Eco 501, Solutions for the Midterm (November 2001)

- 1. (a) The utility function is $\alpha v(x) + (1 \alpha)w(x)$. It is concave as a convex combination of concave functions, thus it is quasi-concave so the induced preference is convex.
 - (b) Let x(p, w) denote the demand and f, f_v and f_w the indirect utility functions. Then, $f(p, w) = \alpha v(x(p, w)) + (1 - \alpha)w(x(p, w)) \le \alpha f_v(p, w) + (1 - \alpha)f_w(p, w)$.
 - (c) Suppose that v and w are continuous and monotonic so that f, f_v and f_w are strictly increasing and continuous in w. Then for given (p, w), by 1(b), there is a unique $\beta^*(p, w)$ that satisfies:

$$f(p, w) = \alpha f_v(p, w - \beta^*(p, w)) + (1 - \alpha) f_w(p, w - \beta^*(p, w)).$$

The demand for this good is 1 if its price is below $\beta^*(p, w)$ and 0 otherwise.

- 2. (a) Let us say that \succeq_1 is close to \succeq_0 more than \succeq_2 is close to \succeq_0 if $x \succeq_2 [\succ_2] y$ and $x \succeq_0 [\succ_0] y$ implies $x \succeq_1 [\succ_1] y$.
 - (b) Let $0 \le t \le 1$. If $U_2(x) \ge [>] U_2(y)$ and $U_0(x) \ge [>] U_0(y)$, then $U_1(x) = tU_2(x) + (1-t)U_0(x) \ge [>] tU_2(y) + (1-t)U_0(y) = U_1(y)$. So the preference induced by U_1 is close to the preference induced by U_0 more than the preference induced by U_2 is close to the preference induced by U_0 .
 - (c) No, let K = 3, $U_0(x) = \min\{x_1, x_2\}$ and $U_2(x) = \min\{x_2, x_3\}$ and let U_1 be defined as in 2(b) with $t = \frac{1}{2}$. Then for p = (1, 1, 1) and w = 1, the demands associated with U_0 , U_1 and U_2 are $x^0 = (\frac{1}{2}, \frac{1}{2}, 0)$, $x^1 = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$ and $x^2 = (0, \frac{1}{2}, \frac{1}{2})$ respectively. By 2(b), the preference induced by U_1 is close to the preference induced by U_0 more than the preference induced by U_2 is close to the preference induced by U_0 , but $|x_2^1 x_2^0| = \frac{1}{6} > 0 = |x_2^2 x_2^0|$.
- 3. (a) No, let $X = \{x, y, z, w\}$ with $x \succ y$, $z \succ w$ and $class(x) = class(y) \neq class(z) = class(w)$. Then, $C(\{x, y, z\}) = x$ whereas $C(\{x, z, w\}) = z$ violating condition (*).
 - (b) No, let us say that a choice function C satisfies the property γ , if $x \notin A$ and $x = C(\{x\} \cup A)$ implies $x = C(\{x\} \cup A \setminus \{C(A)\})$. Now assume that C is the choice function induced by the procedure explained above, $x \notin A$ and $x = C(\{x\} \cup A)$. Let y = C(A). Since y = C(A), class(y) is the most populated class with the highest class number in A. So if class(x) = class(y), then this is the most populated class with the highest class number in $\{x\} \cup A \setminus \{y\}$. Since $x = C(\{x\} \cup A)$, class(x) is the most populated class with the highest class number in $\{x\} \cup A$. So if $class(x) \neq class(y)$, then class(x) is the most populated class with the highest class number in $\{x\} \cup A \setminus \{y\}$. In either case, class(x) is the most populated class with the highest class number in $\{x\} \cup A \setminus \{y\}$. So $x = C(\{x\} \cup A)$ implies $x = C(\{x\} \cup A \setminus \{y\})$. Thus, C satisfies property γ which is clearly not satisfied by all choice functions.