Solution to Problem Set Five - Demand: Consumer Choice

Lecture Notes in Microeconomic Theory by Ariel Rubinstein

Last Update: Oct 30, 2007

1. Calculate the demand function for the utility function $\sum_k \alpha_k \ln(x_k)$. The consumer's problem is:

$$\max_{\{x_k\}} \sum_k \alpha_k \ln(x_k) \qquad \text{st } \sum_k p_k x_k \le w \text{ and } x_k \ge 0 \text{ for all } k \in \{1, \dots, K\}.$$

Since $x_k = 0 \Rightarrow u(x) = -\infty$ for every k = 1, ..., K, the non-negativity constraints will never bind since. The FOCs of the problem imply

$$\frac{\alpha_k}{p_k x_k} = \frac{\alpha_l}{p_l x_l} \Rightarrow p_l x_l = \frac{\alpha_l}{\alpha_k} p_k x_k \text{ for all } k, l \in \{1, \dots, K\}.$$

By substituting this result into the budget constraint for $l \neq k$, it follows

$$\frac{p_k x_k}{\alpha_k} \sum_i \alpha_i = w \Rightarrow x_k(p, w) = \frac{w}{p_k} \frac{\alpha_k}{\sum_i \alpha_i} \text{ for all } k \in \{1, \dots, K\}.$$

2. Verify that when preferences are continuous, the demand function x(p, w) is continuous in prices and in wealth (and not only in p).

Choose an arbitrary convergent sequence of price/wealth pairs $(p^n, w^n) \rightarrow (p, w)$ such that $(p, w) \gg (0, 0)$. Since x(p, w) is homogeneous of degree zero, this implies

$$x(p^n, w^n) = x\left(\frac{p^n}{w^n}, 1\right).$$

Since demand is continuous in p, then

$$x\left(\frac{p^n}{w^n},1\right) \to x\left(\frac{p}{w},1\right) = x(p,w),$$

where the second equality follows from demand being homogeneous of degree zero.

3. Show that if a consumer has a homothetic preference relation, then his demand function is homogeneous of degree one in w.

Assume that \succeq is homothetic, and let $\lambda > 0$ and $(p, w) \in \Re_{++}^{K+1}$. Let $y^* \in B(p, \lambda w)$, ie $py^* \leq \lambda w$. Clearly, $\frac{1}{\lambda}y^* \in B(p, w)$, and thus $x(p, w) \succsim \frac{1}{\lambda}y^*$. By homotheticity, it follows $\lambda x(p, w) \succsim y^*$.

Since y^* was arbitrarily chosen from $B(p, \lambda w)$, it follows that $\lambda x(p, w) \gtrsim y$ for every $y \in B(p, \lambda w)$. Moreover, $\lambda x(p, w) \in B(p, \lambda w)$, and therefore $\lambda x(p, w) = x(p, \lambda w)$ since it is the optimal bundle in $B(p, \lambda w)$.

4. Consider a consumer in a world with K=2, who has a preference relation that is quasi-linear in the first commodity. How does the demand for the first commodity change with w?

I will further assume that preferences satisfy strict convexity. Let p be a price vector where p_1 is normalized to 1. There exists an $\alpha \in \Re_+ \cup \infty$ such that

$$x_1(p, w) = \begin{cases} 0 & \text{if } w \leq \alpha \\ w - p_2 x_2(p, \alpha) & \text{otherwise.} \end{cases}$$

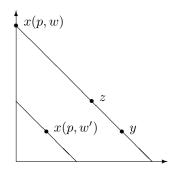
In words, after a certain wealth threshold α , a change in wealth is absorbed by commodity 1.

• $x_1(p, w) = 0, w' < w \Rightarrow x_1(p, w') = 0.$

Proof: By contradiction, assume w' < w and $x_1(p, w') > 0$. Define another bundle

$$y = \left(x_1(p, w') + [w - w'], x_2(p, w')\right).$$

Note that y is on the frontier of B(p,w). Consequently, there exists a convex combination of x(p,w) and y, say z, where $z=(w-w',\frac{w'}{p_2})$. Graphically, we have

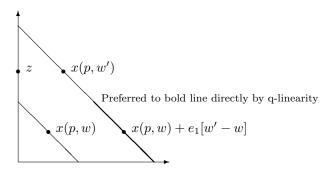


Clearly, $x(p,w) \succeq y$, and thus by strict convexity $z \succ y$. But then $(0, \frac{w'}{p_2}) \succ x(p,w')$ by quasi-linearity, a contradiction.

• $x_1(p, w) > 0$, $w < w' \Rightarrow x_1(p, w') = x_1(p, w) + [w' - w]$. **Proof:** By contradiction, assume $x(p, w') \neq x(p, w) + e_1[w' - w]$. Since $x(p, w) \gtrsim y$ for all $y \in B(p, w)$, then

$$\left(x_1(p, w) + [w' - w], x_2(p, w)\right) \succsim \left(y_1 + [w' - w], y_2\right)$$

for all $y \in B(p, w)$ by quasi-linearity. Consequently, it must be that $x_2(p, w') > \frac{w}{p_2}$. Graphically, we have



By quasi-linearity, it must be that $z = (0, x_2(p, w'))$ is optimal in $B(p, w' - x_1(p, w'))$. But $w < w' - x_1(p, w')$, and thus by the first claim $x_1(p, w) = 0$, a contradiction.

5. Let \succeq be a continuous preference relation (not necessarily strictly convex) and w a number. Consider the set $G = \{(p, z) \in \Re_{++}^K \times \Re_{+}^K \mid z \text{ is optimal in } B(p, w)\}$. Note that for some price vectors, there could be multiple $(p, x) \in G$. Calculate G for the case of K = 2 and preferences represented by $x_1 + x_2$.

Note that the agent is indifferent between consuming α units of x_1 and α units of x_2 . He will thus allocate his entire wealth to the cheapest good:

$$G(w) = \begin{cases} \left(p, \left(\frac{w}{p_1}, 0\right)\right) & \text{if } p_1 < p_2\\ \left(p, \left(\alpha, \frac{w - p_1 \alpha}{p_2}\right)\right) & \text{for any } \alpha \in \left[0, \frac{w}{p_1}\right] & \text{if } p_1 = p_2\\ \left(p, \left(0, \frac{w}{p_2}\right)\right) & \text{if } p_1 > p_2 \end{cases}$$

Show that, in general, G is a closed set.

Let w > 0 and the sequence $\{(p^n, x^n)\}$ be such that $(p^n, x^n) \in G(w)$ for every n, and let $(p^n, x^n) \to (p, x)$. We must show $(p, x) \in G(w)$ to prove that G is closed. In other words, we must show that $x \in B(p, w)$ and that $x \succeq y$ for every $y \in B(p, w)$.

Since $(p^n, x^n) \in G(w)$, then $p^n x^n \leq w$ for every n. It readily follows that

$$px = \lim_{n \to \infty} p^n x^n \le w \Rightarrow x \in B(p, w).$$

By way of contradiction, assume x is not optimal in B(p,w). Then there exists a $y \in B(p,w)$ such that $y \succ x$. Then there exists an $\epsilon > 0$ such that $B_{\epsilon}(y) \succ B_{\epsilon}(x)$ by continuity, and thus there exists a bundle $z \in B_{\epsilon}(y)$ such that z < y and $z \succ x$. Moreover, since z < y and $p^n \to p$, then $p^n z \leq w$ for n large enough. But since $x^n \to x$, then $x^n \in B_{\epsilon}(x)$ for n large enough, and thus $z \succ x^n$, a contradiction to x^n being the optimal bundle in $B(p^n,w)$. Therefore $x \succsim y$ for every $y \in B(p,w)$, and thus $(p,x) \in G(w)$.

- 6. Determine whether the following behavior patterns are consistent with the consumer model:
 - (a) The consumer's demand function is $x(p, w) = \left(\frac{2w}{2p_1 + p_2}, \frac{w}{2p_1 + p_2}\right)$.

Yes, x(p, w) can be rationalized by the monotonic preference relation represented by $u(x) = \min\{x_1, 2x_2\}$. Since \succeq is monotonic, the consumer will always set

i. $p_1x_1 + p_2x_2 = w$ by Walras' Law, and

ii. $x_1 = 2x_2$ by the functional form of u(x).

Substituting (ii) into (i), it follows

$$2p_1x_2 + p_2x_2 = w \Rightarrow x_2(p, w) = \frac{w}{2p_1 + p_2} \Rightarrow x_1(p, w) = \frac{2w}{2p_1 + p_2}.$$

(b) The consumer consumes up to quantity 1 of x_1 and spends his excess wealth on x_2 .

Yes, the behavior is rationalizable by the utility function

$$u(x) = \begin{cases} x_1 & \text{if } x_1 < 1\\ 1 + x_2 & \text{if } x_1 \ge 1 \end{cases}$$

(c) The consumer chooses a bundle (x_1, x_2) which satisfies $\frac{x_1}{x_2} = \frac{p_1}{p_2}$ and costs w. Does the utility function $u(x) = x_1^2 + x_2^2$ rationalize the consumer's behavior?

No, $u(x) = x_1^2 + x_2^2$ does not rationalize the behavior. Since u(x) is not quasi-concave, the maximization approach that we used in Question 1 is not appropriate. If $0 < p_2 < p_1$, then a consumer maximizing u(x) would set $x(p, w) = (0, \frac{w}{p_2})$. Nevertheless, the consumer actually chooses

$$\frac{x_1}{x_2} = \frac{p_1}{p_2} > 0 \Rightarrow x_1(p, w) > 0.$$

Moreover, the behavior violates the WA and therefore is not rationalizable. Consider the choices from the following budget sets:

$$x((2,1),5) = (2,1)$$
 and $x((1,2),5) = (1,2)$.

Note that each of the bundles is affordable at the other bundle's prices:

$$(1,2)\cdot x((2,1),5) = (1,2)\cdot (2,1) = 4 < 5$$

$$(2,1) \cdot x((1,2),5) = (2,1) \cdot (1,2) = 4 < 5,$$

which is a violation of the WA.

7. In this question, we consider a consumer who behaves differently from the classic consumer we talked about in the lecture. Once again we consider a world with K commodities. The consumers choice will be from budget sets. The consumer has in mind a preference relation that satisfies continuity, monotonicity, and strict convexity; for simplicity, assume it is represented by a utility function u.

The consumer maximizes utility up to utility level u^0 . If the budget set allows him to obtain this level of utility, he chooses the bundle in the budget set with the highest quantity of commodity 1 subject to the constraint that his utility is at least u^0 .

(a) Formulate the consumer's problem.

The agent's objective is

$$\max_{x \in B(p,w)} u(x) \qquad \text{if } \max_{x \in B(p,w)} u(x) < u^0, \text{ and } \max_{x \in B(p,w)} u(x) \geq u^0.$$

(b) Show that the consumer's procedure yields a unique bundle.

Case 1: $\max_{x \in B(p,w)} u(x) < u^0$

In this instance, the consumer acts as in the standard framework. Since preferences are continuous, monotonic and strictly convex, then the problem has a unique solution (see the lecture notes).

Case 2: $\max_{x \in B(p,w)} u(x) \ge u^0$

Suppose, by way of contradiction, that x and y both solve the problem. Then $x, y \in B(p, w)$, $u(x), u(y) \ge u^0$ and $x_1 = y_1$. Define $z = \alpha x + (1 - \alpha)y$ for some $\alpha \in (0, 1)$. Note that $z_1 = x_1 = y_1, z \in B(p, w)$ and $u(z) > \min\{u(x), u(y)\} \ge u^0$.

Note there exists a j=2,...,K such that $z_j>0$, and by continuity there exists an $\epsilon>0$ such that $u(z-\epsilon e_j)>u^0$. With the ϵp_j the consumer is saving, he can afford to purchase $\frac{\epsilon p_j}{p_1}$ more units of commodity 1. Define $z'=z-\epsilon e_j+\frac{\epsilon p_j}{p_1}e_1$, and note that $z'\in B(p,w), u(z')>u^0$ and $z'_1>x_1$, a contradiction to x being a solution to the problem.

(c) Is this demand procedure rationalizable?

Yes, it can be rationalized by the monotonic utility function

$$v(x) = \begin{cases} u(x) & \text{if } u(x) < u^0 \\ u^0 + x_1 & \text{if } u(x) \ge u^0. \end{cases}$$

(d) Does the demand function satisfy Walras Law?

Yes. If $\max_{x \in B(p,w)} u(x) < u^0$, Walras Law is implied by monotonicity. If $\max_{x \in B(p,w)} u(x) \ge u^0$, then px = w; otherwise, the consumer could purchase more of x_1 and obtain a better bundle.

(e) Show that in the domain of (p, w) for which there is a feasible bundle yielding utility of at least u^0 the consumer's demand function for commodity 1 is decreasing in p_1 and increasing in w.

Let (p, w) be such that $\max_{x \in B(p, w)} u(x) \ge u^0$, and define $p' = p - \gamma e_1$ for some $\gamma > 0$. Since p'x(p, w) < w, then $x_1(p, w) < x_1(p', w)$, as the agent can afford strictly more of commodity 1 under B(p', w) while maintaining utility u^0 . Consequently, $x_1(p.w)$ is decreasing in p_1 .

Similarly, define $w' = w + \gamma$, and note px(p, w) < w'. As before, it must be that $x_1(p, w) < x_1(p.w')$, as the agent can afford strictly more of commodity 1 under B(p, w'), and thus $x_1(p.w)$ is increasing in w.

(f) Is the demand function continuous?

Yes. Since demand is homogeneous of degree zero in (p,w), it is sufficient to show that x(p,w) is continuous in p by Question 2. By contradiction, assume that x(p,w) is not continuous in p, ie there exists a sequence of prices $\{p^n\}$ such that $p^n \to p$ and $\|x(p,w) - x(p^n,w)\| \ge \epsilon$ for every n. For notational ease, define $x^n = x(p^n,w)$ and x = x(p,w). First, we must show that $\{x^n\}$ converges. As in the lecture notes, define

$$m = \inf \{ p_i^n \mid i \in \{1, \dots, K\} \text{ and } n \in \mathbb{N} \} > 0,$$

and note that $x_i^n \leq \frac{w}{m}$ for every i=1,...,K and every n. Consequently, $\{x^n\}$ is contained in the compact hypercube $[0,\frac{w}{m}]^K$. Therefore, without loss of generality we can assume that $x^n \to y$. Moreover, note that $py = \lim_{n \to \infty} p^n x^n \leq w$, and thus $y \in B(p,w)$. There are two cases to consider:

Case 1: $u(y) < u^0$

Since x is unique by (b), then u(y) < u(x). By continuity, there exists a point $z \ll x$ such that pz < w and u(y) < u(z). Then

for n large enough, $p^n z \leq w$ and $u(x^n) < u(z)$, a contradiction to x^n being the optimal bundle in $B(p^n, w)$.

Case 2: $u(y) \ge u^0$

Since x is unique by (b), then $u(x) \geq u^0$ and $x_1 > y_1$. Define $z = \frac{1}{2}x + \frac{1}{2}y$, and note that $z_1 > y_1$, $z \in B(p, w)$ and $u(z) > u^0$ by strict convexity. By continuity, there exists an $\epsilon > 0$ such that $z_1 - \epsilon > y_1$, $p[z - \epsilon e] < w$ and $u(z - \epsilon e) > u^0$. Then for n large enough, $p^n[z - \epsilon e] \leq w$ and $z_1 - \epsilon > z_1^n$, a contradiction to z^n being the optimal bundle in $B(p^n, w)$.

8. A common practice in economics is to view aggregate demand as being derived from the behavior of a "representative consumer." Give two examples of "well-behaved" consumer preference relations that can induce average behavior that is not consistent with maximization by a "representative consumer." (That is, construct two "consumers," 1 and 2, who choose the bundles x_1 and x_2 out of the budget set A and the bundles y_1 and y_2 out of the budget set B so that the choice of the bundle $\frac{x_1+x_2}{2}$ from A and of the bundle $\frac{y_1+y_2}{2}$ from B is inconsistent with the model of the rational consumer.)

Consider the following sets of preferences:

$$u_1(x) = \left\{ \begin{array}{ll} x_1 & \text{if } x_1 < 4 \\ 4 + x_2 & \text{if } x_1 \ge 4. \end{array} \right. \qquad u_2(x) = \left\{ \begin{array}{ll} x_2 & \text{if } x_2 < 4 \\ 4 + x_1 & \text{if } x_2 \ge 4. \end{array} \right.$$

and consider the price/wealth pairs $(p^A, w^A) = ((1, 2), 8)$ and $(p^B, w^B) = ((2, 1), 8)$. Note that

$$x_1^A = (4,2)$$
 $x_1^B = (4,0)$ $x_2^A = (0,4)$ $x_2^B = (2,4).$

Taking averages across the price/wealth pairs, note that

$$\overline{x^A} = (2,3) \Rightarrow p^B \overline{x^A} = 7 < 8 \Rightarrow x^B \succ x^A$$
, and

$$\overline{x^B} = (3,2) \Rightarrow p^A \overline{x^B} = 7 < 8 \Rightarrow x^A \succ x^B$$
, a contradiction.

- 9. Let \succ be an acyclic binary relation on a finite set X. Show that there is a complete, asymmetric and transitive relation \succ^* which extends \succ (that is, if $a \succ b$ then $a \succ^* b$.)
 - **Lemma:** If X is finite and \succ is an acyclic relation on X, then there exists at least one $x \in X$ such that for every other $y \in X$, either $x \succ y$ or x and y are not compared by \succ .

Proof of Lemma: Let |X| = N. By contradiction, assume that for every $x \in X$, there is a $y \in X$ such that $y \succ x$. Choose any element in X, say x_1 . Then there exists another element in X, say x_2 , such that $x_2 \succ x_1$. Again, there exists an $x_3 \in X$ such that $x_3 \succ x_2$ and so on. Thus we can find a sequence such that $x_{N+1} \succ x_N \succ ... \succ x_1$. Since |X| = N, then for some $i \in \{1, ..., N-1\}$, $x_{N+1} = x_i$. But then $x_{N+1} \succ ... \succ x_{i+1}$ and $x_{i+1} \succ x_{N+1}$, a contradiction to \succ being acyclic. \square

Since X is finite, then there exists an element in X, say x_1 , such that no other element in X is better than x_1 by the Lemma. For all other $y \in X$, let $x_1 \succ^* y$. Again, the Lemma implies that there exists an element in $X \setminus \{x_1\}$, say x_2 , such that no element in $X \setminus \{x_1\}$ is better than x_2 . Define $x_2 \succ^* y$ for all other $y \in X \setminus \{x_1\}$. Continue this process inductively, ie for all n < N, there is an x_{n+1} that is one of the "best" elements in $X \setminus \{x_1, ..., x_n\}$; let $x_{n+1} \succ^* y$ for all other $y \in X \setminus \{x_1, ..., x_n\}$.

Extension: If $a \succ b$, then a is defined as an element in the sequence $\{x_1, ..., x_N\}$ before b, and hence $a \succ^* b$.

Completeness: Implied by construction.

Asymmetry: Implied by construction.

Transitivity: Let $a \succ^* b$ and $b \succ^* c$. Then a is defined as an element in the sequence $\{x_1, ..., x_N\}$ before b, and b is defined before c. Consequently, $a \succ^* c$.