Eco 501, Solutions for the Midterm (November 2001)

1. (a) The utility function is $\alpha v(x)+(1-\alpha) w(x)$. It is concave as a convex combination of concave functions, thus it is quasi-concave so the induced preference is convex.
(b) Let $x(p, w)$ denote the demand and f, f_{v} and f_{w} the indirect utility functions. Then, $f(p, w)=\alpha v(x(p, w))+(1-\alpha) w(x(p, w)) \leq \alpha f_{v}(p, w)+(1-\alpha) f_{w}(p, w)$.
(c) Suppose that v and w are continuous and monotonic so that f, f_{v} and f_{w} are strictly increasing and continuous in w. Then for given (p, w), by $1(\mathrm{~b})$, there is a unique $\beta^{*}(p, w)$ that satisfies:

$$
f(p, w)=\alpha f_{v}\left(p, w-\beta^{*}(p, w)\right)+(1-\alpha) f_{w}\left(p, w-\beta^{*}(p, w)\right) .
$$

The demand for this good is 1 if its price is below $\beta^{*}(p, w)$ and 0 otherwise.
2. (a) Let us say that \succsim_{1} is close to \succsim_{0} more than \succsim_{2} is close to \succsim_{0} if $x \succsim_{2}\left[\succ_{2}\right] y$ and $x \succsim_{0}\left[\succ_{0}\right] y$ implies $x \succsim_{1}\left[\succ_{1}\right] y$.
(b) Let $0 \leq t \leq 1$. If $U_{2}(x) \geq[>] U_{2}(y)$ and $U_{0}(x) \geq[>] U_{0}(y)$, then $U_{1}(x)=t U_{2}(x)+$ $(1-t) U_{0}(x) \geq[>] t U_{2}(y)+(1-t) U_{0}(y)=U_{1}(y)$. So the preference induced by U_{1} is close to the preference induced by U_{0} more than the preference induced by U_{2} is close to the preference induced by U_{0}.
(c) No, let $K=3, U_{0}(x)=\min \left\{x_{1}, x_{2}\right\}$ and $U_{2}(x)=\min \left\{x_{2}, x_{3}\right\}$ and let U_{1} be defined as in $2(\mathrm{~b})$ with $t=\frac{1}{2}$. Then for $p=(1,1,1)$ and $w=1$, the demands associated with U_{0}, U_{1} and U_{2} are $x^{0}=\left(\frac{1}{2}, \frac{1}{2}, 0\right), x^{1}=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$ and $x^{2}=\left(0, \frac{1}{2}, \frac{1}{2}\right)$ respectively. By $2(\mathrm{~b})$, the preference induced by U_{1} is close to the preference induced by U_{0} more than the preference induced by U_{2} is close to the preference induced by U_{0}, but $\left|x_{2}^{1}-x_{2}^{0}\right|=\frac{1}{6}>0=\left|x_{2}^{2}-x_{2}^{0}\right|$.
3. (a) No, let $X=\{x, y, z, w\}$ with $x \succ y, z \succ w$ and $\operatorname{class}(x)=\operatorname{class}(y) \neq \operatorname{class}(z)=$ $\operatorname{class}(w)$. Then, $C(\{x, y, z\})=x$ whereas $C(\{x, z, w\})=z$ violating condition $(*)$.
(b) No, let us say that a choice function C satisfies the property γ, if $x \notin A$ and $x=C(\{x\} \cup A)$ implies $x=C(\{x\} \cup A \backslash\{C(A)\})$. Now assume that C is the choice function induced by the procedure explained above, $x \notin A$ and $x=C(\{x\} \cup A)$. Let $y=C(A)$. Since $y=C(A), \operatorname{class}(y)$ is the most populated class with the highest class number in A. So if $\operatorname{class}(x)=\operatorname{class}(y)$, then this is the most populated class with the highest class number in $\{x\} \cup A \backslash\{y\}$. Since $x=C(\{x\} \cup A)$, $\operatorname{class}(x)$ is the most populated class with the highest class number in $\{x\} \cup A$. So if $\operatorname{class}(x) \neq \operatorname{class}(y)$, then $\operatorname{class}(x)$ is the most populated class with the highest class number in $\{x\} \cup A \backslash\{y\}$. In either case, $\operatorname{class}(x)$ is the most populated class with the highest class number in $\{x\} \cup A \backslash\{y\}$. So $x=C(\{x\} \cup A)$ implies $x=C(\{x\} \cup A \backslash\{y\})$. Thus, C satisfies property γ which is clearly not satisfied by all choice functions.

