Course:	Microeconomics, New York University
Lecturer:	Ariel Rubinstein
Exam:	Mid-term, October 2004

A Suggestive Solution

Question 1

a) No. Consider the case $X = \{x_1, x_2, x_3\}, x_1 \succ x_2 \succ x_3 \succ x_1$. Take the forward procedure. Let $A = \{x_2, x_3\}, B = \{x_1, x_2, x_3\}$. Then by forward procedure $B \rightarrow \{x_1, x_3\} \rightarrow x_3$, $A \rightarrow \{x_2, x_3\} \rightarrow x_2$. For backward procedure take $A = \{x_1, x_3\}, B = \{x_1, x_2, x_3\}$. Then by backward procedure $B \rightarrow \{x_1, x_2\} \rightarrow x_1, A \rightarrow x_3$.

b) The example above for the set *B*.

c) Transitivity.

If transitivity does not hold then there is a cycle on three elements $\{a, b, c\}$ with n(a) < n(b) < n(c). It must be that either a > b > c > a or a > c > b > a.

In the first case, given the set $\{a, b, c\}$, *a* is chosen by the forward procedure and *c* by the backwards procedure.

In the second case, given the set $\{a, b, c\}$, *c* is chosen by the forward procedure and *a* by the backwards procedure.

If transitivity holds then for any set *A* both procedures yield the most preferred element of the set *A* which is well defined in this case.

Question 2

a) The consumer's problem. $\max_{\substack{(x_1,x_2)\\(x_1,x_2)}} u(x_1,x_2)$ s.t. $p(x_1) \cdot x_1 + x_2 \le w$ b) Let (x_1^*, x_2^*) be a solution of the problem. By monotonicity $x_2^* = w - p(x_1^*)x_1^*$. Let $z_1 > x_1^*$ and $z_2 = w - p(x_1^*)x_1$ be a candidate solution of the problem $\max_{\substack{(x_1,x_2)\\(x_1,x_2)}} u(x_1,x_2)$ s.t. $p(x_1^*) \cdot x_1 + x_2 \le w$

The bundle (x_1^*, x_2^*) is feasable in the two problems. It is sufficient to show that (z_1, z_2) was also feasible before the modification and therefore cannot yield higher utility then (x_1^*, x_2^*) .

Since $0 < x_1^* < z_1$ we can represent $x_1^* = \lambda z_1 + (1 - \lambda)0 = \lambda z_1$ for some $\lambda \in (0, 1)$. By the concavity of the function $C(x_1) = p(x_1)x_1$ we have $C(x_1^*) = p(x_1^*)x_1^* \ge \lambda C(z_1) + (1 - \lambda)C(0) = \lambda p(z_1)z_1$ which implies that $p(x_1^*)z_1 = p(x_1^*)x_1^*/\lambda \ge p(z_1)z_1$ and thus $p(z_1)z_1 + z_2 = p(z_1)z_1 + w - p(x_1^*)z_1 \le w$. c1) Let (x_1^*, x_2^*) be a solution of the problem $\min_{(x_1, x_2)} p'(x_1)x_1 + x_2$ s.t. $u(x_1, x_2) \ge u$ The minimal expense for the problem with the price schedule p is not more than $p(x_1^*)x_1^* + x_2^* \le p'(x_1^*)x_1^* + x_2^* = e(p', u)$ thus $e(p, u) \le e(p', u)$

c2) Let (x_1^*, x_2^*) be the solution to the problem with the price schedule $\lambda p + (1 - \lambda)p'$. We

have

 $e(\lambda p + (1 - \lambda)p', u) = (\lambda p + (1 - \lambda)p')(x_1^*)x_1^* + x_2^* = \lambda p(x_1^*)x_1^* + \lambda x_2^* + (1 - \lambda)p'(x_2^*)x_2^* + (1 - \lambda)\mu(x_2^*)x_2^* + (1 - \lambda)\mu(x_2^*)x_2^$

Question 3

a) Properties A2-5 are trivially satisfied. For A1 note that if v is a convex function with v(0) = 0 we have $v(a + b) + v(0) \ge v(a) + v(b)$. (Note that $a = \frac{b-a}{b}0 + \frac{a}{b}b$, $b = \frac{b-a}{b}(a+b) + \frac{a}{b}a$. Therefore $v(a) \le \frac{b-a}{b}v(0) + \frac{a}{b}v(b)$, $v(b) \le \frac{b-a}{b}v(a+b) + \frac{a}{b}v(a)$. Thus, $v(b) + v(a) \le \frac{a}{b}(v(a) + v(b)) + \frac{b-a}{b}(v(a+b) + v(0))$, and therefore $v(a) + v(b) \le v(a+b) + v(0)$). By induction $v(\sum_{k=1}^{K} x_k) \ge \sum_{k=1}^{K} v(x_k) - Kv(0) = \sum_{k=1}^{K} v(x_k)$.

b)

1. all but A1. Let $U(x_1, ..., x_K)$ = the number of elements in the sequence *x* which are strictly positive.

2. all but A2. For *v* convex, strictly increasing, v(0) = 0 set $U(x_1, ..., x_K) = \sum_{k=1,...,K} v(x_k) + v(x_1)$. (the first element in the sequence gets double weight)

3. all but A3. Let *v* be a decreasing convex function with v(0) = 0 and let $U(x_1, ..., x_K) = \sum v(x_k)$. (another example, the average of the positive amounts).

4. all but A4. The preferences induced from the lexicographic preferences over $(max_k \{x_k\}, number of k with x_k > 0)$.

5. all but A5. The preferences induced from the lexicographic preferences over $(\sum_{k=1}^{K} x_k, -K).$