Course:Microeconomics, New York UniversityLecturer:Ariel RubinsteinExam:Mid-term, October 2006Time:3.5 hours (no extensions)Instructions:Answer the following three questions in three seperateexam-books.

Problem 1. Consider a consumer in a world of 2 commodities who has to make choices from budget sets parameterized by (p, w, c) where p is a vector of prices, w is a wealth level and c is a limit on consumption of good 1. That is, in his world, a choice problem is a set of the form $B(p, w, c) = \{x \mid px \le w \text{ and } x_1 \le c\}$. Denote by x(p, w, c) the choice of the consumer from B(p, w, c).

(a) Assume px(p, w, c) = w and that $x_1 = \min\{0.5w/p_1, c\}$. Show that this behavior is consistent with the assumption that demand is derived from a maximization of some preference relation.

(b) Assume that px(p,w,c) = w and that $x_1(p,w,c) = \min\{0.5c, w/p_1\}$. Show that this consumer's behavior is **inconsistent** with preference maximization.

(c) Assume that the consumer makes his choice by maximizing the utility function u(x). Denote the indirect utility by V(p,w,c) = u(x(p,w,c)). Assume that *V* is "well-behaved". Show how one could derive the demand function from the function *V* in the range where $\partial V/\partial c(p,w,c) > 0$.

Problem 2. (based on Rubinstein and Salant (2006)). Let *X* be a grand finite set. Consider a model where a choice problem is a pair (A, a) where *A* is a subset of *X* and $a \in A$ is interpreted as a default.

A decision maker's behavior can depend on the default point as well and thus is described by a function $c^*(A,a)$ which assigns an element in A to each choice problem (A,a).

Assume that c^* satisfies the following two properties:

Default bias: If $c^*(A, a) = x$, then $c^*(A, x) = x$.

Extended IIA: If $c^*(A, a) = x$ and $x \in B \subseteq A$, then $c^*(B, a) = x$.

(a) Give two examples of a function c^* which satisfy the above two properties.

(b) Define a relation $x \succ y$ if $c^*(\{x, y\}, y) = x$. Show that the relation is asymmetric and transitive.

(c) Explain why the relation \succ may be incomplete.

(d-bonus) Define a choice correspondence $C(A) = \{a | \text{ there exists } x \in A \text{ such that } c^*(A, x) = a\}$ that is, C(A) is the set of all elements in A which are chosen given some default alternative. Show that C(A) is the set of all \succ maximal elements and interpret

this result.

Problem 3. Consider a world with balls of *K* different colors. Define a *bag* to be a vector $x = (x_1, ..., x_K)$, where x_k is a non-negative integer indicating the number of balls of color *k* in the bag. Define $n(x) = \sum x_k$ (the number of balls in the bag *x*). Let *X* be the set of all bags.

(a) Show that any preference relation over *X* which is represented by $U(x) = \sum_{k} x_k v_k / n(x)$ (for some vector of numbers (v_k)) satisfies the following two axioms:

(A1) For any $x \in X$ and for any natural number λ , $x \sim \lambda x$.

(A2) For any $x, y \in X$ such that n(x) = n(y) and for any $z \in X$,

 $x \succeq y \text{ iff } x + z \succeq y + z.$

(b) Suggest a context in which it makes sense to assume those two axioms.

(c) Find a preference relation that satisfies the two axioms and which cannot be represented in the form suggested in (a) (prove it).