Course: Microeconomics, New York University
 Lecturer: Ariel Rubinstein
 Exam: Mid-term, October 2004

A Suggestive Solution

Question 1

a) No. Consider the case $X=\left\{x_{1}, x_{2}, x_{3}\right\}, x_{1} \succ x_{2} \succ x_{3} \succ x_{1}$. Take the forward procedure.

Let $A=\left\{x_{2}, x_{3}\right\}, B=\left\{x_{1}, x_{2}, x_{3}\right\}$. Then by forward procedure $B \rightarrow\left\{x_{1}, x_{3}\right\} \rightarrow x_{3}$,
$A \rightarrow\left\{x_{2}, x_{3}\right\} \rightarrow x_{2}$. For backward procedure take $A=\left\{x_{1}, x_{3}\right\}, B=\left\{x_{1}, x_{2}, x_{3}\right\}$. Then by backward procedure $B \rightarrow\left\{x_{1}, x_{2}\right\} \rightarrow x_{1}, A \rightarrow x_{3}$.
b) The example above for the set B.
c) Transitivity.

If transitivity does not hold then there is a cycle on three elements $\{a, b, c\}$ with $n(a)<n(b)<n(c)$. It must be that either $a \succ b \succ c \succ a$ or $a \succ c \succ b \succ a$.

In the first case, given the set $\{a, b, c\}, a$ is chosen by the forward procedure and c by the backwards procedure.

In the second case, given the set $\{a, b, c\}, c$ is chosen by the forward procedure and a by the backwards procedure.

If transitivity holds then for any set A both procedures yield the most preferred element of the set A which is well defined in this case.

Question 2

a) The consumer's problem.

$$
\max _{\left(x_{1}, x_{2}\right)} u\left(x_{1}, x_{2}\right)
$$

s.t. $p\left(x_{1}\right) \cdot x_{1}+x_{2} \leq w$
b) Let $\left(x_{1}^{*}, x_{2}^{*}\right)$ be a solution of the problem. By monotonicity $x_{2}^{*}=w-p\left(x_{1}^{*}\right) x_{1}^{*}$.

Let $z_{1}>x_{1}^{*}$ and $z_{2}=w-p\left(x_{1}^{*}\right) x_{1}$ be a candidate solution of the problem
$\max _{\left(x_{1}, x_{2}\right)} u\left(x_{1}, x_{2}\right)$
s.t. $p\left(x_{1}^{*}\right) \cdot x_{1}+x_{2} \leq w$

The bundle $\left(x_{1}^{*}, x_{2}^{*}\right)$ is feasable in the two problems. It is sufficent to show that $\left(z_{1}, z_{2}\right)$ was also feasible before the modification and therefore cannot yield higher utility then (x_{1}^{*}, x_{2}^{*}).

Since $0<x_{1}^{*}<z_{1}$ we can represent $x_{1}^{*}=\lambda z_{1}+(1-\lambda) 0=\lambda z_{1}$ for some $\lambda \in(0,1)$. By the concavity of the function $C\left(x_{1}\right)=p\left(x_{1}\right) x_{1}$ we have
$C\left(x_{1}^{*}\right)=p\left(x_{1}^{*}\right) x_{1}^{*} \geq \lambda C\left(z_{1}\right)+(1-\lambda) C(0)=\lambda p\left(z_{1}\right) z_{1}$ which implies that
$p\left(x_{1}^{*}\right) z_{1}=p\left(x_{1}^{*}\right) x_{1}^{*} / \lambda \geq p\left(z_{1}\right) z_{1}$ and thus $p\left(z_{1}\right) z_{1}+z_{2}=p\left(z_{1}\right) z_{1}+w-p\left(x_{1}^{*}\right) z_{1} \leq w$.
c1) Let (x_{1}^{*}, x_{2}^{*}) be a solution of the problem
$\min _{\left(x_{1}, x_{2}\right)} p^{\prime}\left(x_{1}\right) x_{1}+x_{2}$
s.t. $u\left(x_{1}, x_{2}\right) \geq u$

The minimal expense for the problem with the price schedule p is not more than $p\left(x_{1}^{*}\right) x_{1}^{*}+x_{2}^{*} \leq p^{\prime}\left(x_{1}^{*}\right) x_{1}^{*}+x_{2}^{*}=e\left(p^{\prime}, u\right)$ thus $e(p, u) \leq e\left(p^{\prime}, u\right)$
c2) Let $\left(x_{1}^{*}, x_{2}^{*}\right)$ be the solution to the problem with the price schedule $\lambda p+(1-\lambda) p^{\prime}$. We
have
$e\left(\lambda p+(1-\lambda) p^{\prime}, u\right)=\left(\lambda p+(1-\lambda) p^{\prime}\right)\left(x_{1}^{*}\right) x_{1}^{*}+x_{2}^{*}=\lambda p\left(x_{1}^{*}\right) x_{1}^{*}+\lambda x_{2}^{*}+(1-\lambda) p^{\prime}\left(x_{2}^{*}\right) x_{2}^{*}+(1-\lambda$ $\lambda e(p, u)+(1-\lambda) e\left(p^{\prime}, u\right)$.

Question 3

a) Properties A2-5 are trivially satisfied. For A1 note that if v is a convex function with $v(0)=0$ we have $v(a+b)+v(0) \geq v(a)+v(b)$. (Note that $a=\frac{b-a}{b} 0+\frac{a}{b} b$, $b=\frac{b-a}{b}(a+b)+\frac{a}{b} a$. Therefore $v(a) \leq \frac{b-a}{b} v(0)+\frac{a}{b} v(b), v(b) \leq \frac{b-a}{b} v(a+b)+\frac{a}{b} v(a)$. Thus, $v(b)+v(a) \leq \frac{a}{b}(v(a)+v(b))+\frac{b-a}{b}(v(a+b)+v(0))$, and therefore $v(a)+v(b) \leq v(a+b)+v(0))$.

By induction $v\left(\sum_{k=1}^{K} x_{k}\right) \geq \sum_{k=1}^{K} v\left(x_{k}\right)-K v(0)=\sum_{k=1}^{K} v\left(x_{k}\right)$.
b)

1. all but A1. Let $U\left(x_{1}, \ldots, x_{K}\right)=$ the number of elements in the sequence x which are strictly positive.
2. all but A2. For v convex, strictly increasing, $v(0)=0$ set $U\left(x_{1}, \ldots, x_{K}\right)=\sum_{k=1, . ., K} v\left(x_{k}\right)+v\left(x_{1}\right)$. (the first element in the sequence gets double weight)
3. all but A3. Let v be a decreasing convex function with $v(0)=0$ and let $U\left(x_{1}, \ldots, x_{K}\right)=\sum v\left(x_{k}\right)$. (another example, the average of the positive amounts).
4. all but A4. The preferences induced from the lexicographic preferences over ($\max _{k}\left\{x_{k}\right\}$, number of k with $x_{k}>0$).
5. all but A5. The preferences induced from the lexicographic preferences over $\left(\sum_{k=1}^{K} x_{k},-K\right)$.
