Solution of the Exam in Micro A 02/2006

Question 1

(a) We show that the following preference relation induces the behavior specified in the question:

$$
u(x)=\left\{\begin{array}{cl}
1+x_{K+1} & \text { if } x>D \\
\min \left(\frac{x_{1}}{d_{1}}, \frac{x_{2}}{d_{2}}, \ldots, \frac{x_{K}}{d_{K}}\right) & \text { otherwise }
\end{array}\right.
$$

where $D=\left(d_{1}, d_{2} \ldots, d_{K}\right)$.
Since $\min \left(\frac{x_{1}}{d_{1}}, \frac{x_{2}}{d_{2}}, \ldots, \frac{x_{K}}{d_{K}}\right) \leq 1$ for all bundles in the relevant domain, whenever the consumer can afford more than D he will choose to purchase the bundle D and spend the rest of his income on x_{K+1}. If he cannot afford more than D then the consumer will behaves according the min function and consume the bundle $t D(t \leq 1)$ (where t is a function of his budget).
(b) We will show that behavior does not induce a continuos preference relation (and in particular does not induce a continuous monotonic and convex preference relation).

According to the consumer's behavior $\left(d_{1}, d_{2}, \ldots, d_{K}, \varepsilon\right) \succ\left(d_{1}, d_{2}, \ldots, d_{K}, 0\right)$ however for every $\delta>0$ $\left(d_{1}-\delta, d_{2}, \ldots, d_{K}, \varepsilon\right) \prec\left(d_{1}, d_{2}, \ldots, d_{K}, 0\right)$ contradicting continuity.

Question 2

Let $x \sim_{i} y$ denote that individual i views x as "the same as" y and $x \nsim i_{i} y$ denote that individual i views x as "not the same as" $y, x \sim y$ and $x \nsim y$ with no index is society's opinion. Let $\left(\sim_{i}\right)_{i=1, \ldots, N}$ be a profile of equivalence relations then an aggregation method is a function $F:\left(\sim_{i}\right)_{i=1, \ldots, N} \rightarrow E$.
(a)

- P: For all $x, y \in X$ and every profile $\left(\sim_{i}\right)_{i=1, \ldots, N}$, if $x \sim_{i} y \forall i$ then $x \sim y$ and if $x \not \varkappa_{i} y \forall i$ then $x \nsim y$.
- I*: For every $a, b, c, d \in X$ and any two profiles $\left(\sim_{i}\right)_{i=1, \ldots, N}$ and $\left(\sim_{i}^{\prime}\right)_{i=1, \ldots, N}$ if for all $i, a \sim_{i} b$ iff $c \sim_{i}^{\prime} d$ then $a \sim b$ iff $c \sim^{\prime} d$.
- Satisfies P but not I*: $F\left(\left(\sim_{i}\right)_{i=1, \ldots, N}\right)$ is the most common equivalence relation among $\left(\sim_{i}\right)_{i=1, \ldots, N}$ (with some tie breaker).

P is satisfied since if all individuals view x as "the same as" y then in particular the most common equivalence relations view x as "the same as" y, thus society views x as "the same as" y (the opposite is true if x is "not the same as" y for all i).

I* is not satisfied: look at the following example: $X=\{x, y, z\}$ Let $\left(\sim_{i}\right)_{i=1, \ldots, 5}$ be $x \sim_{i} y \sim_{i} z$ for
 equivalence relation is that of $i=1,2$ so $x \sim_{i} y$. However for $\left(\sim_{i}^{\prime}\right)_{i=1, \ldots, 5}$ where $\sim_{i}^{\prime}=\sim_{i}$ for $i=1,2$ and $\sim_{i}^{\prime}=\sim_{5}$ for $i=3,4,5$ we have $x \nsim y$, even though $x \sim_{i} y$ iff $x \sim_{i}^{\prime} y$ for all i, contradicting I^{*}.

- Satisfies I* but not P: $F\left(\left(\sim_{i}\right)_{i=1, \ldots, N}\right)$ is $x \sim y \sim z$ for every profile $\left(\sim_{i}\right)_{i=1, \ldots, N}$.

I* is satisfied since $F\left(\left(\sim_{i}\right)_{i=1, \ldots, N}\right)$ is constant for every profile.
P is not satisfied since even if $x \nsim i_{i} y \forall i, x \sim y$ contradicting P .

- Satisfies I* and P: $\forall x, y \in X x \sim y$ iff $x \sim_{i} y \forall i \in G \subset N$.

P is satisfied since if all individuals view x as "the same as" y then in particular $\forall i \in G$ view x as "the same as" y and thus society views x as "the same as" y. If all individuals view x as "not the same as" y then $\exists i \in G$ that views x as "not the same as" y thus society views x as "not the same as" y.

I* is satisfied since in any two profiles $\left(\sim_{i}\right)_{i=1, \ldots, N}$ and $\left(\sim_{i}^{\prime}\right)_{i=1, \ldots, N}$ if for all $i, a \sim_{i} b$ iff $c \sim_{i}^{\prime} d$ we have $a \sim_{i} b$ iff $c \sim_{i}^{\prime} d \forall i \in G$ thus $a \sim b$ iff $c \sim^{\prime} d$.
(c) We will show that if X includes at least three elements, then the only aggregation method which satisfies P and I^{*} is the aggregation method which determines a subset $G^{*} \subseteq N$ such that $x \sim y$ iff $x \sim_{i} y \forall i \in D$.

Define $\Gamma=\left\{G \subseteq N \mid\right.$ for all $x, y \in X$, if for all $i \in G x \sim_{i} y$ and for all $j \notin G x \not \varkappa_{j} y$ then $\left.x \sim y\right\}$. Note that if $G \in \Gamma$ then $G \neq \varnothing$ since $G=\varnothing$ would imply that $x \sim y$ for the profile $\left(\sim_{i}\right)_{i=1, \ldots, N}$ in which $x \nsim i_{i} y \forall i \in N$ contradicting P. Furthermore, Γ is not empty since by $\mathrm{P} N \in \Gamma$.

If $G_{1}, G_{2} \in \Gamma$ then $G_{1} \cap G_{2} \in \Gamma$.
We have to show that for any x, y and for any profile $\left(\sim_{i}^{\prime}\right)_{i=1, \ldots, N}$ for which $x \sim_{i}^{\prime} y$ for all $i \in G_{1} \cap G_{2}$, and $x x_{i}^{\prime} y$ for all $i \in G_{1} \cap G_{2}$ the equivalence relation $F\left(\left(\sim_{i}^{\prime}\right)_{i=1, \ldots, N}\right)$ determines that $x \sim^{\prime} y$. By I^{*} it is sufficient to show that for one pair a and b, and for one profile $\left(\sim_{i}\right)_{i=1, \ldots, N}$ that agrees with the profile $\left(\sim_{i}^{\prime}\right)_{i=1, \ldots, N}$ on the pair $\{a, b\}$, the equivalence relation $F\left(\left(\sim_{i}\right)_{i=1, \ldots, N}\right)$ determines that $a \sim b$. Let $c \neq a, b$. Let $\left(\sim_{i}\right)_{i=1, \ldots, N}$ be a profile satisfying for all $i \in G_{1} \cap G_{2}, a \sim_{i} b \sim_{i} c$, for all $i \in G_{1} \backslash G_{2} a \nsim i_{i} b$ and $a \sim_{i} c$,
for all $i \in G_{2} \backslash G_{1} a \nsim_{i} b$ and $b \sim_{i} c$ and for all $i \in N \backslash\left(G_{1} \cup G_{2}\right) a \not \varkappa_{i} b$ and $b \varkappa_{i} c$. Since $G_{1} \in \Gamma a \sim c$. Since $G_{2} \in \Gamma b \sim c$. By transitivity $a \sim b$.

There exists a unique minimal (with respect to inclusion) non empty subset $G^{*} \in \Gamma$.
Assume there does not exist a unique minimal subset $G^{*} \in \Gamma$. Then there exist two subsets G_{1}, G_{2} $\in \Gamma$ such that $G_{1} \neq G_{2}$ and $\nexists G \in \Gamma$ such that $G \subset G_{1}$ and $\nexists G \in \Gamma$ such that $G \subset G_{2}$. By the previous claim $G_{1} \cap G_{2} \in \Gamma$ and $G_{1} \cap G_{2} \subset G_{1}$ and $G_{1} \cap G_{2} \subset G_{1}$, a contradiction. Furthermore, $G^{*} \neq \varnothing$ since $N \in \Gamma$ and $\varnothing \notin \Gamma$.

If $G \in \Gamma$ then for all $G^{\prime} \supseteq G G^{\prime} \in \Gamma$. Take any $x, y \in X$. Let $\left(\sim_{i}\right)_{i=1, \ldots, N}$ be a profile satisfying for all $i \in G x \sim_{i} y \sim_{i} z$, for all $i \in G^{\prime} \backslash G \quad x \sim_{i} y$ and $x \nsim i_{i} z$ and for all $i \in N \backslash G^{\prime} x \nsim_{i} y, y \nsim i_{i} z$. Since $G \in \Gamma$ $x \sim z$ and $y \sim z$. By transitivity a $x \sim y$ thus $G^{\prime} \in \Gamma$. This implies that for any profile $\left(\sim_{i}^{\prime}\right)_{i=1, \ldots, N}$ for which for all $i \in G^{*} x \sim_{i}^{\prime} y$ then $x \sim^{\prime} y$.

We are left to show that if $x \sim^{\prime} y$ then for all $i \in G^{*}, x \sim_{i}^{\prime} y$. Assume not. Then there exists $i \in$ G^{*} such that $x \nsim i_{\prime}^{y}$. By P we have that $\exists j \in N-\{i\}$ such that $x \sim_{j}^{\prime} y$. Let $G^{\prime}=\left\{j \mid x \sim_{i}^{\prime} y\right\}$ so $i \notin G^{\prime}$ and $G^{\prime} \in \Gamma$. But if $G^{\prime} \in \Gamma$ then $G^{*} \subseteq G^{\prime}$ contradicting $i \in D$.

Question 3

Note that in any equilibrium since the payoff function is linear t_{i} satisfies for all i :

$$
(*) \quad t_{i}=\left\{\begin{array}{cc}
0 & \text { if } v_{i}<V \\
{[0,1]} & \text { if } v_{i}=V \\
1 & v_{i}>V
\end{array}\right.
$$

Since v_{i} is monotonically increasing, it follows that if $t_{i}>0$ then then $t_{j}=1$ for all $j>i$ and $t_{j}=0$ for all $j<i$.
(a)

- For the case where $N=10$ and $v_{i}=i$ the following is an equilibrium: $t_{i}=0$ for $i<5, t_{i}=1$ for $i \geq 5$ and $V=\sum_{i=5}^{10} \frac{v_{i}}{10}=4.5$. This is an equilibrium. According to $(*) t_{i}$ optimal for all i and $V=\sum_{i=1}^{N} \frac{t_{i} v_{i}}{N}$.
- For the case where $N=3$ and $v_{1}=1, v_{2}=2$ and $v_{3}=5$ the following is an equilibrium: $t_{1}=0$, $t_{2}=0.5, t_{3}=1 V=\frac{0.5 v_{2}+v_{3}}{3}=2$. Again, according to $(*) t_{i}$ optimal for all i and $V=\sum_{i=1}^{N} \frac{t_{i} v_{i}}{N}$.

For both cases the equilibrium is unique, since for every $V^{\prime}>V, \sum_{i=1}^{N} \frac{t_{i}^{\prime} v_{i}}{N} \leq \sum_{i=1}^{N} \frac{t_{i} v_{i}}{N}$ implying that $V^{\prime} \neq \sum_{i=1}^{N} \frac{t_{i} v_{i}}{N}$ (likewise for $V^{\prime}<V$).
(b) Proof of existence of an equilibrium in the general case:

Let $N=1$, then $t_{1}=1$ and $V=v_{1}$ is an equilibrium.
Let $N>1$. Define $g(i)=\sum_{j=i}^{N} \frac{v_{j}}{N}$ and $v(i)=v_{i}$ for $i=1, \ldots, N .(g(i)$ is the average product per person when only $j \geq i$ work). Notice that $g(i)$ is strictly decreasing and $v(i)$ is strictly increasing in i, furthermore $g(1)>v(1)$ and $g(N)>v(N)$. So there must exist an i^{*} such that $g\left(i^{*}+1\right) \leq v\left(i^{*}+1\right)$ and $g\left(i^{*}\right)>v\left(i^{*}\right)$. There are two possible cases: $g\left(i^{*}\right)>g\left(i^{*}+1\right) \geq v\left(i^{*}\right)$ and $g\left(i^{*}\right)>v\left(i^{*}\right)>g\left(i^{*}+1\right)$.

- For $g\left(i^{*}\right)>g\left(i^{*}+1\right) \geq v\left(i^{*}\right)$: let $V=\sum_{j=i^{*}+1}^{N} \frac{v_{j}}{N}=g\left(i^{*}+1\right), t_{j}=1$ for all $j \geq i^{*}+1$ and $t_{j}=0$ for all $j<i^{*}+1$. This is an equilibrium since for all $j \geq i^{*}+1 V=g\left(i^{*}+1\right) \leq v\left(i^{*}+1\right) \leq v(j)$ thus $t_{j}=1$ is optimal and for all $j<i^{*}+1 g\left(i^{*}+1\right) \geq v\left(i^{*}\right) \geq v(j)$ thus $t_{j}=0$ is optimal. Finally $V=\sum_{j=i^{*}+1}^{N} \frac{v_{j}}{N}=\sum_{i=1}^{N} \frac{t_{i} v_{i}}{N}$.
- For $g\left(i^{*}\right)>v\left(i^{*}\right)>g\left(i^{*}+1\right)$: In this case i^{*} separates the market into those who do not work $\left(j<i^{*}\right)$ and the rest who work by choosing t^{*} such that $\sum_{j=i^{*}+1}^{N} \frac{v_{j}}{N}+\frac{t^{*} v_{i^{*}}}{N}=v_{i^{*}}$. Let $V=\sum_{j=i^{*}+1}^{N} \frac{v_{j}}{N}+\frac{t^{*} v_{i^{*}}}{N}=$ $v_{i^{*}}, t_{j}=1$ for all $j \geq i^{*}+1, t_{i^{*}}=t^{*}$ and $t_{j}=0$ for all $j<i^{*}$. This is an equilibrium since for all $j \geq i^{*}+1, V=v_{i^{*}}<v_{j}$ thus $t_{j}=1$ is optimal, for $j=i^{*} V=v_{i^{*}}$ thus $t_{i^{*}}=t^{*}$ and for all $j<i^{*}$ $V=v_{i^{*}}>v_{j}$ thus $t_{j}=0$ is optimal. Finally, $V=\sum_{j=i^{*}+1}^{N} \frac{v_{j}}{N}+\frac{t^{*} v_{i}}{N}=\sum_{i=1}^{N} \frac{t_{i} v_{i}}{N}$.

