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1. INTRODUCTION 

There are significant differences between the situation of players under- 
taking to play a single game, and players who know that they will play the 
same game repeatedly in the future. Strategy in the first case is a single play; 
in the second, it is a sequence of rules, each one of which designates the play 
at the corresponding game and may pertain to the outcomes preceding. The 
preferences of the participants are determined partly by temporal considera- 
tions, and the participants may adopt “risky” strategies, “protected” by 
threats of retribution in the future. 

A finite sequence of identical games is an inadequate model for examining 
the idea of repeated games, as is shown by the following analysis. (For a 
detailed analysis, see [llj). If the number of games is finite and known ini- 
tially, the players will treat the last game as if it were a single game. Thus the 
threats implicit in the game before last are proven to be false threats. There- 
fore the game before last will be treated as a single game, and so on. Thus the 
situation we wish to describe is not expressed by such a sequence. 

In order to avoid “end-points” in the model, we define a supergame. A 
supergame is an infinite sequence of identical games, together with the 
players’ evaluation relations (that is their preference orders on utility 
sequences). Obviously the assumption of an infinite planning horizon is 
unrealistic, but it is an approximation to the situation we wish to describe. 

The literature mainly compares the equilibrium concepts in supergames 
and singIe games (see Aumann [l-5]). Other papers emphasize the uses of 
the concept of supergames in economies ([S-lo]). 

In most of the papers, it was assumed that the participants evaluate the 
utility flows according to the criterion of the limit of the means of the flows 
(but see [8].) The drawback of this evaluation relation is that it ingores any 
finite time interval. The aim of this paper is to extend the discussion to super- 
games with evaluation relations determined according to the “overtaking 

* I wish to thank Professor Peleg for his advice and guidance. 
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criterion”. (The sequence (at}& is preferred to the sequence {bt}& if 0 < 
lim CF=, a, - b, .) 

The formal model, described in Section 2, is taken from Roth.’ The single 
game is given in strategic form (see [5]). 

Let n be the number of players in the game. A (Nash) equilibrium in the 
supergame is an n-tuple of supergame strategies such that no player on his 
own can deviate profitable from his strategy. A stationary equilibrium 
is an equilibrium which, if adhered to by all players, will produce identical 
outcomes for every game played. The stationary equilibria will be charac- 
terized in Section 3. 

The “power” of the threats makes possible the existence of many equili- 
brium points, some of which may satisfy further requirements. An equilibrium 
will be called perfect if after any possible “history”, the strategies planned 
are an equilibrium. In other words no player ever has a motivation 
to change his strategy. This will be treated in Section 4, where it is shown 
that the requirement of perfection alters the outcomes of stationary equilibria 
only “marginally”. 

The result corresponds to similar results obtained in [6] and [13] for the 
limit of the means criterion, and in [IO] for a model of altruistic behavior. 
Together, these results give the impression that the concept of perfection does 
not enable the isolation of a small solution set, from the Nash equilibria. In 
[13, 141 an example is given to demonstrate that perfection is a significant 
notion considering strong equilibria in supergames where the evaluation 
relations are according to the overtaking criteria. 

2. THE MODEL 

The single game G is a game in strategic form 

The set of players is N = (i,..., n}. For each i E N, the set of strategies of i is 
Si ; Si is assumed non-empty and compact. Each player i has a payoff function 
7~~ : S -+ W(W - the reals), which is continuous in the product topology. 

Given u ES, a payoff vector is the n-tuple VT(U) = (~~(a),..., ~~((a)). For 
convenience we will denote the n - I-tuple (ul ,..., udml, u~+~ ,..., a,> by 
u-i, and the n-tuple u by (u-i, ai). u will be called a (Nash) equilibrium if 
for all i and for all s, E S, , ~$(u-~, si) < Quj. 

1 I wish to thank Professor A. E. Roth for permitting me to use the model described 
in [12]. 
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If the set of strategies is finite and it is possible to adopt mixed strategies, we 
can identify S+ with the set of mixed strategies, and rri with the expected 
payoff of i. Examples in a similar context may be found in [8] and [9]. 

The supergame, G” is (G, <I ,..., <,) where G is a single game and the 
<i’s are evaluation relations on real number sequences; more exactly, Xi is 
a binary relation on L%?~* which is transitive, anti-symmetric, but not neces- 
sarily a total order. 

The set of outcomes at time t, S(r), is S. A strategy for i in G” is a set 
uxt>>?.a 9 where fi(l) E Si , and for t 3 2, fi(t) : I$:: S(j) -+ Si . Thus a 
supergame strategy is a choice of strategies at every stage, where each choice 
is possibly dependent on the outcomes of the preceding games, and where all 
players know all the choices made by every player in the past. 

The set of supergame strategies of i will be denoted by Fi , F is the set of 
n-tuples of strategies; F = I-I;-, F< . 

GivenfE F, the outcome at time t will be denoted by a(f)(t), and is defined 
inductively by 

We will define a relation qi on F, induced by <i , as follows: 

For all f, g E F, f 7 g if and only if 

tTitu(f )(t>)3t”l <i {ni(u(g)(t))IIEl * 

Given f o F, we will denote (& ,..., f.- t 1 , f. a+l ,...,fn> byf -‘, andf by (f -i,h). 
f E F is stationary if there exists u E S such that for all t, u(f)(t) = u. If 

f  o F is stationary we will denote the corresponding u by S(f). Note that, in 
contrast with definitions appearing elsewhere in the literature, the stationary 
strategies produce constant outcomes (as in [12]). 

f  E F is a (Nash) equilibrium in the supergame G” if for all i, and for all 
hi E Fi , f  <i (f -ly hi). 

The main evaluation. relation that was considered in the literature is the 
Limit of means evaluation relation, defined by 

aLetAbeaset.A”r’ IS the set of sequences of elements in A. 
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In the following we will concentrate on the Overtaking criterion evaluation 
relation, defined by 

T 
x<yiffO<!imC (Yt--4. 

t=1 

Remark. An axiomatic characterization of the Overtaking Criterion is 
given in Brock [7]. 

There exists no utility function representing the overtaking criterion, that 
is, no function u : 9V -+ 9 satisfies U(X) < u(y) t) x < y for all x, y which 
are < related. 

For every a E R, (a, a ,...) < (a + 1, a ,... ), and for every a < b, (a + 1, 
a,...) < (b, b,...). Thus 9P’- has El < segments which are disjoint and non- 
empty, while (9, <) has less. 

3. CHARACTERIZATION OF STATIONARY EQUILIBRIA 

We will denote vi = min,, max,psj ai(rri, tJ. vi is the minimal utility 
that the players apart from i may force on i. 

DEFINITION. s ES is a weakly forced outcome in G if, for ail i, vi < 

T(S). 
Thus in a weakly forced outcome each player’s payoff is at least as large as 

the amount the other players can force on him. The notion of payoff of 
weakly forced outcome is equivalent to the term individually rational payoff 
used in the literature. 

DEFINITION. s E S is a strongly forced outcome in G if for all i, and for all 
ti E SC , ~T~(s+, ti) < 77&), or vi < 7r&). 

Thus a strongly forced outcome is an outcome in which any player who 
can gain from a deviation may be subject to a loss enforced on him by the 
other players. Any strongly forced outcome is of course a weakly forced 
outcome. 

EXAMPLE. Let Si be the set of mixed strategies of i, i = I,2 in a matrix 
game with payoff matrix 

2,2 0, Hi 3,0 I, 1 

ri is the expected payoff of i. (See Fig. 1.) 
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a 1 2 3 
b 1 2 3 

FIG. 1. (a) The payoff’s set of the Strongly forced outcomes. (b) The payoff’s set of the 
Weakly forced outcomes. 

When the evaluation relations are according to the limit of the means, the 
set of outcomes which produce a stationary equilibrium in the supergame is 
the set of weakly forced outcomes (see [5], for example). Proposition 3.1 
characterizes the stationary equilibria when the evaluation relations are 
according to the overtaking criterion. 

PROPOSITION 3.1. If for all i, xi is the overtaking evaluation relation, the 
stationary outcomes of equilibria are the strongly forced outcomes. 

Proof. Let c E S be a strongly forced outcome. For any i E N define ys, 
the “punishing strategy” for i, by 

(i) If 7ri(0) = vi , yi = u 

(ii) Otherwise, let yi E $ satisfy rnaxsi ri(yi-“, si) < ITS. 

Define fi E Fi for i E N as follows: 

jX1> = ui 

I 

yij if there exists T < t - 1 such that s(l) = ... = 
“fxt>Ml) ***s(t - 1)) = s(T - 1) = u and s-j(T) = u-i and s,(T) # ui . 

ui otherwise. 

Then S(f) = u and it is obvious that f is a G* equilibrium. 
Let f E F be a stationary equilibrium. Denote 6(f) = u. Suppose that a is 

not a strongly forced outcome. Then there exists i E N and di E Si such 
that ~~(u-~, di) > am, and for any r E S there is di(r) E St such that 
vri(rri, d<(r)) > 7ri(u). Now define gi E Fi 

gi(t + W(l) es- s(t)> = d,(f(s(l) *-a s(t)>>. 

Clearly f -=& (f-i, gJ. 
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Remark. Consider the following payoff matrix of a two-players game: 

l,o l,o 

!- 

2,0 0, 2 

0,2 2,0 

As has previously been mentioned, by identifying mixed strategies 
and the expected payoff with Si and ni, matrix games are covered by the 
theory so far. The strategy (0, l/2, l/2) for the row player and (l/2, l/2) for 
the column player is an equilibrium in the single game, and therefore the 
outcome is strongly forced. Thus it is a stationary outcome of an equilibrium 
in supergame, according to our definition of equilibrium. 

Some alternative definitions are possible in the spirit of [I]. Thus a possible 
definition is an n-tuple supergame’s strategies f is an equilibrium if there is 
no i andji such that i’s payoff sequence resulting from adoption of (j--$,h) if 
preferable with probability 1 to the expectation sequence resulting from 
adoption of J 

We will now show that ((0, l/2, l/2), (l/2, l/2)) is not a stationary outcome 
of an equilibrium in this second definition. Let f~ F satisfying S(f) = 
((0, w, w w, W). 

The row player may deviate according to the following rule: 

(i) he plays (0, l/2, l/2) until time T when the total payoff he has 
accumulated is T + 1, 

(ii) he then deviates and plays (1, 0, 0), then the probability of such a T 
occurring, is 1. Since the row player’s evaluation is according to the over- 
taking criterion, his payoff sequence will be preferable with probability 1 
to that obtained had he not deviated. 

4. PERFECT EQUILIBRIA 

The definition of equilibrium given in Section 2 was shown to be too 
general in Section 3. One possible restriction is that a deviation will prove 
unprofitable to a player at all stages of the game, and not only at the beginning. 

Given f o F and r(l),..., r(T) E S, the n-tuple of strategies determined by f 
after a “history” r(l),..., r(T) is denoted byfjr(l),.,.,s(T); thus 

u-l&).....r(T))i (~>MlL s(t - 1)) =J;(T + t)(r(l) ,..., r(T), s(l) ,..., s(t - 1)). 
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DEFINITION. f E F is a perfect equilibrium point if for all r(l),..., r(T) E S, 
f lru),...,,.o) is an equilibrium. 

Aumann and Shapley [6] and Rubinstein [13] proved that in a supergame 
with evaluation relations determined by the limit of the means criterion there 
is a perfect stationary equilibriumfE F such that B(f) = u iff u is a weakly 
forced outcome. 

But not every strongly forced outcome is the outcome of a perfect stationary 
equilibrium in a supergame, where all players have evaluation relations 
according to the overtaking criterion. 

Consider the following matrix game where S1 = {A, , A,}, and S, = 
{B, , B, , B,}(mixed strategies are not allowed). 

vI=Oandv,= 1. 
(A, , BJ is a strongly forced outcome, but is not an outcome of a perfect 

stationary equilibrium; for if CI; ,fJ E F is a perfect stationary equilibrium 
such that S(fi ,fi) = (A, , B,), then for all s(l),..., s(t) ES, 

$a + l)W,..., 
4 iffi(t + l)(s(l),...,s(t)) = 4 

s(t)) = /B, iffI(t + l)@(l),..., s(t)) = AZ 

But then the row player can profitably alter his strategy by fi = A, , with a 
utility flow (1, l,...) xz (2, 2 ,... ). 

PROPOSITION 4.1. In the supergame (G, x1 ,.. ., <,) where -==Cr are 
evaluation relations according to the overtaking criterion, and s E S satisfies 
vi < nri(s) for all i, there exists f E F, a stationary perfect equilibrium such that 
8(f) = s. 

Proof. The idea is to construct f E F such that a player deviating from 
the stationary position, or the punishing strategy of another player, will be 
punished sufficiently to eliminate his “profit”. After punishment, the players 
return to the stationary position. 

By assumption, there exist yi such that maxtasi T&-‘, ti) = n@) < 
7ri(s) (y” is strategy punishing i; the i’th component of y* is i’s optimal defense 
strategy). We write Li = ITS - rnax+t. ri(yfwi, ti) > 0. Li is the punish- 
ment i will receive every time the punishing strategy yi is employed against 
him. We will write Rc = max,,~s,vl.,.v -t (maxt,ESj dfi , r-9 - d% 4s) - 
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z-&)} 3 0. Ri is the maximal relative profit a player i can gain by deviating 
from one of the n + 1 single game strategies deployed inf, and by bringing 
to an end the punishment of another player. 

We will now define m&(l),..., s(t)) and h(t + l)(s(l),..., s(t)) inductively 
as follows: 

s(t)) is the length of time a player will be punished for participating 

rni(D) = 0 

fi(l) = si . 

M(l),..., s(t + 1)) = 

[ I 
% + 1 if for all j, mi(s(l),..., s(t)) = 0, si(t + 1) # ui and 

z s-yt + 1) = u-i. (1) 

[ 
mi(s(l),..., s(t)) . Ri 

Li I 
+ 1 if there exists j # i such that mj(s(l),..., 

s(t)) > 0, si(t + 1) # y( and +(t + 1) = yj-$. (2) 
miW),.-, s(t)) - 1 if m&(l),..., s(t)) > 0 and +(t + 1) = yimi. (3) 
0 otherwise. (4) 

It is clear that for all s(l),..., s(t) ES, the number of players i for whom 
%(Jf1)9*-*, s(t)) > 0 is at most 1. 

Thus we can defme 

Clearly f is stationary and S(f) = s. 
Let r(l),..., r(T) ES, and let f=flr(r),...,+) . We will show that 7 is an 

equilibrium. 
Let hi EF~ ; we will prove that fxi (Fi, hi). It is sufficient to show that if 

there exists t,, such that ~~(a(J?(r,,)) < ~,(o(f-~, h,)(Q), then there exists 
to < tl such that l&t, ri(df)(t>) 3 CL, ri(@, hs)(t)). 

We will denote mi({u@i, hi)(t)}&‘) by mi . Player i cannot profitably 
deviate from yi since n,(ri) = maxtiESi ri(yi-‘, ti). Therefore mi = 0. 

If mj = 0 for allj, we will define tl = to + [R,/L,] + 1; for all t, < t < f1 , 
o-*(F”, hi) = yi-*, thus 
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If mj > 0, we will define t, = to + (mi * R,/L,) + 1; for all to < t < t, , 
&(fi, hi) = yiei, and thus 

< m& - ( [TL+] + 1) L; < 0. 

z 

Remark. Similarly we can prove that if so,..., sk-l E S satisfy 
ai < (l/k) Cfzi ni(si> for all i, then there exists a strategy f which is a perfect 
equilibrium such that o(f)(t) = ?trnod k). 

Let s E S be a strongly forced outcome such that for any player j who can 
profitably deviate from s (i.e. there exists tj E Sj such that ‘IT~(s-~, tj) > rj(s)) 
there exists w  E Convrr(S) such that wi > ai for all i and nj(s) > wj . Then 
there existsfe F, a perfect stationary equilibrium, such that 6(f) = s. 
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