
Debreu’s Theorem
Debreu’s theorem, which states that continuous preferences have a continuous

utility representation, is one of the classical results in economic theory. For a proof of

the theorem, in a more general setting, see Debreu (1954, 1960).

In what follows, we will need the mathematical concept of a dense set. A set Y is

said to be dense in X if every non-empty open set B ⊂ X contains an element in Y. Any

set X ⊆ Rm has a countable dense subset. (The standard topology in Rn has a

countable base, that is, any open set is the union of subsets of the countable

collection of open sets: Balla, 1/m| a ∈ Rm and all its componenets are rational

numbers; m is a natural number. For every set Ballq, 1/m that intersects X, pick a

point yq,m ∈ X ∩ Ballq, 1/m. The set that contains all of the points yq,m is a countable

dense set in X.)

Proposition (Debreu):
Let  be a continuous preference relation on X, which is a convex subset of Rn.

Then  has a continuous utility representation.

Proof:

(fn: Oren Danieli and Luke Levy-Moore assisted me in formulating the current

version of the proof.)

For the case in which the relation is the total indifference , the proof is trivial. From

here on, assume that  is not the total indifference.

Lemma 1:
If x  y, then there exists z in X such that x  z  y.

Proof:
Assume not. Let I be the interval between x and y. By the convexity of X, I ⊆ X.

Construct inductively two sequences of points in I, xt and yt, in the following

manner: First, define x0  x and y0  y. Assume that the two points xt and yt are

defined, belong to I, and satisfy xt  x and y  yt. Consider m, the middle point

between xt and yt. Either m  x or y  m. In the former case, define xt1  m and

yt1  yt, and in the latter case define xt1  xt and yt1  m. The sequences xt and



yt are converging, and they must converge to the same point z because the distance

between xt and yt converges to zero. By the continuity of , we have z  x and y  z

and thus, by transitivity, y  x, which contradicts the assumption that x  y.

Another simple proof would fit the more general case, in which the assumption that

the set X is convex is replaced by the weaker assumption that X is a connected subset

of Rn: If there is no z such that x  z  y, then X is the union of two disjoint sets

a|a  y and a|x  a, which are open by the continuity of the preference relation.

This contradicts the connectedness of X (a connected set cannot be covered by two

nonempty disjoint open sets).

Lemma 2:
Let Y be dense in X. Then, for every x,y ∈ X, if x  y there exists z ∈ Y such that

x  z  y.

Proof:
By Lemma 1, there exists z ∈ X such that x  z  y. By continuity, there is a ball

around z such that any point in the ball is sandwiched between x and y and, by the

denseness of Y, the ball contains an element of Y.

Lemma 3:
Let E be the set of  -maxima and  -minima in X. Let Y be a countable dense set in

X − E. Then,  has a utility representation on Y, u with a range that consists of all

dyadic rational numbers in 0,1 (namely all numbers that can be expressed as k/2l

where k and l are natural numbers and k  2l).

Proof:
By Lemma 1, X − E is an infinite set and therefore Y is as well. Let Y  yn.

Construct u by induction as follows: Start with uy1  1/2. Let Pyn  y1, . . ,yn−1, i.e.,

the set of elements that precedes yn in the enumeration of Y. If yn  ym for some

ym ∈ Pyn, let uyn  uym. If yn  yk where yk is maximal in Pyn, set

uyn  1  uyk/2. If yk  yn where yk is minimal in Pyn, set uyn  uyk/2.

Otherwise, there are yi,yj ∈ Pyn such that yi is minimal among the elements in Pyn



that are preferred to yn and yj is maximal among the elements in Pyn that are inferior

to yn. Let uyn  uyi  uyj/2. Note that by Lemma 2, for every element in the

sequence there will always eventually be one element in the sequence that is above it

and one that is below it and for every two elements in the sequence there will

eventually be an element in the sequence that is sandwiched between the two.

Therefore, the range of u is exactly all dyadic numbers in 0,1.

Completing the Proof:
Let Y be a countable dense set in X − E. Define u on Y according to Lemma 3. The

function u can be extended to X by: (i) assigning the value 1 to all maxima points in X

and the value 0 to all minima points and (ii) defining ux  supuy | x  y and y ∈ Y

for all x ∉ Y  E. This function represents the preference relation since by definition if

x  z we have ux  uz and if x  z then by Lemma 2 there are y1 and y2 in Y such

that x  y1  y2  z and thus ux ≥ uy1  uy2 ≥ uz.

In order to prove the continuity of u, consider a point x ∉ E (a similar proof applies to

extreme points). Let   0. By Lemma 3, there are y1 and y2 in Y such that

ux −   uy1  ux  uy2  ux  . By twice applying the definition of the

continuity of , we obtain a ball B around x that is between y1 and y2 with respect to

the preference relation. By definition, elements in this ball receive u values between

uy1 and uy2 and thus are not further than  from ux.


