
LECTURE 3

Choice

Choice Functions

Until now we have avoided any reference to behavior. We have talked

about preferences as a summary of the decision maker’s mental attitude

toward a set of alternatives. But economics is about action, and therefore

we now move on to modeling “agent behavior”. By a description of

agent behavior we will refer not only to his actual choices, made when

he confronts a certain problem, but to a full description of his behavior

in all scenarios we imagine he might confront in a certain context.

Consider a grand set X of possible alternatives. We view a choice

problem as a nonempty subset of X , and we refer to a choice from

A ⊆ X as specifying one of A’s members.

Modeling a choice scenario as a set of alternatives implies assumptions

of rationality according to which the agent’s choice does not depend on

the way the alternatives are presented. For example, if the alternatives

appear in a list, he ignores the order in which they are presented and

the number of times an alternative appears in the list. If there is an

alternative with a default status, he ignores that as well. As a rational

agent he considers only the set of alternatives available to him.

In some contexts, not all choice problems are relevant. Therefore we

allow that the agent’s behavior be defined only on a set D of subsets of

X . We will refer to a pair (X,D) as a context.

Example:

1. Imagine that we are interested in a student’s behavior regarding his

selection from the set of universities to which he has been admitted. Let

X = {x1, . . . , xN} be the set of all universities with which the student is

familiar. A choice problem A is interpreted as the set of universities to

which he has been admitted. If the fact that the student was admitted

to some subset of universities does not imply his admission outcome for

other universities, then D contains the 2N − 1 nonempty subsets of X .

But if, for example, the universities are listed according to difficulty in



26 Lecture Three

being admitted (x1 being the most difficult) and if the fact that the stu-

dent is admitted to xk means that he is admitted to all less “prestigious”

universities, that is, to all xl with l > k, then D will consist of the N

sets A1, . . . , AN where Ak = {xk, . . . , xN}.
2. Imagine a scenario in which a decision maker is choosing whether

to remain with the status quo s or choose an element in some set Y .

We formalize such a scenario by defining X = Y ∪ {s} and identifying

the domain of the choice function D as the set of all subsets of X that

contain s.

We think about an agent’s behavior as a hypothetical response to a

questionnaire that contains questions of the following type, one for each

A ∈ D:

Q(A): Assume you must choose from a set of alternatives A. Which

alternative do you choose?

A permissible response to this questionnaire requires that the agent

select a unique element in A for every question Q(A). We implicitly

assume that the agent cannot give any other answer such as “I choose

either a or b”; “the probability of my choosing a ∈ A is p(a)”; or “I don’t

know”.

Formally, given a context (X,D), a choice function C assigns to each

set A ∈ D a unique element of A with the interpretation that C(A) is

the chosen element from the set A.

Our understanding is that a decision maker behaving in accordance

with the function C will choose C(A) if he has to make a choice from a set

A. This does not mean that we can actually observe the choice function.

At most we might observe some particular choices made by the decision

maker in some instances. Thus, a choice function is a description of

hypothetical behavior.

Rational Choice Functions

It is typically assumed in economics that choice is an outcome of “ratio-

nal deliberation”. Namely, the decision maker has in mind a preference

relation% on the setX and, given any choice problem A inD, he chooses

an element in A that is % optimal. Assuming that it is well defined, we

define the induced choice function C% as the function that assigns to

every nonempty set A ∈ D the %-best element of A. Note that the pref-

erence relation is fixed, that is, it is independent of the choice set being

considered.
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Figure 3.1
Violation of condition α.

Rationalizing

Economists were often criticized for making the assumption that decision

makers maximize a preference relation. The most common response to

this criticism is that we don’t really need this assumption. All we need

to assume is that the decision maker’s behavior can be described as if

he were maximizing some preference relation.

Let us state this “economic defense” more precisely. We will say that

a choice function C can be rationalized if there is a preference relation

% on X so that C = C% (i.e., C(A) = C%(A) for any A in the domain

of C).

We will now identify a condition under which a choice function can

indeed be presented as if derived from some preference relation (i.e., can

be rationalized).

Condition α:

We say that C satisfies condition α if for any two problems A,B ∈ D, if

A ⊂ B and C(B) ∈ A, then C(A) = C(B). (See fig. 3.1.)

Note that if % is a preference relation on X , then C% (defined on a

set of subsets of X that have a single most preferred element) satisfies

condition α.

As an example of a choice procedure that does not satisfy condition

α, consider the second-best procedure: the decision maker has in mind

an ordering % of X (i.e., a complete, asymmetric and transitive binary

relation) and for any given choice problem set A chooses the element

from A, which is the %-maximal from the nonoptimal alternatives. If

A contains all the elements in B besides the %-maximal, then C(B) ∈
A ⊂ B but C(A) 6= C(B).
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We will show now that condition α is a sufficient condition for a choice

function to be formulated as if the decision maker is maximizing some

preference relation.

Proposition:

Assume that C is a choice function with a domain containing at least

all subsets of X of size 2 or 3. If C satisfies condition α, then there is a

preference % on X so that C = C%.

Proof:

Define % by x % y if x = C({x, y}).
Let us first verify that the relation % is a preference relation.

Completeness : Follows from the fact that C({x, y}) is always well

defined.

Transitivity: If x % y and y % z, then C({x, y}) = x and C({y, z}) =
y. If C({x, z}) 6= x, then C({x, z}) = z. By condition α and C({x, z}) =
z , C({x, y, z}) 6= x. By condition α and C({x, y}) = x, C({x, y, z}) 6= y,

and by condition α and C({y, z}) = y, C({x, y, z}) 6= z. A contradiction

to C({x, y, z}) ∈ {x, y, z}.
We still have to show that C(B) = C%(B). Assume that C(B) = x

and C%(B) 6= x. That is, there is y ∈ B so that y ≻ x . By definition of

%, this means C({x, y}) = y, contradicting condition α.

Following is a different version of the above proposition.

Proposition:

Let C be a choice function with a domain D satisfying that if A,B ∈ D,

then A ∪B ∈ D. If C satisfies condition α, then there is a preference

relation % on X such that C = C%.

Proof:

Define a binary relation as xRy if there is a set A ∈ D such that y ∈ A

and c(A) = x. Note that R is not necessarily complete. We will see that

the relation R does not have cycles.

The relation is antisymmetric. If xRy and yRx (for some x 6= y), then

there is A ∈ D containing y such that C(A) = x and there is B ∈ D

containing x such that C(B) = y. The set A ∪B is a member of D.

By condition α both are true C(A ∪B) = C(A) = x and C(A ∪B) =

C(B) = y, a contradiction.
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The relation is transitive. If xRy and yRz, then there is A ∈ D con-

taining y such that C(A) = x and there is B ∈ D containing z such that

C(B) = y. The set A ∪B is a member of D. The element C(A ∪B) is

in either A or B and thus by condition α it is either x or y. It is not y

since if C(A ∪B) = y ∈ A and by condition α, C(A ∪B) = C(A) = y.

Thus, C(A ∪B) = x and xRz.

A well-known proposition in Set Theory (see Problem 4 in Problem

Set 1) guarantees that the acyclic relation R extends to a preference

relation %. By definition, c(A) % x for all x ∈ A and thus it also follows

that c(A) % x for all x ∈ A, which proves that C% = C.

Dutch Book Arguments

Some of the justifications for the assumption that choice is determined

by “rational deliberation” are normative, that is, they reflect a percep-

tion that people should be rational in this sense and, if they are not, they

should convert to reasoning of this type. One interesting class of argu-

ments supporting this approach is referred to in the literature as “Dutch

book arguments”. The claim is that an economic agent who behaves ac-

cording to a choice function that is not induced from maximization of a

preference relation will not survive.

The following is a “sad” story about a monkey in a forest with three

trees, a , b, and c. The monkey is about to pick a tree to sleep in. Assume

that the monkey can assess only two alternatives at a time and that his

choice function is C({a, b}) = b, C({b, c}) = c, C({a, c}) = a. Obviously,

his choice function cannot be derived from a preference relation over the

set of trees. Assume that whenever he is on tree x it comes to his

mind occasionally to jump to one of the other trees; namely, he makes

a choice from a set {x, y} where y is one of the two other trees. This

induces the monkey to perpetually jump from one tree to another – not

a particularly desirable mode of behavior in the jungle.

Another argument – which is more appropriate to human beings –

is called the “money pump” argument. Assume that a decision maker

behaves like the monkey with respect to three alternatives a, b, and c.

Assume that, for all x and y, the choice C(x, y) = y is strong enough so

that whenever he is about to choose alternative x and somebody gives

him the option to also choose y, he is ready to pay one cent for the

opportunity to do so. Now, imagine a manipulator who presents the

agent with the choice problem {a, b, c}. Whenever the decision maker

is about to make the choice a, the manipulator allows him to revise his
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choice to b for one cent. Similarly, every time he is about to choose b

or c, the manipulator sells him for one cent the opportunity to choose c

or a accordingly. The decision maker will cycle through the intentions

to choose a, b, and c until his pockets are emptied or until he learns his

lesson and changes his behavior.

The above arguments are open to criticism. In particular, the elimina-

tion of patterns of behavior that are inconsistent with rationality require

an environment in which the economic agent is indeed confronted with

the above sequence of choice problems. The arguments are presented

here as interesting ideas and not necessarily as convincing arguments

for rationality.

What Is an Alternative

Some of the cases where rationality is violated can be attributed to the

incorrect specification of the space of alternatives. Consider the following

example taken from Luce and Raiffa (1957): a diner in a restaurant

chooses chicken from the menu steak tartare, chicken but chooses steak

tartare from the menu steak tartare, chicken, frog legs. At first glance

it seems that he is not rational (since his choice conflicts with condition

α). Assume that the motivation for the choice is that the existence of

frog legs is an indication of the quality of the chef. If the dish frog legs

is on the menu, the cook must then be a real expert, and the decision

maker is happy ordering steak tartare, which requires expertise to make.

If the menu lacks frog legs, the decision maker does not want to take the

risk of choosing steak tartare.

Rationality is “restored” if we make the distinction between “steak

tartare served in a restaurant where frog legs are also on the menu (and

the cook must then be a real chef)” and “steak tartare in a restaurant

where frog legs are not served (and the cook is likely a novice)”. Such a

distinction makes sense because the steak tartare is not the same in the

two choice sets.

Note that if we define an alternative to be (a,A), where a is a physical

description and A is the choice problem, any choice function C can be

rationalized by a preference relation satisfying (C(A), A) % (a,A) for

every a ∈ A.

The lesson to be learned from the above discussion is that care must

be taken in specifying the term “alternative”. An alternative a must

have the same meaning for every choice problem A which contains a.
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Choice Functions as Internal Equilibria

The choice function definition we have been using requires that a sin-

gle element be assigned to each choice problem. If the decision maker

follows the rational man procedure using a preference relation with in-

differences, the previously defined induced choice function C%(A) might

be undefined because for some choice problems there would be more

than one optimal element. This is one of the reasons that in some cases

we use the alternative following concept to model behavior.

A choice correspondence C is required to assign to every nonempty

A ∈ D a nonempty subset of A, that is, ∅ 6= C(A) ⊆ A. According to

our interpretation of a choice problem, a decision maker has to select a

unique element from every choice set. Thus, C(A) cannot be interpreted

as the choice made by the decision maker when he has to make a choice

from A. The revised interpretation of C(A) is the set of all elements in

A that are satisfactory in the sense that if the decision maker is about

to make a decision and choose a ∈ C(A), he has no desire to move away

from it. In other words, the induced choice correspondence reflects an

“internal equilibrium”: if the decision maker facing A considers an alter-

native outside C(A), he will continue searching for another alternative.

If he happens to consider an alternative inside C(A), he will take it.

A related interpretation of C(A) involves viewing it as the set of all

elements in A that may be chosen under any of many possible particular

circumstances not included in the description of the set A. Formally, let

(A, f) be an extended choice set where f is the frame that accompanies

the set A (like the default alternative or the order of the alternatives).

Let c(A, f) be the choice of the decision maker from the choice set A

given the frame f . The (extended) choice function c induces a choice

correspondence by C(A) = {x|x = c(A, f) for some f}.
Given a preference relation % we define the induced choice correspon-

dence (assuming it is never empty) as C%(A) = {x ∈ A | x % y for all

y ∈ A}.
When x, y ∈ A and x ∈ C(A), we say that x is revealed to be at least

as good as y. If, in addition, y /∈ C(A), we say that x is revealed to be

strictly better than y. Condition α is now replaced by condition WA,

which requires that if x is revealed to be at least as good as y, then y is

not revealed to be strictly better than x.

The Weak Axiom of Revealed Preference (WA):

We say that C satisfies WA if whenever x, y ∈ A ∩B, x ∈ C(A), and

y ∈ C(B), it is also true that x ∈ C(B) (fig. 3.2).
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Figure 3.2
Violation of the weak axiom.

The Weak Axiom trivially implies two properties: Condition α: If

a ∈ A ⊂ B and a ∈ C(B), then a ∈ C(A). Condition β: If a, b ∈ A ⊂ B,

a ∈ C(A), and b ∈ C(B), then a ∈ C(B).

Notice that if C(A) contains all elements that are maximal accord-

ing to some preference relation, then C satisfies WA. Also, verify that

conditions α and β are equivalent to WA for any choice correspondence

with a domain satisfying that if A and B are included in the domain,

then so is their intersection. Note also that for the next proposition, we

could make do with a weaker version of WA, which makes the same re-

quirement only for any two sets A ⊂ B where A is a set of two elements.

Proposition:

Assume that C is a choice correspondence with a domain that includes

at least all subsets of size 2 or 3. Assume that C satisfies WA. Then,

there is a preference % so that C = C%.

Proof:

Define x % y if x ∈ C({x, y}). We will now show that the relation is a

preference:

Completeness : Follows from C({x, y}) 6= ∅.
Transitivity: If x% y and y % z, then x ∈ C({x, y}) and y ∈ C({y, z}).

Therefore, by condition β, if y ∈ C({x, y, z}), then x ∈ C({x, y, z}), and
if z ∈ C({x, y, z}), then y ∈ C({x, y, z}). Thus, in any case, x ∈ C({x, y, z}).
By condition α, x ∈ C({x, z}) and thus x % z.

It remains to be shown that C(B) = C%(B).

Assume that x ∈ C(B). By condition α for every y ∈ B we have

x ∈ C({x, y}) and thus x % y. It follows that x ∈ C%(B).

Assume that x ∈ C%(B). Let y ∈ C(B). If y 6= x then x ∈ C({x, y})
and by condition β we have x ∈ C(B).
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The Satisficing Procedure

The fact that we can present any choice function satisfying condition α

(or WA) as an outcome of the optimization of some preference relation

provides support for the view that the scope of microeconomic models

is wider than simply models in which agents carry out explicit optimiza-

tion. But have we indeed expanded the scope of economic models?

Consider the following “decision scheme”, named satisficing by Her-

bert Simon. Let v : X → R be a valuation of the elements in X , and

let v∗ ∈ R be a threshold of satisfaction. Let O be an ordering of the

alternatives in X . Given a set A, the decision maker arranges the ele-

ments of this set in a list L(A,O) according to the ordering O. He then

chooses the first element in L(A,O) that has a v-value at least as large

as v∗. If there is no such element in A, the decision maker chooses the

last element in L(A,O).

Let us show that the choice function induced by this procedure satisfies

condition α. Assume that a is chosen from B and is also a member of

A ⊂ B. The list L(A,O) is obtained from L(B,O) by eliminating all

elements in B −A. If v(a) ≥ v∗, then a is the first satisfactory element

in L(B,O) and is also the first satisfactory element in L(A,O). Thus,

a is chosen from A. If all elements in B are unsatisfactory, then a must

be the last element in L(B,O). Since A is a subset of B, all elements

in A are unsatisfactory and a is the last element in L(A,O). Thus, a is

chosen from A.

A direct proof that the procedure is rationalized can be obtained by

explicitly constructing an ordering that rationalizes the satisficing pro-

cedure. Let % be the ordering that places on top the elements that

satsifice, (namely, the members of {x|v(x) ≥ v∗}) ordered according to

O. The relation % puts the other alternatives at the bottom, ordered

according to the reversed ordering O. For any set A, maximizing % will

yield the first element (according to O) which is satisficing and if there

isn’t one then maximization will choose the last element in A (according

to O).

Note, however, that even a “small” variation in this scheme can lead

to a variation of the procedure such that it no longer satisfies condition

α. For example:

Satisficing using two orderings : Let X be a population of university

graduates who are potential candidates for a job. Given a set of actual

candidates, count their number. If the number is smaller than 5, order

them alphabetically. If the number of candidates is above 5, order them

by their social security number. Whatever ordering is used, choose the
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first candidate whose undergraduate average is above 85. If there are

none, choose the last student on the list.

Condition α is not satisfied. It may be that a is the first candidate

with a satisfactory grade in a long list of students ordered by their

social security numbers. Still, a might not be the first candidate with a

satisfactory grade on a list of only three of the candidates appearing on

the original list when they are ordered alphabetically.

To summarize, the satisficing procedure, though it is stated in a way

that seems unrelated to the maximization of a preference relation or

utility function, can be described as if the decision maker maximizes a

preference relation. I know of no other examples of interesting general

schemes for choice procedures that satisfy condition α other than the

“rational man” and the satisficing procedures. However, later on, when

we discuss consumer theory, we will come across several other appealing

examples of demand functions that can be rationalized, though they

appear to be unrelated to the maximization of a preference relation.

Psychological Motives Not Included within
the Framework

The more modern attack on the standard approach to modeling eco-

nomic agents comes from psychologists, notably from Amos Tversky

and Daniel Kahneman. They have provided us with beautiful examples

demonstrating not only that rationality is often violated but that there

are systematic reasons for the violation resulting from certain elements

within our decision procedures. Here are a few examples of this kind

that I find particularly relevant.

Framing

The following experiment (conducted by Tversky and Kahneman (1986))

demonstrates that the way in which alternatives are framed may affect

decision makers’ choices. Subjects were asked to imagine being con-

fronted by the following choice problem:

An outbreak of disease is expected to cause 600 deaths in the United

States. Two mutually exclusive programs are expected to yield the fol-

lowing results:

a. 400 people will die.

b. With probability 1/3, 0 people will die, and with probability 2/3,

600 people will die.



Choice 35

In the original experiment, a different group of subjects was given the

same background information and asked to choose from the following

alternatives:

c. 200 people will be saved.

d. With probability 1/3, all 600 will be saved, and with probability

2/3, none will be saved.

Whereas 78% of the first group chose b, only 28% of the second group

chose d. These are “problematic” results since by any reasonable crite-

rion a and c are identical alternatives, as are b and d. Thus, the choice

from {a, b} should be consistent with the choice from {c, d}.
Both questions were presented in the above order to 6, 200 students

taking game theory courses with the result that 73% chose b and 49%

chose d. It seems plausible that many students kept in mind their answer

to the first question while responding to the second one, and therefore

the level of inconsistency was reduced. Nonetheless, a large proportion

of students gave different answers to the two problems, which makes the

findings even more problematic.

Overall, the results expose the sensitivity of choice to the framing of

the alternatives. What is more basic to rational decision making than

taking the same choice when only the manner in which the problems are

stated is different?

Simplifying the Choice Problem and the Use of Similarities

The following experiment was also conducted by Tversky and Kahne-

man. One group of subjects was presented with the following choice

problem:

Choose one of the two roulette games a or b. Your prize is the one

corresponding to the outcome of the chosen roulette game as specified

in the following tables:

(a)

Color White Red Green Yellow

Chance % 90 6 1 3

Prize $ 0 45 30 −15

(b)

Color White Red Green Yellow

Chance % 90 7 1 2

Prize $ 0 45 −10 −15

A different group of subjects was presented the same background in-

formation and asked to choose between:
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(c)

Color White Red Green Blue Yellow

Chance % 90 6 1 1 2

Prize $ 0 45 30 −15 −15

and

(d)

Color White Red Green Blue Yellow

Chance % 90 6 1 1 2

Prize $ 0 45 45 −10 −15

In the original experiment, 58% of the subjects in the first group chose

a, whereas nobody in the second group chose c. When the two prob-

lems were presented, one after the other, to more than 3, 000 students,

52% chose a and 7% chose c. Interestingly, the median response time

among the students who answered a was 53 seconds, whereas the median

response time of the students who answered b was 90 seconds.

The results demonstrate a common procedure people practice when

confronted with a complicated choice problem. We often transfer the

complicated problem into a simpler one by “canceling” similar elements.

Although d clearly dominates c, the comparison between a and b is not

as easy. Many subjects “cancel” the probabilities of White, Yellow, and

Red and are left with comparing the prizes of Green, a process that leads

them to choose a.

Incidentally, several times in the past when I presented these choice

problems in class, I have had students (some of the best students, in fact)

who chose c. They explained that they identified the second problem

with the first and used the procedural rule: “I chose a from {a, b}. The
alternatives c and d are identical to the alternatives a and b, respectively.

It is only natural then, that I choose c from {c, d}”. This observation

brings to our attention the fact that the model of rational man does not

allow dependence of choice on the previous choices made by the decision

maker.

Reason-Based Choice

Making choices sometimes involves finding reasons to pick one alterna-

tive over the others. When the deliberation involves the use of rea-

sons strongly associated with the problem at hand (“internal reasons”),

we often find it difficult to reconcile the choice with the rational man

paradigm.

Imagine, for example, a European student who would choose Prince-

ton if allowed to choose from Princeton, LSE and would choose LSE if
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he had to choose from Princeton, Chicago, LSE. His explanation is that

he prefers an American university so long as he does not have to choose

between American schools – a choice he deems harder. Having to choose

from {Princeton, Chicago, LSE}, he finds it difficult deciding between

Princeton and Chicago and therefore chooses not to cross the Atlantic.

His choice does not satisfy condition α, not because of a careless specifi-

cation of the alternatives (as in the restaurant’s menu example discussed

previously), but because his reasoning involves an attempt to avoid the

difficulty of making a decision.

A better example was suggested to me by a student Federico Filippini:

“Imagine there’s a handsome guy called Albert, who is looking for a date

to take to a party. Albert knows two girls that are crazy about him, both

of whom would love to go to the party. The two girls are called Mary

and Laura. Of the two, Albert prefers Mary. Now imagine that Mary

has a sister, and this sister is also crazy about Albert. Albert must now

choose between the three girls, Mary, Mary’s sister, and Laura. With

this third option, I bet that if Albert is rational, he will be taking Laura

to the party.”

Another example follows Huber, Payne, and Puto (1982):

Let a = (a1, a2) be “a holiday package of a1 days in Paris and a2
days in London”. Choose one of the four vectors a = (7, 4), b = (4, 7),

c = (6, 3), and d = (3, 6).

All subjects in the experiment agreed that a day in Paris and a day

in London are desirable goods. Some of the subjects were requested to

choose between the three alternatives a, b, and c; others had to choose

between a, b, and d. The subjects exhibited a clear tendency toward

choosing a out of the set {a, b, c} and choosing b out of the set {a, b, d}.
A related experiment is reported in Shafir, Simonson, and Tversky

(1993). A group of subjects was asked to imagine having to choose be-

tween a camera priced $170 and a better camera, by the same producer,

which costs $240. Another group of subjects was asked to imagine hav-

ing to choose between three cameras – the two described above and a

third, much more sophisticated camera, priced at $470. The addition

of the third alternative significantly increased the proportion of sub-

jects who chose the $240 camera. The commonsense explanation for

this choice is that subjects faced a conflict between two desires, to buy

a better camera and to pay less. They resolved the conflict by choosing

the “compromise alternative”.

To conclude, decision makers look for reasons to prefer one alternative

over the other. Typically, making decisions by using “external reasons”
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(which do not refer to the properties of the choice set) will not cause

violations of rationality. However, applying “internal reasons” such as “I

prefer the alternative a over the alternative b since a clearly dominates

the other alternative c while b does not” might cause conflicts with

condition α.

Mental Accounting

The following intuitive example is taken from Kahneman and Tversky

(1984). Members of one group of subjects were presented with the fol-

lowing question:

1. Imagine that you have decided to see a play and paid the admission

price of $10 per ticket. As you enter the theater, you discover that you

have lost the ticket. The seat was not marked and the ticket cannot be

recovered. Would you pay $10 for another ticket?

Members of another group were asked to answer the following ques-

tion:

2. Imagine that you have decided to see a play where the admission is

$10 per ticket. As you arrive at the theater, you discover that you have

lost a $10 bill. Would you still pay $10 for a ticket for the play?

If the rational man cares only about seeing the play and his wealth,

he should realize that there is no difference between the consequence

of replying Yes to question 1 and replying Yes to question 2 (in both

cases he will own a ticket and will be poorer by $20). Similarly, there

is no difference between the consequence of replying No to question 1

and replying No to question 2. Thus, the rational man should give

the same answer to both questions. Nonetheless, only 46% said they

would buy another ticket after they had lost the first one, whereas 88%

said they would buy a ticket after losing the banknote. In the data I

collected (about 2,000 participants) the gap is much smaller: 64% and

79%, accordingly. It is likely that in this case subjects have conducted

a calculation where they compared the “mental price” of a ticket to its

subjective value. Many of those who decided not to buy another ticket

after losing the first one attributed a price of $20 to the ticket rather

than $10. This example demonstrates that decision makers may conduct

“mental calculations” that are inconsistent with rationality.

Modeling Choice Procedures

There is a large and growing body of evidence that decision makers sys-

tematically use procedures of choice which violate the classical assump-
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tions and that the rational man paradigm is lacking. As a result we

have seen in recent years the introduction of economic models in which

economic agents are assumed to use alternative procedures of choice. In

this section, we focus on one particular line of research that attempts to

incorporate such decision makers into economic models.

Classical models have characterized economic agents using a choice

function. The statement c(A) = a means that the decision maker se-

lects a when choosing from the set of alternatives A. We wish to enrich

the concept of a choice problem such that it will include not only the set

of alternatives but also additional information that is irrelevant to the in-

terests of the decision maker though it may nevertheless affect his choice.

In what follows the additional information consists of a default option.

The statement c(A, a) = b means that when facing the choice problem A

with a default alternative a the decision maker chooses the alternative

b. Experimental evidence and introspection tell us that a default option

is often viewed positively by a decision maker, a phenomenon known as

the status quo bias.

LetX be a finite set of alternatives. Define an extended choice function

to be a function that assigns a unique element in A to every pair (A, a)

where A ⊆ X and a ∈ A.

Following are some examples of extended choice functions which demon-

strate the richness of the concept:

1. The decision maker has in mind a partial ordering D where aDb

is interpreted as ”a clearly dominates b” and an additional order-

ing % interpreted to be the real preference relation of the decision

maker. The alternative C(A, a) is the %-best element in the set of

alternatives that dominate a (i.e.,{x| xDa}).
2. Let d be a distance function on X . The decision maker has in mind

a preference relation %. The element C(A, a) is the %-best alterna-

tive that is not too far from a (i.e., it lies within {x | d(x, a) ≤ d∗}
for some d∗).

3. The decision maker has in mind a preference relation % on X . The

element C(A, a) is an alternative in A that is the alphabetically first

alternative after a which is %-better than the default alternative

a (and in the absence of such an alternative he sticks with the

default).

4. Buridan’s donkey: The decision maker has a preference relation

in mind. If there is a unique alternative which is better than the

default, then it is chosen. If not, then the decision maker stays
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with the default option (since he cannot make up his mind) (see

http://en.wikipedia.org/wiki/Buridan’s ass).

5. A default bias: The decision maker is characterized by a utility

function u and a “bias function” β, which assigns a non-negative

number to each alternative. The function u is interpreted as repre-

senting the “true” preferences. The number β(x) is interpreted as

the bonus attached to x when it is a default alternative. Given an

extended choice problem (A, a), the procedure denoted byDBPu,β ,

selects:

DBPu,β(A, a)=







x ∈ A− {a} if u(x)>u(a) + β(a) and u(x)>u(y)

for any y ∈ A− {a, x}
a if u(a) + β(a)>u(x), ∀x∈A− {a}

.

Our aim is to characterize the set of extended choice functions that

can be described as DBPu,β for some u and β. We will adopt two

assumptions:

The Weak Axiom (WA)

We say that an extended choice function c satisfies the Weak Axiom if

there are no sets A and B, a, b ∈ A ∩B, a 6= b and x, y /∈ {a, b} (x and

y are not necessarily distinct) such that:

1. c(A, a) = a and c(B, a) = b or

2. c(A, x) = a and c(B, y) = b.

The Weak Axiom states that:

1. If a is revealed to be better than b in a choice problem where a is

the default, then there cannot be any choice problem in which b is

revealed to be better than a when a is the default.

2. If a is revealed to be better than b in a choice problem where neither

a nor b is a default, then there cannot be any choice problem in

which b is revealed to be better than a when again neither a nor b

is the default.

Comment:

WA implies that for every a there is a preference relation ≻a such that

c(A, a) is the ≻a-maximal element in A. To see this let

Ya = {x| x 6= a and there exists a set B such that c(B, a) = x}.
Now, consider the choice function on the grand set Ya defined byD(Y ) =

c(Y ∪ {a}, a) for any Y ⊆ Ya. By applying WA regarding the extended

choice function c, the choice function D is well defined and satisfies
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condition α. Thus, there is an ordering ≻a on Ya such that D(Y ) is

the ≻a-maximum in Y . Finally, extend ≻a so that a will be just below

all the elements in Ya and above all elements outside Ya, which can be

ordered in any way.

Default Tendency (DT)

We say that an extended choice function c satisfies Default Tendency if

for every set A, if c(A, x) = a, then c(A, a) = a.

The second assumption states that if the decision maker chooses a

from a set A when x 6= a is the default, he does not change his mind if

x is replaced by a as the default alternative.

Proposition:

An extended choice function c satisfies WA and DT if and only if it is a

default-bias procedure.

Proof:

Consider a default-bias procedure c characterized by the functions u and

β. It satisfies:

• DT: if c(A, x) = a and x 6= a, then u(a) > u(y) for any y 6= a in A.

Thus, also u(a) + β(a) > u(y) for any y 6= a in A and c(A, a) = a.

• WA: for any two sets A,B, a, b ∈ A ∩B, a 6= b:

1. if c(A, a) = a and c(B, a) = b, then both u(a) + β(a) > u(b)

and u(b) > u(a) + β(a).

2. if c(A, x) = a and c(B, y) = b (x, y /∈ {a, b}), then both u(a) >

u(b) and u(b) > u(a).

In the other direction, let c be an extended choice function satisfying

WA and DT. Define a relation ≻ on X × {0, 1} as follows:

• For any pair (A, x) for which c(A, x) = x and for any y ∈ A− {x},
define (x, 1) ≻ (y, 0).

• For any pair (A, x) for which c(A, x) = y 6= x and for any z ∈ A−
{x, y}, define (y, 0) ≻ (x, 1) and (y, 0) ≻ (z, 0).

• For all x ∈ X , (x, 1) ≻ (x, 0).

The relation is not necessarily complete or transitive, but by WA it is

asymmetric. We will see that ≻ can be extended to a full ordering over

X × {0, 1} denoted by ≻∗. Using problem 4 in Problem Set 1, we only

need to show that the relation does not have cycles.
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First note that:

a. For no x and y, (x, 0) ≻ (y, 0) ≻ (x, 1) since otherwise there is a

set A containing x and y and another alternative z ∈ A such that

c(A, z) = x. By DT, also c(A, x) = x and thus (x, 1) ≻ (y, 0) con-

tradicting WA.

Assume that ≻ has a cycle and consider a shortest cycle. By WA, there

is no cycle of length two, and thus the shortest cycle has to be at least

of length three. Steps (b) and (c) establish that it is impossible for the

shortest cycle to contain a consecutive pair (x, 0) ≻ (y, 0).

b. Assume that the cycle contains a consecutive segment (x, 0) ≻
(y, 0) ≻ (z, 1). By (a), z 6= x and then there is a set A such that

c(A, z) = y. Since (x, 0) ≻ (y, 0), c(A ∪ (x}, z) = x and (x, 0) ≻
(z, 1). Thus, we can shorten the cycle.

c. Assume that the cycle contains a consecutive segment of the type

(x, 0) ≻ (y, 0) ≻ (z, 0). By WA, the three elements are distinct.

Since (y, 0) ≻ (z, 0), there exists a set A containing y and z and a

different a ∈ A such that c(A, a) = y. By (a), a 6= x and then c(A ∪
{x}, a) = x and (x, 0) ≻ (z, 0), allowing us to shorten the cycle.

The next two steps establish that it is impossible for the shortest cycle

to contain a consecutive pair (x, 0) ≻ (y, 1).

d. (x, 0) ≻ (y, 1) ≻ (z, 0) and y 6= z . If this were the case, then c({x, y, z}, y) =
x and (x, 0) ≻ (z, 0), thus allowing us to shorten the cycle.

e. (x, 0) ≻ (y, 1) ≻ (y, 0) ≻ (z, 1). By DT, z 6= x and by definition z 6=
y. Consider c{{x, y, z}, z}. By WA and (y, 0) ≻ (z, 1), it cannot be

z. If it is x, then (x, 0) ≻ (y, 0) and we can shorten the cycle. If it

is y, then (y, 0) ≻ (x, 0) and we can shorten the cycle.

We can conclude that ≻ does not have a cycle. Now, let v be a utility

function representing ≻∗. Define u(x) = v(x, 0) and β(x) = v(x, 1)−
v(x, 0) to obtain the result.

1. If c(A, a) = a, then (a, 1) ≻ (x, 0) for all x ∈ A− {a) and thus u(a) +

β(a) > u(x) for all x, that is, c(A, a) = DBPu,β(A, a).

2. If c(A, a) = x, then (x, 0) ≻ (a, 1) and (x, 0) ≻ (y, 0) for all y ∈
A− {a, x} and therefore u(x) > u(a) + β(a) and u(x) > u(y) for

all y ∈ A− {a, x}. Thus, c(A, a) = DBPu,β(A, a).

Comments on the Significance of Axiomatization
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1. There is something aesthetically attractive about the axiomatiza-

tion. However, I doubt that such an axiomatization is necessary in

order to develop a model in which the procedure appears. As with

other conventions in the profession, this practice appears to be a

barrier to entry that places an unnecessary burden on researchers.

2. A necessary condition for an axiomatization of this type to be of

importance is (in my opinion) the possibility of coming up with

examples of sensible procedures of choice that satisfy the axioms

and are not specified explicitly in the language of the procedure

we are axiomatizing. Can one find such a procedure for the above

axiomatization? I myself am unable to. Indeed, many of the ax-

iomatizations in this field lack such examples, and therefore, in

spite of their aesthetic value (and although I have done some ax-

iomatizations myself), I find them to be futile exercises.
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Problem 1. (Easy)
The following are descriptions of decision-making procedures. Discuss whether

the procedures can be described in the framework of the choice model dis-

cussed in this lecture and whether they are compatible with the “rational

man” paradigm.

a. The decision maker chooses an alternative in order to maximize another

person’s suffering.

b. The decision maker asks his two children to rank the alternatives and

then chooses the alternative that is the best on average.

c. The decision maker has an ideal point in mind and chooses the alternative

that is closest to it.

d. The decision maker looks for the alternative that appears most often in

the choice set.

e. The decision maker has an ordering in mind and always chooses the

median element.

Problem 2. (Moderately difficult)

A choice correspondence C satisfies the path independence property if for every

set A and a partition of A into A1 and A2 (A1, A2 6= ∅, A = A1 ∪A2 and

A1 ∩A2 = ∅) we have C(A) = C(C(A1) ∪ C(A2)). (Of course this definition

applies also for choice functions).

a. Show that the rational decision maker satisfies path independence.

b. Find examples of choice procedures that do not satisfy this property.

c. Show that if a choice function satisfies path independence, then it satis-

fies condition alpha.

d. Find an example of a choice correspondence satisfying path independence

that cannot be rationalized.

Problem 3. (Easy)
Let X be a finite set. Check whether the following three choice correspon-

dences satisfy WA:

C(A) = {x ∈ A| the number of y ∈ X for which V (x) ≥ V (y) is at least

|X|/2}, and if the set is empty, then C(A) = A.

D(A) = {x ∈ A| the number of y ∈ A for which V (x) ≥ V (y) is at least

|A|/2}.
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E(A) = {x ∈ A|x ≻1 y for every y ∈ A or x ≻2 y for every y ∈ A} where

≻1 and ≻2 are two orderings over X.

Problem 4. (Moderately difficult)

Consider the following choice procedure: A decision maker has a strict ordering

% over the set X and assigns to each x ∈ X a natural number class(x) to be

interpreted as the “class” of x. Given a choice problem A, he chooses the best

element in A from those belonging to the most common class in A (i.e., the

class that appears in A most often). If there is more than one most common

class, he picks the best element from the members of A that belong to a most

common class with the highest class number.

a. Is the procedure consistent with the “rational man” paradigm?

b. Define the relation: xPy if x is chosen from {x, y}. Show that the

relation P is a strict ordering (complete, asymmetric, and transitive).

Problem 5. (Moderately difficult. Based on Kalai, Rubinstein, and Spiegler

(2002).)

Consider the following two choice procedures. Explain the procedures and try

to persuade a skeptic that they “make sense”. Determine for each of them

whether they are consistent with the rational man model.

a. The primitives of the procedure are two numerical (one-to-one) functions

u and v defined on X and a number v∗. For any given choice problem A,

let a∗ ∈ A be the maximizer of u over A and let b∗ be the maximizer of v

over A. The decision maker chooses a∗ if v(a∗) ≥ v∗ and b∗ if v(a∗) < v∗.

b. The primitives of the procedure are two numerical (one-to-one) functions

u and v defined on X and a number u∗. For any given choice problem

A, the decision maker chooses the element a∗ ∈ A that maximizes u if

u(a∗) ≥ u∗, and the element b∗ ∈ A that maximizes v if u(a∗) < u∗.

Problem 6. (Moderately difficult. Based on Rubinstein and Salant (2006a).)

The standard economic choice model assumes that choice is made from a set.

Let us construct a model where the choice is assumed to be made from a list.

(Note that the list < a, b > is distinct from < a, a, b > and < b, a >.)

Let X be a finite grand set. A list is a nonempty finite vector of elements

in X. In this problem, consider a choice function C to be a function that

assigns a single element from {a1, . . . , aK} to each vector L =< a1, . . . , aK >.

Let < L1, . . . , Lm > be the concatenation of the m lists L1, . . . , Lm (note that

if the length of Li is ki, the length of the concatenation is Σi=1,...,mki). We

say that L′ extends the list L if there is a list M such that L′ =< L,M >.

We say that a choice function C satisfies Property I if for all L1, . . . , Lm,

C(< L1, . . . , Lm >) = C(< C(L1), . . . , C(Lm) >).
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a. Interpret Property I . Give two examples of choice functions that satisfy

I and two examples that do not.

b. Define formally the following two properties of a choice function:

Order Invariance: A change in the order of the elements in the list does

not alter the choice.

Duplication Invariance: Deleting an element that appears elsewhere in

the list does not change the choice.

Show that Duplication Invariance implies Order Invariance.

c. Characterize the choice functions that satisfy Duplication Invariance,

and property I .

Assume now that at the back of the decision maker’s mind there is a value

function u defined on the set X (such that u(x) 6= u(y) for all x 6= y). For any

choice function C, define vC(L) = u(C(L)).

We say that C accommodates a longer list if, whenever L′ extends L,

vC(L
′) ≥ vC(L) and there is a pair of lists L′ and L such that L′ extends

L and vC(L
′) > vC(L).

d. Give two interesting examples of choice functions that accommodate a

longer list.

e. Give two interesting examples of choice functions that satisfy property

I but do not accommodate a longer list.

Problem 7. (Difficult. Based on Rubinstein and Salant (2006a).)

Let X be a finite set. We say that a choice function c is lexicographically ra-

tional if there exists a profile of preference relations {≻a}a∈X (not necessarily

distinct) and an ordering O over X such that for every set A ⊂ X, c(A) is the

≻a-maximal element in A, where a is the O-maximal element in A.

A decision maker who follows this procedure is attracted by the most no-

table element in the set (as described by O). If a is that element, he applies

the ordering ≻a and chooses the ≻a-best element in the set.

We say that c satisfies the reference point property if, for every set A, there

exists a ∈ A such that if a ∈ A′′ ⊂ A′ ⊂ A and c(A′) ∈ A′′, then c(A′′) = c(A′).

a. Show that a choice function c is lexicographically rational if and only if

it satisfies the reference point property.

b. Try to come up with a procedure satisfying the reference point axiom

that is not stated explicitly in the language of the lexicographically ra-

tional choice function (no idea about the answer).

Problem 8. (Difficult. Based on Cherepanov, Fedderson, and Sandroni (2008).)

Consider a decision maker who has in mind a set of rationales and an asym-

metric complete relation over a finite set X. Given A ⊂ X, he chooses the

best alternative in that he can rationalize.
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Formally, we say that a choice function c is rationalized if there is an asym-

metric complete relation ≻ (not necessarily transitive!) and a set of partial

orderings (asymmetric and transitive) {≻k}k=1...K (called rationales) such

that c(A) is the ≻ -maximal alternative from among those alternatives found

to be maximal in A by at least one rationale (given a binary relation ≻ we say

that x is ≻ -maximal in A if x ≻ y for all y ∈ A). Assume that the relations

are such that the procedure always leads to a solution.

We say that a choice function c satisfies The Weak Weak Axiom of Re-

vealed Preference (WWARP) if for all {x, y} ⊂ B1 ⊂ B2 (x 6= y) and c{x, y} =

c(B2) = x, then c(B1) 6= y.

a. Show that a choice function satisfies WWARP if and only if it is ratio-

nalized. For the proof, construct rationales, one for each choice problem.

b. What do you think about the axiomatization?

Consider the “warm-glow” procedure: The decision maker has two orderings

in mind: one moral %M and one selfish %S. He chooses the most moral

alternative m as long as he doesn’t “lose” too much by not choosing the most

selfish alternative. Formally, for every alternative s there is some alternative

l(s) such that if the most selfish alternative is s, then he is willing to choose

m as long as m %S l(s). If l(s) ≻S m, he chooses s.

The function l satisfies (i)s %S l(s) and (ii)s %S s′ implies l(s) %S l(s′).

c. Show that WWARP is satisfied by this procedure.

d. Show directly that the “warm-glow” procedure is rationalized (in the

sense of the definition in this problem).


