best response

to Mi
∗ in the repeated game sense; therefore fj(qj

t(M1
∗, M2

∗)) ∈
Aj(qi

t(M1
∗, M2

∗)) for all t. Thus, if there are two periods t and s in
whichh

aj
t(M1

∗, M2
∗) = aj

s(M1
∗, M2

∗) and ai
t(M1

∗, M2
∗) ≠ ai

s(M1
∗, M2

∗), then

qi
t(M1

∗, M2
∗) ≠ qi

s(M1
∗, M2

∗),

fj(qj
t(M1

∗, M2
∗)) ∈ Aj(qi

t(M1
∗, M2

∗)) and

fj(qj
s(M1

∗, M2
∗)) ∈ Aj(qi

s(M1
∗, M2

∗)).

We have seen that in equilibrium, c(Mi
∗) = c(Mj

∗); however, the
following describes a machine which carries out an optimal strategy
for player j using only c(Mi

∗) − 1 states.

•  The set of states is Qi − {qi
s}.

•  The initial state is qi
0 if qi

s ≠ qi
0 and is qi

t otherwise.

•  The output function is deªned by fj.

•  The transition function is deªned as follows:

τi′(q, fj(q)) if q ≠ qi
t and

τj(q, x0) = { τi′(qi
s, fj(qi

s)) if q = qi
t and x = ai

s(M1
∗, M2

∗)
τi′(qi

t, fj(qi
t)) if q ≠ qi

t and x ≠ ai
s(M1

∗, M2
∗)

where τi′ is identical to τi except that τi′(q, x) = qi
t whenever τi(q, x) =

qi
s. ▫
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This result has a striking implication for the equilibrium outcome
path where G is a 2 × 2 game. For example, when G is the Prisoner’s
Dilemma, the G-outcomes played in equilibrium must be either in
the set {(C, C), (D, D)} or in the set {(C, D),(D, C)}.

Stage 3 The One-to-One Correspondence Between States on
the Equilibrium Path
We now turn to the structure of the equilibrium machines. Because
each player’s machine is ªnite, there is a minimal number t′ such
that for some t > t′, we have qi

t = qi
t′ for both i. Let t* be the minimal

period t, such that t > t′ and qi
t = qi

t′ for both i. The sequence of pairs
of states starting in period t′ is a cycle of length t* − t′. We refer to
this stage as the cycling phase and to the stage before period t′ as
the introductory phase.

We now show that the sets of states a player uses in the cycling
and introductory phases are disjoint. Furthermore, in the introduc-
tory phase, each state is “visited” only once and each of a player’s
cycle states are repeated only once in each cycle. Thus, in equilib-
rium, there is a one-to-one correspondence between the states in
the machines of players 1 and 2. This means that in every period
each machine “knows” the state of the other machine.

Proposition 8.6 If (M1
∗, M2

∗) is an equilibrium of a machine game,
then there exists a period t* and an integer � < t* such that for i =
1, 2, the states in the sequence (qi

t(M1
∗, M2

∗)t=1,2,...,t*−1 are distinct and
qi

t(M1
∗, M2

∗) = qi
t−�(M1

∗, M2
∗) for t ≥ t*.

Proof Let t* be the ªrst period in which one of the states of either
of the two machines appears for the second time. That is, let t* be
the minimal time for which there is a player i and a period ti < t*
such that qi

t∗ = qi
ti have ai

t∗ = ai
ti; hence, by the previous stage aj

t∗ =
aj

ti It follows that for all k ≥ 0 we have qi
t∗+k = qi

ti+k; because in
equilibrium all states appear at least once, we ªnd that C(Mi

∗) = t*
− 1. By the deªnition of t*, it follows that all states of Mj

∗ through
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time t* − 1 are distinct, and because in equilibrium C(Mj
∗) = C(Mi

∗),
there exists tj < t* such that qj

tj = qj
t∗. It remains to show that tj = ti.

Assume to the contrary that, say, tj > ti. Then player j can obtain
the same path of outcomes with a machine in which qj

ti is excluded
by making a transition from qj

 ti –1 to qj
t∗, omitting qj

ti. Because this
machine has the property that whenever the machine Mi

∗ is at a
state q, player j plays an action in Aj(q), an optimal repeated game
strategy is induced using a machine with fewer states than Mj

∗,
contradicting that (M1

∗, M2
∗) is an equilibrium. ▫

Comment The results in this section show that the set of equilibria
of the machine game is much smaller than that of the repeated
game. Of course, to characterize the exact set of equilibria would
depend on the exact preference relations. Consider, for example, the
repeated Prisoner’s Dilemma and the case in which the two players’
preferences in the machine game are lexicographic. We already
know that either a subset of {(C, C), (D, D)} or a subset of {(C, D),
(D, C)} can be realized on an equilibrium path. One can show that
for any two non-negative integers, nC and nD, for δ high enough
there exists an equilibrium with a cycle of length nC + nD in which
(C, C) appears nC times and (D, D) appears nD times (Project 2).

In order to construct equilibria in which every outcome on the
equilibrium path is either (C, D) or (D, C), one does not require an
introductory phase. For all positive integers n1 and n2 satisfying
4ni/(n1 + n2) > 1 for both i and large enough δ, there is an equilib-
rium of the machine game in which the cycle starts immediately
and consists of n1 plays of (D, C) followed by n2 plays of (C, D)
without any introductory phase. (The condition on n1 and n2 en-
sures that each player’s average payoff exceeds his minmax payoff
of 1.)

An equilibrium for the case n1 = n2 = 1 is shown in ªgure 8.6.
One interpretation of this equilibrium is that the players alternate
at being generous toward each other. One can think of (C, D) as the
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event in which player 1 gives a gift to player 2 and (D, C) as the
event in which player 2 gives a gift to player 1. In equilibrium, a
player does not care if his opponent refuses the gift (i.e., chooses C
when he could have chosen D and receive the gift), but he insists
that his opponent give him a gift (play C) in periods in which he
expects to receive one. If he does not receive a gift, then he does
not move to the state in which he is generous.

8.6 Repeated Extensive Games

The analysis in the previous sections was conªned to the analysis
of the model of the repeated game in which the one-shot game is
a strategic one. This type of analysis could, in principle, be applied
to other families of games. One example, discussed brieºy here, is
an inªnitely repeated game in which the one-shot game is an ex-
tensive game. Although the analysis of the Nash equilibria of the
(regular) repeated extensive game is identical to that of the repeated
game of the corresponding strategic form game (though the set of
subgame perfect equilibria may sometimes be different), the analy-
sis of the Nash equilibria of the machine game of the extensive game

Figure 8.6
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raises a new issue regarding the interpretation of the repeated
game of an extensive game. Consider, for example, the repeated
game of the extensive game Γ (ªg. 8.7). The normal form of Γ is the
game G:

 A  B

A 3, 1 1, 3

B 2, 0 2, 0

Applying the previous section’s analysis to the game G, it is easy
to verify that any path of a Nash equilibrium of the corresponding
machine game contains only the outcomes (A, A) and (B, B) (any
path on the auxiliary diagonal yields a payoff less than what player
1 can guarantee by constantly playing B). If the players’ preferences
in the machine game are lexicographic, then every ªnite sequence
containing only the outcomes (A, A) and (B, B) is, for large enough
δ, a cycling phase of a path associated with some Nash equilibrium
of the machine game.

The analysis of the repeated game of Γ requires an additional
speciªcation. What does player 1 know at the end of each round?
It seems reasonable to assume that the players are only informed
of the terminal history of that period’s play. That is, if player 1

Figure 8.7
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chooses B, he has no knowledge of player 2’s plan were he to have
played A.

In the machine game we are now analyzing, a machine’s output
is a Γ-strategy and an input is a Γ-outcome. It is easy to verify that
our previous arguments apply here and that there is no equilibrium
of the machine game such that the players sometimes play (A, A)
and sometimes (A, B); that is, in any equilibrium, the path of
Γ-outcomes must be a string of (A, A)’s and (B, B)’s only. However,
further investigation shows that there is no equilibrium path in
which (A, A) appears. If there were, then player 2 could make do
with a one-state machine that always plays A. Then, it must be that
player 1 is using the one-state machine that plays A; but if so, player
2 can deviate proªtably to the one-state machine that plays B, a
contradiction. Thus, the only equilibrium of the machine game
involves player 1 using the one-state machine that plays B, while
player 2 uses the one-state machine that “threatens” to play B.

We see that the machine game equilibrium is sensitive to details
regarding information and ability to monitor. The machine game
attached to the strategic game G represents a situation in which
observing the opponent’s plans is possible and costless. In the
machine game attached to the extensive game Γ, a player cannot
observe the opponent’s plans unless they are realized. No wonder
that in a model like the machine game, in which the costs of having
plans as well as acquiring and processing information are important
components in the players’ considerations, the difference between
these two machine games can be signiªcant.

8.7 Concluding Remarks

The Model and Bounded Rationality

The analysis in this chapter has revealed once again a fundamental
tension that exists when “modeling bounded rationality.” In a
machine game, a player has to solve a maximization problem in
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which he balances two desires: achieving a high payoff versus
employing a simple machine. In some sense, this problem is more
complicated than that of ªnding an optimal strategy in the conven-
tional repeated game, since the player must also consider the com-
plexity of his rule of behavior, not just the payoff. Although the
model imposes restrictions on the ability of the players to imple-
ment their repeated game strategy, it does not impose any con-
straint on the player’s ability to solve his optimality problem in the
machine game.

I do not ªnd this fact to be peculiar. The tradeoff between com-
plexity and optimality is very common in real life. Often, a decision
maker may make very complicated computations regarding his
“lower level agents” (probably his own selves) while taking into
account the limitations on those agents’ ability to implement their
instructions.

Dynamic Considerations

A machine game is a one-shot game in which a player cannot alter
his machine in the course of implementing the strategy.

The model would be quite uninteresting if we allowed the play-
ers to freely alter their machine every period; they would need only
a single state machine each period, and the repeated game consid-
eration would be pushed from the machine level to the level of the
strategy determining the change of machines in that state.

A more attractive possibility would be to integrate dynamic con-
siderations into the model by requiring that after every history of
the repeated game, the pair of machines be an equilibrium of the
machine game. This requirement implies that the equilibrium play
of the machines is such that any state in any machine must be used
inªnitely often. In particular, it would mean the absence of an
introductory phase. This requirement may have a strong additional
effect on the set of equilibria. For example, in the inªnitely repeated
Prisoner’s Dilemma, every equilibrium in which (C, C) is one of the
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outcomes must have an introductory phase (Project 4), and thus
any equilibrium in which all states are used inªnitely often, induces
either a constant play of (D, D) or a play of (C, D)’s and (D, C)’s
exclusively.

8.8 Bibliographic Notes

Most of this chapter is based on Rubinstein (1986) and Abreu and
Rubinstein (1988).

For a more detailed discussion and references regarding the basic
results of the model of repeated games with perfect information,
see Chapter 8 of Osborne and Rubinstein (1994). For a discussion
of the notion of automatae, see Hopcroft and Ullman (1979).

The arguments in Section 4 are a modiªcation of the original
proof of Abreu and Rubinstein (1988), developed in Piccione (1992).
Section 6 is based on Piccione and Rubinstein (1993).

8.9 Projects

1. Exercise (From Osborne and Rubinstein [1994].) Give an example of a three-
player game for which the associated machine game has a Nash equilibrium in
which it is not true that all three machines have the same number of states.

2. Exercise (From Abreu and Rubinstein [1988].) Show that for every NC and ND

and for every δ close enough to 1, there is an equilibrium for the machine game
(with G being the Prisoner’s Dilemma) so that in the equilibrium path cycle, the
players play ND times (D, D) and NC times (C, C) with an introductory phase in
which they play (D, D). Why is the order of play in the cycle important?

3. Exercise (From Piccione [1992].) Explain in what sense the analysis of the ma-
chine game is sensitive to “duplicating action” in the one-shot game. Does it make
sense?

4. Exercise (From Rubinstein [1986].) Show that in the inªnitely repeated Prisoner’s
Dilemma, every equilibrium of the machine game in which (C, C) is one of the
outcomes must have an introductory phase.

5. Reading (From Neme and Quintas [1990].) Consider the machine game dis-
cussed in this chapter with the limit of means and the one modiªcation that each
player can use an inªnite number of states (yet is interested to reduce the number
of states). Show that any enforceable payoff vector can be supported in equilibrium.
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6. Exercise (From Banks and Sundaram [1990].) Study a modiªcation of the model
in which monitoring the other player’s behavior is also costly. More precisely,
assume that a player cares about three numbers in lexicographic order: (1) his
repeated game payoff, (2) the number of states in his machine, and (3) the number
of transition arrows in his machine. Show that the set of Nash equilibrium paths
for this model includes only strings of one-shot Nash equilibria. Go through the
following steps.
  In any equilibrium:

1. The number of transitions in a player’s machine has to be at least as large as the
number of states in his machine (otherwise, some states are unreachable).

2. The number of states of the two machines is equal.

3. The number of transitions in each machine is equal to the number of states.

4. In the play of the equilibrium, machine i goes through all its states and then
returns to the state that was used at period ki. Show that k1 = k2.

5. Player i’s action at each state must be a best response to the corresponding player
j’s action.

7. Innovative Suggest an interesting economic model in which each economic agent
takes into account both his “conventional utility” and the complexity of his strategy.
You may consult Chatterjee and Sabourian (1996), who analyze the multiperson
bargaining game.
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9 Attempts to Resolve the
Finite Horizon Paradoxes

9.1 Motivation

An issue constantly discussed in game theory is that of the “ªnite
horizon paradoxes.” The most noticeable examples are the ªnitely
repeated Prisoner’s Dilemma, Rosenthal’s centipede game, and
Selten’s chain store paradox. In these games, the standard game-
theoretic solutions yield results that are considered quite unintui-
tive. This fact has prompted game theorists to consider the
appropriateness of the basic solution concepts. It has also motivated
another approach, discussed in this chapter, which tries to explain
the unintuitive results by the players’ lack of full rationality.

For concreteness, we will focus on a timing game that is simpler
in some respects than the games mentioned above and yet has the
features we need for our discussion. The game is similar to the
ªnitely repeated Prisoner’s Dilemma; its one divergent feature be-
ing that as soon as at least one of the players does not cooperate,
the game is over.

Let G0(T) be an extensive game with two players, 1 and 2. The
game takes place at T periods enumerated 1, 2, . . . , T. In each
period, the two players have to choose simultaneously whether to
stop the game or allow it to continue; that is, each player has two
alternatives in every period, Stop or Continue (Cont). The game
continues from period t to period t + 1 only if both players choose



Cont. Each player accumulates payoffs during the course of the
game. At the end of any period (including period T) in which both
players choose Cont, each player adds 3 to his payoff. If both choose
Stop, each receives 1. If one of them chooses Stop and the other
chooses Cont, the player who stops the game receives 5 while the
other receives 0. The important feature of these payoffs is that it is
optimal for player i to stop the game at period t if and only if he
believes that player j intends to stop the game at period t or at
period t + 1. If player i believes that player j will never choose Stop,
then player i will do best by stopping the game at period T.

The set of nonterminal histories consists of all sequences of t
mutual choices of Cont for 0 ≤ t < T. A player’s strategy (plan of
action) speciªes the period in which the player plans to stop the
game, if at all. Thus, a player in G0(T) has T strategies, S(1), . . . ,
S(T), where S(t) is “stop at period t,” and one strategy of “never
stop,” denoted by CONT. Note that the conventional game-
theoretical notion of strategy is somewhat different, but the current
notion of a strategy is appropriate here; see Section 8.3 and Rubin-
stein (1991) for discussion of this point.

In spite of the potential “enormous gains” the players can obtain
if they continue the game to its “happy end,” the game has only
one Nash equilibrium outcome, in which both players stop the
game at the ªrst period. It is not difªcult to verify that the game
does not have any additional mixed-strategy equilibria.

The rest of the chapter is devoted to a review of several ap-
proaches that attempt to resolve the ªnite horizon paradoxes. Do
these approaches provide a satisfactory resolution of the paradoxi-
cal aspects that appear in G0(T)?

9.2 Implementation of Strategies by Machines

The computation necessary to execute the strategy S(t) for t > 1
involves counting up to t. The implementation of the strategies
CONT and S(1) does not require any computation. Thus, the pos-
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sibilities to model complexity of strategies are quite limited. The
only possible complexity issue concerns the difªculty of a player in
identifying his planned stopping time. Other complexity issues that
appeared in Chapter 8 are not relevant to G0(T). A player cannot
monitor his opponent, because if he chooses Stop, the game is over.
Players have no possibility of reaching a long-term compromise
based on diversifying their actions along the time dimension in that
there is only one action that does not end the game. A history
(information about past events) is fully described by its length.

Readers may wonder whether the difªculties in counting can be
a reasonable basis for a serious model. I think that there are contexts
in which it is reasonable to assume that the larger the t, the more
complex it is to count up to t (have you ever received an instruction
to turn right at the seventeenth intersection?). In any case, one
should not take the analysis too literally as its main purpose is to
demonstrate the logic of complexity considerations in interactive
situations.

As in Chapter 8, we describe the complexity of a strategy by the
minimal number of states in the machine that implements the
strategy. A machine here is a ªnite automaton that receives as input
the signal “one period has passed” and generates as output one
action Cont or Stop. That is, a machine is a four-tuple (Q, q0, f, τ)
where Q is a ªnite set of states, q0 ∈ Q is the initial state, the output
function f: Q → {Stop, Cont} speciªes an action Stop or Cont for
every state, and τ: Q → Q is a transition function.

Note that in Chapter 8, an automaton’s transition function deter-
mined how the machine moved from one state to another in re-
sponse to the input it received. Here, as long as the game continues,
there is only one possible input (Cont); thus, we can write the
transition function as a function from Q into Q.

Of course, any strategy in G0(T) is implementable by a machine.
There exists a machine, M(t), with t states (but no less), that carries
out the strategy S(t). The strategy CONT is implementable by a
one-state machine, M(CONT).
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The three machine games described in the next three sections are
variants of G0(T). In all these games, a player makes a strategic
decision only once, before the game starts, and chooses a machine
that implements his strategy and operates automatically with no
further deliberation on his part. In the ªrst game, we modify the
payoff functions to incorporate the complexity costs; in the second
game, we put a bound on the complexity of the feasible machines;
in the third, we further modify the notion of a machine so that
besides playing the game G0(T), it has to send as well as receive
messages.

9.3 Counting is Costly

In this section, we apply the approach in which complexity is costly.
Each player wishes to increase his G0(T) payoff and to decrease the
complexity of his machine. Let c > 0. In the machine game G1(T, c),
each player has to choose a machine and a player’s utility is [payoff
in G0(T)] − c × [the number of states].

Proposition 9.1 If c ≥ 2/(T − 1), then the pairs of machines
(M(CONT), M(CONT)) and (M(1), M(1)) are the only (pure) equi-
libria of G1(T, c). If c < 2/(T − 1), then the pair of machines (M(1),
M(1)) is the only equilibrium of G1(T, c).

Proof First, note that in equilibrium, if one of the players uses the
machine M(1), the other uses the machine M(1). Thus, the pair
(M(1),M(1)) is always an equilibrium of G1(T, c). Note also that if in
equilibrium one player uses M(CONT), then the other does not use
any M(t) with t < T because deviating to M(CONT) increases his
payoff in G0(T) and decreases the complexity of his machine.

There is no equilibrium in which one of the players, let us say
player 1, uses M(t) with 1 < t < T because the best response of player
2 must be M(CONT), M(1) or some M(t′) with t′ < t. We have seen
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that (M(t), M(CONT)) (t < T) and (M(t), M(1)) (t > 1) are not
equilibria. The pair (M(t), M(t′)) with 1 < t′ ≤ t is not an equilibrium
because player 1 can proªtably deviate to M(t′ − 1) with fewer states
and higher payoff.

The pair (M(T), M(CONT)) also is not an equilibrium. Either c >
2/(T − 1) or 2/(T − 2) > c. If c > 2/(T − 1), player 1 will do better
by deviating to M(CONT), losing 2 from his payoff in G0(T) and
saving T − 1 states. If 2/(T − 2) > c, player 2 can proªt by switching
to the machine M(T − 1), using T − 2 more states, but gaining 2 units
of payoff.

Finally, (M(CONT), M(CONT)) is an equilibrium only if it is not
worthwhile for a player to deviate to M(T), namely, if c ≥ 2/(T − 1). ▫

Remark In Chapter 8, adding complexity costs to the players’ con-
siderations reduced the set of equilibrium outcomes. In contrast,
the set of Nash equilibrium outcomes of G1(T, c) is not necessarily
a subset of the set of Nash equilibria of G0(T); when c is large, we
have a new equilibrium outcome in which the game continues to
the end.

9.4 Bounded Capability to Count

In this section, we modify the game G0(T) so that players will be
restricted in the complexity of strategy they can employ. Let B be a
natural number. In the game G2(T, B), each of the players has to
choose (simultaneously) a machine that plays the game G0(T), hav-
ing no more than B states. The payoffs are as in the game G0(T).
Unlike in G1(T, c), the use of the B states is free; however, the players
cannot use a machine with more than B states.

The analysis of G2(T, B) is trivial. If B < T, that is, if the players
are unable to count up to T, then the “good cooperative outcome”
can emerge in equilibrium; but if they are able to count up to
T (B ≥ T), then the existence of a restriction on the number of states
does not produce any new equilibrium outcomes.
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Proposition 9.2 In G2(T, B):

1. If B ≥ T, then the only Nash equilibrium is (M(1), M(1)).

2. If B < T, then both (M(CONT), M(CONT)) and (M(1), M(1)) are
the only pure Nash equilibria of the game.

Proof (1) If B ≥ T, then the machine game G2(T, B) is identical to
G0(T) because all strategies of G0(T) can be implemented by ma-
chines with not more than T states. (2) A machine that, when
playing against M(CONT), yields a G0(T)-payoff higher than
does M(CONT), has to have T states, which are unavailable when
B < T. ▫

9.5 Machines Also Send Messages

In contrast to the game G2(T, B), the game constructed in this section
has a “good equilibrium,” whatever the bound on the number of
states is. However, in order to achieve this result we will change
the meaning of a machine. In this section, a machine, besides play-
ing the game G0(T), is involved in sending meaningless messages.
In the “good equilibrium” the need to send the right messages
diverts available resources (states) from being used to count up to
T and thereby prevents a proªtable deviation. This is an appealing
strategic idea, is a reminder of a real-life common strategic maneu-
ver in which one player diverts the attention of his opponent to
prevent that opponent from taking an undesirable action.

Let L be a set of symbols (messages). An action–message machine
is a set of states Q, an initial state q0 ∈ Q, an output function
f: Q → {Stop} � {(Cont, m): m ∈ L}, and a transition function τ: Q ×
L → Q. The meaning of f(q) = (Cont, m) is that at the state q, the
machine chooses Cont and sends the message m; f(q) = Stop means
that at q the machine chooses Stop. The meaning of τ(q, m) = q′ is
that while at the state q, if the message m is received from the other
player, the machine moves to state q′. In the game G3(T, B, L), a
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player has to choose an action–message machine using the set of
messages L, with no more than B states. Payoffs are as in G0(T).

Proposition 9.3 For all T ≥ 2 and for all B (even B > T!), there is a
set of messages, L, such that the game G3(T, B, L) has a mixed
strategy equilibrium with the outcome that no player ever stops the
game.

Proof Let L = L1 � L2 where Li is a set with B − 2 elements and L1

and L2 are disjoint. Let si be player i’s mixed strategy, in which he
picks, with probability 1/(B − 2), a B-state machine that initially
sends the message m* ∈ Li, and then repeats the message sent by
player j; if the machine detects that the other machine does not
reply with the message m*, it stops the game. More precisely the
set of states in this machine is Lj � {m*, S}. The following table
describes the output and transaction functions.

State q Output f(q) Transition �(q, n)
(initial) m* (Cont, m*) n

n* ε Lj (Cont, n*)
 � n* if n = m*

S  otherwise
S Stop.

It is not difªcult to verify that (s1, s2) deªned above is a mixed
strategy equilibrium of G3(T, B, L). In order for player i to increase
his payoff in G0(T) in the event that player j announces a message
m, he must devote T − 1 states to the possibility that j will announce
m. This means that in order to obtain this “small” gain of 2 with
probability 1/(B–2), he has to suffer a “big” loss due to his inability
to respond appropriately to T − 1 other messages (which will be
sent with probability (T − 1)/(B − 2)). ▫

Comment on the Finitely Repeated Prisoner’s Dilemma
The idea behind G3 originated in Neyman (1985), which analyzes
the ªnitely repeated Prisoner’s Dilemma. Neyman considers a
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machine game associated with the T-ªnitely repeated Prisoner’s
Dilemma, in which each player can use a machine with no more
than B(T) states. If B(T) is polynomial in T and T is large enough,
then the game has a mixed strategy equilibrium outcome that is
“close” to the cooperative outcome. The strategic idea behind the
construction of the equilibrium is similar to that just discussed. In
Neyman’s game, there are no explicit messages; instead, players use
the language of the moves in the game. In the repeated Prisoner’s
Dilemma (as for any other 2 × 2 matrix game), one can encode K
messages by strings of actions C or D of length log2K. The equilib-
rium starts with a relatively short play in which players use actions
to send and conªrm messages. Conditional on this phase of com-
munication “going well,” the players play cooperatively in (the
relatively long) remainder of the game; in case a player does not
repeat the message sent to him, then all players switch to playing
D repeatedly.

I ªnd it artiªcial that players use actions as a language to encode
messages. In contrast, in G3(T, B, L) there is no way to encode
messages by using actions (any Stop action halts the game); instead,
messages are added directly to the game, which allows the “ex-
hausting the ability to count” strategy.

9.6 The �-Equilibrium Approach: A Deviation Is Costly

Finally, let us discuss another approach, the ªrst attempt to resolve
ªnite horizon paradoxes on the basis of bounded rationality con-
siderations. In this approach, a player who is used to a certain
pattern of behavior (equilibrium behavior) needs a “heavyweight”
reason to make a change. A good reason to deviate is not just the
existence of a positive gain from deviation (as is assumed by the
concept of Nash equilibrium), but also the potential gains being
above the cost of change. This may reºect the cost of training agents
who carry out the strategy, the time it takes for the player to adjust
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to the change, or the emotional cost required to deviate from con-
vention. According to this approach, players are able to calculate
the expected gain from a change and compare it to the cost of
change, ε > 0.

This discussion motivates the deªnition of an ε-equilibrium as a
pair of strategies (s1, s2) such that for any player i, the optimal
response to sj does not yield a payoff that is more than ε higher
than the payoff he obtains by using the strategy si. Obviously, any
Nash equilibrium is also an ε-equilibrium, whatever ε is.

Returning to G0(T), a small ε (“small” relative to the maximum
amount of payoffs that can be accumulated in the game) is sufªcient
to sustain non-equilibrium modes of behavior. Regardless of the
length of the game, no player can gain more than 2 from any
deviation from (CONT, CONT). Thus, for any ε ≥ 2 and for all T,
the pair (CONT, CONT) (as well as many other pairs of strategies)
is an ε-equilibrium of G0(T).

This approach does not provide a persuasive explanation for the
exhibited paradoxical behavior. Note that the same ε justiªes the
ε-equilibrium (CONT, CONT) independently of T. The game G0(1)
is the Prisoner’s Dilemma, in which Stop is the dominating strategy.
Yet, it is an ε-equilibrium (for ε ≥ 2), as for any other game G0(T).

9.7 Conclusion

In my opinion, none of the approaches presented in this chapter
resolves the ªnite horizon paradoxes. The “resolutions” suggested
by G1 and G2 can be summarized as follows: If it is too costly or
impossible to count up to T (the length of the game), then the
paradox “disappears.” I disagree with the claims made in some of
the literature that a game like G3 resolves the ªnite horizon para-
doxes. The idea of G3 is intriguing, but I doubt that the behavior in
G0(T), which is not predicted by the game theoretic equilibrium
concept, can be attributed to the players’ need to be involved in an
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activity besides counting. Even in the absence of complexity con-
straints, even if the players have all the time and talent required to
analyze the situation, and even if T is “not large,” I doubt that they
would stop the game immediately. It seems that the real problem
is that whereas a proof by induction is a standard tool in mathe-
matics, it is not part of routine human reasoning. Players in ªnite
horizon games employ different procedures. What these procedures
are remains, in my opinion, one of the more exciting research tasks.

9.8 Bibliographic Notes

The chapter is based on Rubinstein (1987). The game G3 follows
Neyman (1985); its presentation here is in the spirit of Zemel (1989).

For an introduction to the “ªnite horizon game paradoxes,” see
Luce and Raiffa (1957), Rosenthal (1982), and Selten (1978).

The concept of ε-equilibrium was suggested by Radner in the
1970s, and his paper on the subject was ªnally published in Radner
(1986).

9.9 Projects

1. Innovative Read Ben-Porath (1993). Find a simpler two-player machine game
that will have the property that in equilibrium a player with a larger number of
available states does better than the other player.

2. Reading Compare the approach in this chapter with the way that Kreps, Mil-
grom, Roberts, and Wilson (1982) try to resolve the ªnite horizon paradox.
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10 Computability
Constraints in Games

10.1 Introduction

This book is devoted to the issue of modeling bounds on rationality.
The bounds we tried to model in the previous chapters emerge from
the fact that rational behavior requires “costly” or “complicated”
operations. But, as we know, not every task that can be described
in words can be executed by what we perceive to be a computing
machine. Thus, one may suspect that even if there were no compu-
tational costs, bounds on the ability to pursue the rational man
paradigm exist because of fundamental computational “impossi-
bilities.” In this chapter, we brieºy touch upon this issue.

In order to focus our discussion, consider the Battle of the Sexes:

 a  b

a 2, 1 0, 0

b 0, 0 1, 2

Based merely on the information included in the strategic game,
little can be said about the “rational” actions of player 1. Player 1
needs to know how player 2 analyzes the game in order to make
any sensible choice. For example, if player 1 knows that player 2 is
a “demanding” player who always “goes for the highest payoff,”
it would be best for player 1 to play b. However, if player 1 knows



that player 2 is “demanding” only when playing against a “weak”
player, the rational action to be taken by player 1 would depend on
player 1’s beliefs of how player 2 evaluates player 1’s character. The
idea that a player’s rational choice requires knowledge of the type
of opponent he faces (and not just the preferences of that oppo-
nent) is applicable even for games with a unique equilibrium. For
example:

 a  b

a 2, 1 0, 0

b 0, 3 1, 2

For player 1 to conclude that he should play a, he has to know that
player 2 is a player who does not choose a dominated strategy.

The arena in which we will examine the computability con-
straints is that of a strategic game where each player fully “knows”
his opponent. Using game-theoretical terminology, we will refer to
the identity of a player as his “type.” By this we have in mind a
mode of behavior like, “be nice with nice players and aggressive
with players who are not nice.” We will assume that when a player
calculates his choice, the opponent’s type is what Binmore (1987)
has described as “written on his forehead.” This does not mean that
the player necessarily uses the entire description of the opponent
in his deliberation, but he has access to all the details. On the other
hand, we will not assume that a player has access to the description
of himself. This assumption does not alter the essence of the obser-
vations that we will make, but it seems to me that to assume this
will be less natural.

What is “a full description of a player” in our context? We cer-
tainly want there to be a type tx who plays x independently of his
knowledge of the other player’s type. But we also want there to be
a type who plays y whenever he sees a type tx player and plays z
in case he meets another type. We quickly realize that the naive
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deªnition of a type leads to a huge set. Furthermore, it is impossible
to think about a type as if it were just any response function that
arbitrarily assigns values to any type he plays against. If it were,
the cardinality of the set of types would be the power of its own
cardinality, which is of course impossible. Instead, we will think
about a type as an algorithm that receives the ªnite description of
the opponent’s algorithm as input and produces an action as
output.

The assumption that a player knows the other player’s type is
very strong. Note that this is not the type of “knowledge” we have
in equilibrium, where a player “knows” the equilibrium behavior
of the other players, probably on the basis of observations of a
steady state situation. Here, a player is assumed to recognize the
other player’s algorithm.

What does it then mean to compute? This issue was a major topic
of research in mathematics during the twentieth century. Common
to the formal suggestions is the view that a computation is a se-
quence of simple operations, performed according to some ªnite
set of commands, and using some “working space” (whether on a
tape, pieces of paper, and so on) in which memory can be stored
during the course of the computation. The operations are of the
following type: reading symbols written in one of the sites in the
working space, replacing one symbol with another, and moving
from one site in the working space to another. The commands
instruct the computing device what to do in the working space and
how to move from one site to another.

The following is a version of probably the most famous formali-
zation of “computation”: the model of a Turing Machine. Imagine
a tape consisting of an inªnite number of discrete cells with a left
end. In each of the cells, one symbol, taken from among a ªnite set
of symbols S, can be written. The input appears, at the start of the
machine’s operation, on the left side of the tape. The machine works
like a ªnite automaton: It has a ªnite set of states Q (a subset of the
countable set {q0, q1, q2 . . . }). The state q0 is the initial state, and
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F ⊆ Q is the set of terminal states of the machine. The transition
function of the machine assigns to each pair (q, s) ∈ Q × S a triple
(q′, s′, d) where q′ ∈ Q is the next state of the machine, s′ ∈ S is the
symbol it writes on the tape cell in place of s, and d ∈ {L, R} is the
direction that the head moves on the tape. The machine’s operation
starts from the initial state, where the machine’s head is on the
tape’s left end. The machine stops as soon as it reaches one of the
states in F. Given an input, a machine may not stop. When m is a
machine and x is an input, we denote by m(x) the output of the m
if it stops.

Note that the set of machines is countable. Actually, it is “effec-
tively denumerable” in the sense that we can deªne an algorithm
that will list all possible machines with no repetitions.

Many alternative deªnitions of computation have been suggested
in the literature. A fascinating fact about the different deªnitions is
that all of them have been shown to be equivalent. This is so striking
that we feel that this formalization is indeed the “right” one.
Church’s Thesis states that the formal model of the Turing Machine
indeed captures the intuition about what a calculation is. It has led
many researchers to believe that every algorithm described in daily
language can be translated into any of the suggested formal models.
This persuasion is so strong that some authors even ªnd that the
formal proofs in this area, which are typically long and tedious, are
redundant and that one can make do with verbal proofs. I will abide
by that practice, although, I usually believe that “models have to
be complete” and that “proofs have to be proofs.” Therefore, in the
next section, only intuitive arguments are made. For a proper un-
derstanding of the material, the reader is urged to consult one of
the many excellent books available on the subject.

10.2 Informal Results on Computability

Following are several results that are important for the basic appli-
cation of computability constraints to the game theoretical setting.
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Result 1: The Existence of a Machine That Recognizes Itself

Is there a machine that recognizes itself? We look for a machine m*
that halts with an output say, C, whenever the input is a description
of itself and halts with a different output say, D, whenever the input
is not m*. Note the subtlety of the question. The machine cannot
simply compare the input with m* because the description of m* is
not given to m* as a part of the input. The machine m* also cannot
simply compare the input to a text written within it because the full
description of the machine includes more symbols than this text.
Thus, we need a more innovative structure. The following algo-
rithm, described plainly, fulªlls this task:

Print C and stop if the following fact is true and print D and stop
otherwise: the input before and after the third appearance of the
word “is” is Print C and stop if the following fact is true and print
D and stop otherwise: the input before and after the third appear-
ance of the word “is.”

An alternative description of the program:

1. Write this on the tape:

2. Verify that the other machine has four commands, the last
three being identical to the text on the tape.

3. Check whether command 1 starts with the text “Write this on
the tape,” followed by the text on the tape.

4. If the answer to both commands 2 and 3 are positive, print C;
otherwise print D.

2. Verify that the other machine has four commands, the last three
being identical to the text on the tape.

3. Check whether command 1 starts with the text “Write this text
on the tape,” followed by the text on the tape.

4. If the answer to both commands 2 and 3 are positive, print C;
otherwise print D.
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Thus, the circularity can be broken and a machine can recognize
itself!

Result 2: The Existence of a Machine That Imitates All Machines

Is there a machine m* that, whenever it receives as input a pair (m,
x), where m is a description of a machine and x is an arbitrary string
of symbols, produces the same output that machine m produces if
it receives the input x? That is, we are looking for a machine m*
where m*(m, x) halts iff m(x) halts and, if so, m*(m, x) = m(x). Note
that we do not require that m* halt with some special symbol when
m(x) does not halt.

Such a machine m* indeed exists, and is called a universal ma-
chine. Note that the description of the operation of a machine is
algorithmic and can be described by a ªnite set of instructions to
be followed one by one. The basic idea of the construction of a
universal machine is that the machine will read the description of
m and will use the algorithm that describes its operation to compute
its output for the input x.

Result 3: A Machine That Predicts the Outcome of Any Machine
Playing Against It

The universal machine m*, described in Result 2, can calculate, for
any m, the output m(m*) if it gets m* as input as well. We will now
see that a machine exists that can calculate the response of any
machine to its own description without getting its own description
as an input. That is, we are interested in the construction of a
machine m* that for every machine m will stop if and only if m(m*)
stops and will give the same result as an output. The machine gets
m as input. Then it goes through the list of machines (as was
mentioned, an effective denumeration of the set of machines exists)
until, using the idea of Result 1, it recognizes itself, m*. Finally it
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implements the universal machine, described in Result 2, to pro-
duce the output that the input machine, m, produces with the
input m*.

Result 4: No Machine Predicts Whether a Machine Halts on
Receiving It as an Input

The universal machine m, described in Result 3, does not stop at
input m′ if m′(m) does not stop. There is no machine m* that for
every machine m determines whether machine m stops when it
receives the input m*. To see this assume, by contradiction, that such
an m* exists. Using the diagonalization idea, construct a machine
m′ satisfying that for any input m, it calculates m*(m); if the output
is “it stops,” the machine m′(m) does not stop, and if the output
m*(m) is “it does not stop,” m′(m) does stop. When m′ gets as
input m*, it stops iff m* predicts that m′ does not stop!

Result 5: A Machine That Is Never Correctly Predicted

We are looking for a machine m′ that will have the property that
whenever m(m′) stops, m′(m) will stop with a different output. The
machine will use some denumeration of all the machines. The
machine m′ will go through the machines until it recognizes itself,
and then will use the universal machine m* on the input (m,m′) to
predict m′(m). If the calculation of m′(m) reaches a ªnal state, it will
halt, but not before changing the output.

10.3 Is There a “Rational Player”?

We are ready to apply the previous section’s results, taken from the
computability literature, into a game theoretic context. To recapitu-
late, our main goal in this chapter is to identify the bounds on
rationality emanating from the computability constraints. We will
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focus on a two-player ªnite strategic game G; the scenario we have
in mind is one where the input received by a machine is the de-
scription of the other machine, and the output of a player’s machine
determines the player’s action.

Naively, one might say that in order to be “rational” in a game,
player 1 has to ªrst calculate the output of player 2’s machine and
then takes the best response to player 2’s action. However, if player
2 does the same, namely, tries to calculate player 1’s output, the
calculation enters an inªnite loop. It may be that a rational action
can be arrived at differently, without player 1’s machine ªrst calcu-
lating player 2’s choice. Because one machine gets the description
of the other machine as input, it might be that a machine can
calculate the best response in another fashion.

Discussing the question of rationality in a game where a player
uses a machine to compute his action requires spelling out one more
critical detail. Recall that a machine may never halt, or may halt
with an output that does not match any of the alternatives. This
creates a problem because the deªnition of a game requires that
each player take an action. However, the standard model of a game
does not specify any of the actions as a “default” action. Thus, we
have to enrich the game model and to specify the action a player
takes in case the machine does not halt or if it stops with an output
that does not ªt any of the available actions.

Henceforth, we adopt the assumption that each player i has one
action, di, that is player i’s default action. Whenever the machine
does not produce a “legitimate” output, the player will play di. This
is an arbitrary assumption. The need to adopt such an assumption
demonstrates once again that the model of a game does not include
details essential for including the deliberation phase within the
analysis.

The results described in the previous section lead us to conclude
that the existence of a rational player depends on the game to be
played. Of course, if the game has a dominating strategy, a rational
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player does indeed exist. In less “obvious” games the existence of
a rational player may also depend on the “default action.”

In the Battle of the Sexes, if the default action of both players is
b, then the machine m*, described in Result 3, has the property that
for any machine m, it yields an action that is a best response. It halts
with the output a if and only if the other machine halts with the
output a; it halts with the output b if m(m*) halts with the output b.
In any case where m(m*) does not halt or produces a “faulty output”
(output that is not the name of a strategy), m*(m) does the same
and both play b.

The generalization of this argument is the following observation:
Let G be a two-player strategic game with default actions d1 and d2

so that (d1, d2) is a Nash equilibrium. Then, each player i has a
machine mi* so that for any machine mj, the action resulting from
mi*(mj) is a best response against the action resulting from mj(mi*).

Consider however the game

 a  b

a 3, 3 1, 2

b 1, 1 0, 0

c 0, 2 2, 0

with di = b for both i. In order for m1 to be a machine that always
produces a best response, we need m1(m2) = a if m2(m1) = a, and
m1(m2) = c whenever m2(m1) either does not stop or stops with an
output different from a (which may be either the action b or a faulty
output). However, similar to Result 5, we can construct a machine
m2 that will confuse m1: Whenever m1(m2) = a, it will produce
m2(m1) = b, and whenever m1(m2) = c, the output m2(m1) will be a.
The machine m1 will not produce a best response against ma-
chine m2.

Thus, the existence of a machine that chooses for one player a
best response to any machine of his opponent may not exist. In the
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Battle of the Sexes with different default actions, there is no machine
that calculates a best response to all opponents’ possible machines,
but when the two default actions coincide, such a machine exists.

In any case, I doubt that the nonexistence of a machine that is
always “rational” validates the bounded rationality perspective.
The simpler limitations on time, size of machine, and ability to
make computations and observations drive the interesting difªcul-
ties encountered when using the rational man paradigm.

10.4 Turing Machine Game

Compare these three possible justiªcations for playing C in the
Prisoner’s Dilemma:

1. “I play C if and only if my opponent plays C.”

2. “I play C because if I do not play C, my opponent will play D.”

3. “I play C if and only if my opponent is like me.”

The ªrst two considerations seem to be problematic. The considera-
tion, “I play C if and only if my opponent plays C,” is not algo-
rithmic and does not stipulate a unique action when the other
player uses the same rule. The second consideration requires that
each player knows the intentions of his opponent which depends
on the player’s action. The discussion in this section implies that
nothing is “illogical” in consideration (3).

In the spirit of Chapters 8 and 9, for a given two-player game G
we can deªne a machine game where each player i has to choose
a machine mi, which gets the description of the other player’s
machine, mj, as an input, and selects the G-action mi(mj). By choos-
ing a machine, a player actually selects a response function to the
machine chosen by his opponent. The response is not a response to
the action taken but rather to the entire description of the opponent.
In the previous section we considered rationality in the level of the
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G-action; here we think about rationality in the machine game in
the “machine-level.”

Let G be the Prisoner’s Dilemma. By Result 1, there is a machine
m* that plays C if and only if its opponent uses m* as well. Thus,
the pair of machines (m*, m*) is an equilibrium of the machine game
that yields the G-outcome (C, C) even though the action D is the
dominating action in the game G.

It is easy to generalize this observation to an arbitrary game, G.
Recall the deªnition of an enforceable outcome of G used in Chap-
ter 8: (a1

∗, a2
∗) is enforceable if, for each player i, there is an action of

player j, pj
∗ such that for all ai, the outcome (pj

∗, ai) is no better for
player i than the outcome (a1

∗, a2
∗). One can show (see Project 2) that

any enforceable outcome is an equilibrium outcome of the machine
game.

10.5 Bibliographic Notes

From the many introductory books on computability, I strongly
recommend Boolos and Jeffrey (1989) and Cutland (1980).

Many of the ideas in this chapter appeared in Binmore (1987) and
Anderlini (1990). The presentation of the “self-recognizing” ma-
chine follows Howard (1988); see also McAfee (1984).

10.6 Projects

1. Exercise Build two Turing machines that will execute the operations of adding
two natural numbers and of multiplying two natural numbers where the set of
symbols on the tape includes only blanks and “1’s” and a number n is represented
by n + 1 successive 1’s.

2. Exercise Explain the construction of two machines, m1
∗ and m2

∗, that satisfy the
condition that for each i, mi

∗(mj) always halts with the output x if mj = mj
∗ and with

the outcome y if mj ≠ mj
∗.

3. Innovative Analyze the “two drivers approaching a narrow bridge scenario”
from the point of view of the analysis in this chapter.
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4. Innovative Think about a game-theoretic setup in which Result 4 would be used.

5. Reading Read Anderlini and Felli (1994), which explores the extent to which
incompleteness of contracts can be attributed to computability constraints. Form an
opinion whether the computability constraints indeed explain the widespread ex-
istence of incomplete contracts.

6. Reading Read Rabin (1957) and explain the claim that “there are actual win-lose
games that are strictly determined for which there is no effectively computable
winning strategy.”
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11 Final Thoughts

11.1 Simon’s Critique

At this stage, the reader may justiªably wonder about the place of
this book’s subject within economic theory, and probably has cri-
tiques of the material presented. Herbert Simon, who was kind
enough to read a preliminary version of the book and to provide
me with comments, may have anticipated some of the reader’s
critiques. As he puts it, he has “much to disagree with.” I am sure
it would be useful for the reader, after reading the book, to listen
to the objections of the man who pioneered the ªeld of “bounded
rationality.” In the next section, I will take the opportunity to try to
respond to the critics by pointing out differences in our views about
“what economic theory is about.”

Simon’s objections can be summarized in three points.

1. The models discussed here originate from an “armchair posi-
tion” and lack any empirical support, except for some reference to
the experiments by Tversky and Kahneman.

2. I ignore the huge body of literature, mainly in psychology and
artiªcial intelligence, that has succeeded in building models that ªt
human behavior quite well.



3. Economics does not need more models. It should aim toward the
discovery of principles to explain the many phenomena we observe
empirically.

With Herbert Simon’s kind permission, I will use his own words to
elaborate. The following are excerpts from his letter, addressed to
me, dated December 2, 1996.

Lack of Empirical Support

Referring to von Neumann and Morgenstern’s The Theory of Games
and Economic Behavior, Herbert Simon says: “Although I saw the
great importance of the book, the lesson I drew from it was quite
different, I think, from the lesson drawn by most game theorists. I
concluded that the book’s great contribution was to show that the
whole concept of rationality became irremediably ill-deªned when
the possibility of outguessing was introduced, and that we must
adopt some quite different framework and methodology to explain
behavior under these conditions.

”Now I continue to have the same problem with the ingenious
games that you describe in your lectures as I had with the original
exposition of n-person games. Aside from the use you make of the
Tversky-Kahneman experiments, for which I applaud you and
them, almost the only reference to empirical matters that I detect
in your pages is an occasional statements like “a casual observa-
tion” and “the phenomenon exhibited here is quite common.”

“My training in science has installed in me a knee-jerk response
to such statements. I ask automatically: ‘How do you know’? ‘What
evidence can you provide to show that this is true’? Long experi-
ence in the natural sciences, both the more mathematized ones like
physics and the more qualitative ones like biology, has shown that
casual empiricism does not provide a ªrm foundation for the theo-
ries that ªt the facts of the real world. Facts do not come from the
armchair, but from careful observation and experimentation.”
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Neglecting the Literature

“In your opening chapter, you are very generous in crediting me
with a major role in calling the attention of the economics profes-
sion to the need to introduce limits on human knowledge and
computational ability into their models of rationality. (The idea, by
the way, emerged not from speculation but from some very concrete
observations I made on budgeting processes in the city government
of Milwaukee.) But you seem to think that little has happened
beyond the issuance of a manifesto, in the best tradition of a Mexi-
can revolution. And you mainly propose more model building as
the way to progress. You show no awareness of the vast amount of
research (apart from the work of Tversky) that has been done (and
mostly published in psychological and artiªcial intelligence jour-
nals) since the 1950s to provide empirical evidence about the phe-
nomena of human decision making and problem solving (and
thinking in general). Nor do you refer to cognitive psychology’s
considerable success in constructing theories from that evidence in
the form of computer programs that demonstrably simulate in
considerable detail . . . a wide range of both simple and complex
human behaviors. Little of the behavior that has been studied is
explicitly economic, but that provides no excuse for ignoring its
relevance to economic analysis.

”Nor can it be objected that bodies of facts are useless without
theoretical analysis, because most of these facts have now been
embedded in (explained by?) fully formal theories that take the
shape of computer programs (i.e., systems of non-numerical differ-
ence equations). For mathematicians, the unhappy detail is that
these equations are almost never solvable in closed form, but must
be explored with the help of simulation. But in this, we are no worse
off than contemporary physicists.“

Simon also provides recommended readings on the subject: ”A
non-technical introduction to this literature are Chapters 3 and 4 in
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Simon (1996) and more technical treatments can be found in Simon
(1979) and Newell and Simon (1972).“

Missing the Intention of the Profession

”Using the rubric of ‘bounded rationality’ to expand the arena of
speculation misses the intent of my nagging of the economics pro-
fession. At the moment we don’t need more models; we need
evidence that will tell us what models are worth building and
testing.

“So while I can get lots of fun, and good mathematical exercise,
out of the rich collection of examples expounded in your lectures,
I simply do not see how they lead to the kind of economic theory
that we should all be seeking: a theory that describes real-world
phenomena and begins to unify the description by the demonstra-
tion that a relatively small number of mechanisms (combined with
a large body of knowledge about initial and boundary conditions)
can produce all or most of these phenomena—not all of the phe-
nomena that we can imagine, but those that actually occur.”

11.2 Response

I will start by responding to what seems to me the most crucial
criticism, “missing” the profession’s intentions. I am aware of at
least four different interpretations of economic theory:

1. Models of economic theory are aimed to predict behavior.

2. Models of economic theory are normative, in the sense that they
are supposed to guide the economist in giving advice to economic
agents about what to do.

3. Models of economic theory are exercises intended to sharpen
economists’ intuitions when dealing with complicated situations.
Even if the models do not fully correspond to reality, dealing with
such models is an indirect yet helpful activity.
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4. Models of economic theory are meant to establish “linkages”
between the concepts and statements that appear in our daily think-
ing on economic situations.

Herbert Simon has explicitly assumed the ªrst two views while this
book implicitly follows the fourth. By this approach, microecono-
mists are not prophets or consultants; neither are they educators of
market agents. Economic models are viewed as being analogous to
models in mathematical logic: Those models do not pretend to
predict how people apply the values of truth to the statements of
a natural language, or to provide instructions for their use; neither
do they attempt to establish foundations for teaching “correct think-
ing.” Analogously, by modeling bounded rationality, we try to ex-
amine the logic of a variety of principles that guide decision makers,
especially within interactive systems (markets and games).

Thus, for example, from Hotelling’s “main street” model, we
learn that the desire to attain as large a share of the market as
possible is a force that pushes vendors (or political parties, or the
makers of soft drinks) toward positioning themselves or their prod-
ucts in the center. In real life, the many other motives that inºuence
a vendor’s choice will cause him sometimes not to be located at the
center. It is nonetheless insightful to identify the exact logic that
leads an economist to the conclusion that the desire to maximize
the share of the market leads a vendor to be located at the center.

The crowning point of making microeconomic models is the
discovery of simple and striking connections between concepts
(and assertions) that initially appear remote. Consider, for example,
the link, in the context of zero-sum games, between the maxmin
principle and Nash equilibrium behavior; or between the core allo-
cations and the competitive equilibrium allocations when the num-
ber of traders is “large.”

The view of economic theory as an abstract discussion of models
does not imply that the models are merely mathematical forms to be
evaluated only by esthetics. In economic theory, we are interested
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in a model only if it refers to concepts and considerations that make
sense in the context of social interactions. It is not that the model
has to ªt reality exactly. However, the basic components of the
model have to be stated in a language that is close to the one
actually in use. A model with this approach does not have to be
veriªable in the way models in the sciences must be. Here, the test
is not accomplished by feeding the variables with numbers and
calculating predictions. The test lies in the ability to derive insights
about the concepts dealt with.

In the context of “bounded rationality,” we look for answers to
questions like:

1. What are the relations between different kind of reasoning
procedures?

2. To what extent are standard economic models sensitive to the
existence of elements of bounded rationality?

3. Do procedural elements explain the existence of economic
institutions?

Note that this list is different from what Simon suggests as the
“Bounded Rationality” questions. In a letter dated February 7, 1997,
Simon says: “In my version of bounded rationality we look for
answers to questions like:

1. What are the kinds of reasoning procedures that people actually
use, and why (in terms of knowledge of their psychological
makeup)? What are the effects of social environment and social
history on the procedures used? To what extent are other proce-
dures usable? In what ways does the introduction of computers into
business change these procedures?

2. What are the economic consequences of their using these proce-
dures and not others? In what respects are current economic mod-
els deªcient in the assumptions they make about reasoning
procedures?
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3. In terms of what psychological and social mechanisms can the
existence and structure of economic institutions be explained?”

Let me go back to the ªrst of Herbert Simon’s criticisms: the lack
of empirical evidence to support the assumptions about individu-
als’ behavior. Under the approach that views our investigation as
an inquiry into the “logic of procedural rationality and of the inter-
action between procedurally rational agents,” the test of relevance
is simply the naturalness of the concepts which we study and the
ability to derive, by their use, interesting analytical conclusions.
Thus, the satisªcing procedure of Simon is an interesting concept,
not because it was empirically shown to be popular but because it
sounds like a reasonable ingredient of our decision making. This
by itself justiªes those beautiful studies that draw analytical con-
nections between, for instance, the satisªcing criterion and optimi-
zation when taking search costs into account.

The issue is analogous to the question as to whether we need
empirical evidence to support philosophical investigations. Philoso-
phers usually do not make empirical or experimental inquiries
about the contents of the notions (such as “rational,” “good,” and
“fair”) they investigate, although they do bring forth arguments
based on the way these concepts are used in practice.

Overall, I agree with Herbert Simon that the departures from the
rational man paradigm have to be based on some empirical (or
experimental) observations about the basic motives that drive de-
cision makers. The number of deviations from a fully “rational”
model is so large that we must content ourselves with the study of
extensions that make more sense. This underlies the relevance of
some of the cognitive psychological literature, especially work that
explicates the clear and simple motives that often appear in real
decision making. For the purpose of the analysis we are making
here, however, we need only conªrmation of our speculations about
the basic ingredients; we do not require detailed, complicated mod-
els of the type that the artiªcial intelligence literature provides.

Final Thoughts 193



Here, I have neglected this very interesting literature not only
because of my ignorance, and not solely due to considerations
related to conªning myself to the type of methods I have used, but
also because those models do not share a methodological tradition
with this book. Those models may be capable of producing imita-
tions of human behavior, but they are not convenient components
for analytical work.

The economics profession has several legitimate tasks. Not all
economists seek the same goals. The literature surveyed here does
not pretend to predict or advise. The models are perceived as
patterns of views adopted about the world. Given such an ap-
proach, the most one can do is to clarify the concepts we use. But
I do hope that scholars in the ªeld, and especially students, have
found within this book ideas to be more deeply pursued.
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