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TIME PREFERENCE*

By PeTER C. FISHBURN AND ARIEL RUBINSTEIN'

I. INTRODUCTION

The aim of this paper is to examine the effect of the time of realization of an
outcome on the relative desirability of the outcome. Three situations illustrate
the comparisons involved in our study. [n each situation, which alternative would
you choose?

Situation 1: Get $1000 today, or $2000 one year from now;

Situation 2: Have a painless but badly decayed tooth pulled today, or wait a
year and then have the original tooth plus its subsequently affected neighbor
extracted together;

Situation 3: Get $100 today, or flip a fair coin today and get $50 tomorrow if
the coin lands “heads’” or $150 one month from now if the coin lands ‘“tails.”

These situations ask you to compare two or more time-dependent outcomes
(x, 1), where x is “‘get $1000,” “have a tooth pulled,’” and so forth, and ¢ is the time
at which x is obtained. The outcomes in situations | and 2 have opposite polar-
ities: the outcomes in | are desirable, while those in 2 are presumably painful.
Situation 3 adds a risk dimension. In 3, the time of the gamble’s resolution is
specified along with the potential payoff times.

Similar examples abound in more economically oriented settings, as in the
revenue x realized by selling a capital good at time ¢, or the timing and amount of a
lump-sum payment arrived at through a bargaining process or court proceeding.
While such situations are often subject to uncertainties, we shall suppress this
factor to concentrate on the “‘pure’’ theory of time preference.

Our purpose is to examine implications of various axioms for a preference-or-
indifference relation = on X x T'when X is viewed as a set of outcomes and T is a
set of times at which an outcome can occur. For simplicity, X is taken as a non-
degenerate real interval, the individual’s preference is presumed to increase in x at
any specified ¢ € T, and, when 0 € X, O is interpreted as the status quo (no loss, no
gain) outcome. Likewise, T will be either a discrete set of successive nonnegative
integers or an interval of nonnegative numbers, with 0, 1 € Tin all cases and with
t=0 denoting the present, or “now.”” In the usual fashion, (x, t)>(y, s) means
that (x, 1) = (v, s) and not [(y, s) = (x, t)], and (x, ) ~(v, s) means that (x, 1) 2 (v, )
and (y, s)=(x, ). We shall be concerned with the effect of ¢t on the relative
desirability of x. Roughly speaking, this effect is embodied in the indifference (~)
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curves in X x T when time is continuous, and in sequences of indifferent pairs when
time is discrete.

Recent interest in time preference is indebted to Koopmans’s [1960] work on
impatience (preference for getting desired outcomes sooner) in an infinite-period
consumption streams context. Koopmans was motivated by earlier discussions of
Bohm-Bawerk [1912] and Fisher [1930], and his initial contribution led to a series
of studies (Burness [1973], [1976]: Diamond [1965]; Jamison [1969];
Koopmans, et al. [1964]) on impatience, eventual impatience, time perspective,
stationarity, and related concepts in infinite-period and continuous-time formula-
tions of consumption streams. Several writers have examined preference over time
streams with von Neumann-Morgenstern utilities (Bell [1974]; Fishburn
[1965]; Keeney and Raiffa [1976]; Meyer [1970], [1977]), while others have
investigated effects of the times of resolutions of uncertainties on preferences in
ongoing processes (Dréze and Modigliani [1972]; Kreps and Porteus [1978],
[1979]: Spence and Zeckhauser [1972]).

Our study differs from these in its focus on the realization of a single outcome at
a particular time. We can of course view our (x, t) as a stream with outcome 0 at
each time t’ #t, and when this is done many of our axioms can be viewed as speciali-
zations of conditions used by Koopmans and others. At the same time, some of
their axioms, such as Koopmans’s [1960] Postulates 3 and 3’, have no force in our
context because of its highly restricted domain. Lacking the powerful domain
structure of the aforementioned studies, we require a different approach in much of
our work and consequently arrive at somewhat different theorems, although the
tenor of our results follows previous patterns.

There are, however, several precedents in the literature for the present approach.
Lancaster [1963] applies ten postulates to 2 on X x T with X a set of multidimen-
sional commodity bundles and T=[0, o). His postulates involve order,
monotonicity, impatience and stationarity conditions, among others. An
additional axiom, which says that (x, 1)~ (v, t) iff (inx, t)~(my, t) forall m>0, and
which is of interest only when elements in X are multidimensional, is then intro-
duced and alleged to imply (on the question of sufficiency, see Nachman [1975,
footnote 4]) that indifference in X x T satisfies (x, 1)~ (e *'x, 0) for fixed O<k<1.
Hence the receipt of bundle x at time ¢ is indifferent to receipt of the discounted
bundle e"*'x today. Lancaster refers to k as the consumer’s rate of time prefer-
ence.

More recently, Nachman [1975] has extended the notion of risk aversion of
Pratt [1964] and Arrow [1965] to the concept of temporal risk aversion in a

-formulation where x denotes wealth and X x T=R x [0, c0). Nachman assumes
that gambles on X x Tare ordered in preference by their expected utilities based on
Uon X xT. Roughly speaking, U is temporally risk averse if the certainty equiv-
alent at time s of a gamble at time 1>s is no greater than the gamble’s expected
wealth. The flavor of his analysis is conveyed by part of his first theorem: U is
temporally risk averse iff U is risk averse at each t, and impatient iff U is concave
in x at each ¢ and decreases in t for each x.
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Prakash [1977] also considers von Neumann-Morgenstern utilities on gambles
defined on X x T=R x [0, cv). By assuming that for every x € X and s, t € T there
exists a unique y e X at which (y, s)~(x, t), Prakash notes that the individual’s
preference order on gambles is completely determined from his preference on X x T
and his preferences on the subset of gambles at a fixed instant of time. '

The present paper adopts a measurement-theoretic approach to time preference
by considering axioms for 2 on X x T that are sufficient for numerical represen-
tations of 2 that are of interest in the time context. An important aspect of the
analysis is the difference between the discrete-time and continuous-time formu-
lations. The question of whether X contains a “‘null’’ outcome 0, where there is
no time preference in the sense that (0, 1)~ (0, s) for all s,t € T, also plays a role in
later developments.

The next section considers axioms that are sufficient for the existence of
continuous u on X x T that represents 2. The axioms used there (order, mono-
tonicity, impatience, continuity) will be adopted throughout most of the paper.
Section 3 then shows that an additional stationarity axiom allows u to be written
as u(xt)=o'f(x) with 0<a< | whether time is discrete or continuous. An inter-
esting aspect of the stationarity representation is that, for fixed 2, « can be taken
as any number between 0 and 1: our focus-on singular outcomes rather than streams
precludes unique determination of a. Given o, f is fairly rigidly determined in the
continuous-time case but lacks nice uniqueness properties when time is discrete.

Since stationarity is such a strong condition, the fourth section examines
representations that are separable in x and ¢ but not as specific as a'f(x). When
X =[0, 1], for example, we shall consider the separable form u(x, t)= p(t) f(x) with
p>0 and p strictly decreasing (due to impatience). It is noted that the separable
representation follows readily from a standard axiom in measurement theory (the
Thomsen [1927] condition) when time is continuous, but not otherwise.

The difficulty with separability in the discrete case leads to a formulation with
von Neumann-Morgenstern utility in Section 5.  Within this formulation, U has a
separable form if the preference order on gambles at a fixed time is independent of
the time index. This is true whether time is continuous or discrete.

Since concave utility functions are often relevant to economic analysis, we discuss
concavity briefly in the Section 6. We shall focus on concavity of fin the station-
arity context of Section 3 since we have nothing to add to previous results for
gambles.

The final section returns to Koopmans’s [1960] finding that impatience can
follow from other axioms. We shall prove there that a form of impatience
follows from prior monotonicity and stationarity axioms in conjunction with a
strong order-continuity assumption.

2. ORDER-PRESERVING UTILITY

The outcome-time structure used in our study is specified by the following axiom.
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AO0. X is a nondegenerate real interval; T is either a set of successive non-
negative integers or an interval of nonnegative numbers, and 0, 1€ T.

This section considers implications of four axioms for 2 on X x 7. The axioms
apply to all x,ye X and all s, te T.

Al. = is a weak order on X x T;
A2. If x>y then (x, t)>(y, 1);

A3, If s<t then x>0-(x,s)>(x, 1), x=0-(x,s)~(x, 1), and x<0->(x, t)>
(x, )3

Ad. {(x, O):(x, D=2 (y, 8)} and {(x, 1):(y, )2 (x, t)} are closed in the product
topology on X x T.

Axioms A1, A2 and A4 are typical ordering, monotonicity and continuity axioms.
The factor topologies in A4 are the relative usual topology when X or T is an
interval, or the discrete topology when T'is {0, 1,..., n} or {0, 1, 2,...}.

The third axiom is a composite impatience/procrastination condition. If 0e X,
then A3 says that 0 is a time-neutral outcome: the individual is indifferent between
getting 0 sooner or later. Given A2, we view positive outcomes as ‘“‘desirable’’
and negative outcomes as ‘“‘undesirable.”” The rest of A3 then says that reali-
zation of a desirable outcome is preferred sooner to later, and that realization of an
undesirable outcome is preferred later to sooner. The x>0 part of A3 is an impa-
tience assumption; the x <0 part is a procrastination assumption.

Our characterization of impatience for desirable outcomes holds to the spirit
of impatience in Bohm-Bawerk [1912], Fisher [1930] and Koopmans [1960].
Recently, Olson and Bailey [1981, p. 1] have argued that, excepting a special case
for infinite time horizons, the ‘“‘case for positive time preference is absolutely
compelling...both in the positive and normative senses’’ despite prior objections
by Stigler and Becker [1977].

Psychologists also have an interest in time preference. For example, Yates and
Watts [ 1975, p. 304] report an experiment in which money could be lost at different
future times that “‘offers direct support for the position that when [money] out-
comes are really perceived as aversive, in a substantial number of instances people
will prefer deferred outcomes to more immediate ones.”” Their finding supports
the procrastination part of A3. However, people who derive anticipatory pleasure
by deferring valued outcomes or who limit anxiety by advancing aversive outcomes
will violate A3.

Although A3 is open to exception within the context of the other axioms, it often
seems reasonable and, we believe, deserves analytical examination.

THEOREM 1. If AO0-A4 hold then there is a real valued functionu on X x T
such that:

(i) Sforall (x, 1), (y,s)e X x T, (x, )X (¥, s) iff u(x, ) =u(y, s);
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(ii) u is continuous and increasing in x, u is continuous in t if T is an interval,
and u (x, -) decreases (is constant, increases) in t if x>0 (x=0, x<0).

ProoF. If T'is an interval, the proof follows immediately from Proposition 4 in
Debreu [1964] or Lemma 5.1 in Fishburn [1970]. Assume henceforth that Tis
discrete.

Suppose first that 0 e X. Let v(x) be any continuous, increasing and bounded
real valued function on X, and set u(x,0)=v(x). If ne T/{0} and x>0, A2 and A3
imply (x, 0)>(x, n)>(0, n)~(0, 0), so Al gives (x, 0)>(x, n)>(0, 0). Then A4
implies that there is a unique x’ € (0, x) such that (x, n)~(x’, 0). Similarly, if x <0,
we get x’ € (x, 0) with (x, n)~(x’, 0). Finally, let x’=0if x=0since (0, n) ~(0, 0)
by A3, and in general set u(x, n)=u(x’, 0)=v(x’). By Al and the construction,
part (i) of the theorem holds, and it is easily seen that part (ii) holds also.

Suppose next that 0¢X, and for definiteness assume that x>0 for all xe X. Let
v(x) be as described in the preceding paragraph, and set u(x, 0)=uv(x). Construct
u(x, 1) as follows. If (y, 0)~(x, 1) for no y, xe X then our axioms require
(y, 0)>(x, 1) forall y, x e X, and in this case let u(x, 1) be a continuous, increasing
and bounded function on X such that u(y, 0)>u(x, 1) for all y,xeX. If
(y, 0)~(x, 1) for some y, x € X, then an upper segment of the X interval at t=1 will
have corresponding x’ € X over a lower segment of the X interval at =0 where
(x, 1) ~(x', 0), and for these pairs we take u(x, 1)=u(x’, 0). Let X*={xeX:
(y,0)>(x, ) forallye X}. If X*=g, we go to t=2. Otherwise, define u(x, 1)
for all x € X* as continuous, increasing and bounded with sup {u(x, 1):xe X*} =
inf {u(x, 1): x e X\X*} sor that u(x, 1) is continuous over X. It is easily checked
that if the lower end of X is closed, then the upper end of X* is open, and if the
lower end of X is open then the upper end of X* is closed, and therefore u(x, 1)
will be strictly increasing over X.

If 2 € T, define u(x, 2) on the basis of u(x, 1) in the same way that u(x, 1) was
based on u(x, 0), and repeat the procedure for u(x, n+ 1) on the basis of u(x, n) so
long as n+1eT. It is easily seen that u as thus constructed satisfies the con-
clusions of the theorem. Q.E.D.

3. STATIONARITY

Our stationarity axiom is stated in the indifference mode. It applies to all x,
veXandallt s, t+1,s+1€T

AS. If (x, t) ~ (y, t+7) then (x, s) ~ (¥, S+7).

This asserts that indifference between two time-dependent outcomes depends
only on the difference (1) between the times. If the two times are advanced or
deferred by the same amount, then indifference will be preserved. Some notion of
stationarity underlies evaluations that are based on constant discount rates.
However, we know of no persuasive argument for stationarity as a psychologically
viable assumption. and will therefore consider other axioms in the next two
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sections.

Stationarity is clearly independent of impatience. For example, A5 is com-
patible with either A3 or its converse: aspects related to this are discussed in
Fishburn [1970, Chapter 7]. The effect of AS coup]ed with A3 and our other
axioms is-noted in the next theorem.

THEOREM 2. If AO-AS5 hold, then, given any O<o <1, there is a continuous,
increasing real valued function f on X such that:
(1) forall (x, 1), (y,8)e X XT,(x,t) 2 (y, s) iff &' f(x) = o5f(y);
(i1) f(0) must be 0 if 0e X, and xf(x) must be positive for all xe X\{0};
(iii) if Tis an interval then f is unique (given a) up to multiplication by positive
constants on {x € X:x>0} and on {x e X :x<0}.

If the given « is changed in the representation, then f also must be changed. For
example, if X=T=[0, 1] and f, is the unique f—Dby (iii)—that satisfies the repre-
sentation when f,(1)=1, then f, and f; are related as fy(x)=[f(x)]* with k=
log f/log a. This follows easily from the proof of Theorem 2 for the continuous-
time case.

It may also be noted that if all outcomes in X are positive, then a?f(x) can be put
in additive form by taking logarithms: for example, we get (x, )= (y, s) iff g(x) —
1>g(y)—s.

PRrOOF oF THEOREM 2. Let AO-AS hold, fix ain (0, 1), and assume with no loss
in generality that x>0 for some x e X. If X has negative outcomes, these can be
dealt with independently of nonnegative outcomes (by A3 and A2) in a proof that
mimics what follows. Henceforth in this proof we assume that x >0 for all xe X.

The proof for off(x) will be split between the discrete-time and continuous-time
cases. A number of details that the reader can easily supply will be omitted to
keep matters relatively brief.

Discrete-time proof. Let a=infX>0 and b=supX. If (X, 0)>(X, 1),
ie., (x,0>(y, 1) for all x, ye X, then Al-A4 require 0¢ X, and A5 implies
(X, n)>(X, n+1) whenever n+ 1€ T. In this case let f be any continuous and
increasing function on X for which inff(X)=p and supf(X)=1 with a<f<1.
Then a"f(x)>a"*1f(y) for all x, ye X, so (i) of Theorem 2 holds. Moreover,
(i) requires f >0, for otherwise we get f(x) <af(x) for some x, hence (x, 1)=(x, 0)
by (i), which by A3 implies x <0.

Henceforth in the discrete proof, suppose there is some indifference between
t=0 and t=1, and for definiteness take (x;, 0)~(1, 1) with O0<x, and a<x,;<1
<b by A1-A4. Using (1, 1) and (1, 0), construct a dual sequence ...x,, x;, 1, x,
X5,... of decreasing x; and increasing x; that satisfies

(1’ 1) ~ (xla 0), (Xln 1) ~ (x2: 0)::
(1, 0) ~ (x, 1), (x1, 0) ~ (x5, 1),...
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t=1 T
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X
FiGure 1
as illustrated in Figure 1. The x; part of the dual sequence is nonempty: its be-

havior depends in part on the lower end of X. We enumerate possibilities.

LI. «=0 with 0e X. Then x;, x,,... is denumerable and x,, | 0 (x,, goes to
0 from above as m—o0). See the second paragraph of the proof of Theorem I,
and note that x,, | ¢>0 yields a contradiction.

m
L2, a>0and ae X. Then x, x,,... must be finite.

L3. a¢X. Then x,, X,,... can be either finite or denumerable. If denu-
merable then x,, | a.

m

The x} part of the dual sequence could be empty, nonempty and finite, or
denumerable. 1If be X then x/, x5,... must be finite, and if x;, is the last term
then (x,,. 0)>(b, 1). If x}, x5,... is denumerable then x),—b as m-—oo.

Let yo be any value in (x, 1) as shown in Figure 1, and construct a dual se-
quence ..., Va, Vi, Yo» V1> V5,... in the manner described earlier: (yo, 1)~(y,,
0), (¥, D~(¥2, 0)yees (Vo> OO~y D), (1), O)~(¥5, 1),.... By Al-A4, the two
dual sequences mesh as

LY, <X, <P <Xy <Y< <y <x) <

Let S denote the family of all dual sequences constructed in this way on the basis
of y, for all yoe(x,, 1]. Every two distinct sequences in S intermesh in the
indicated manner, and every positive x € X appears in exactly one sequence in S.

Define f on X as follows. If 0e X, set f(0)=0, as required for (i) by A3, and
set f(1)=1. Then for the sequence ..., x,, x, 1, x{, x3,... let

f(-\'.') = of
f(xf)y =i

for all applicable i and j, and note that, given « and f(1)=1, these are the only
possible values that will satisfy (i). Next, define f on (x;, 1) as any continuous
and increasing function with inff((x, 1))=a=f(x;) and sup f((x, 1))=1=f(1).
Finally, extend f for each dual y, sequence in S for x, <y,<1 in the only way
possible to satisfy (i):

f) = aif(vo)
) = a7 f(yo).
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The intermeshing and covering aspects of S ensure that f is positive, increasing
and continuous for x>0. If 0e X, L1 shows that f is continuous at 0. More-
over, all x>0 must have f(x)>0 if (i) is to hold.

It follows readily from the construction of f that part (i) of Theorem 2 holds
for all (x, 1), (y, s)e X x{0, 1}. By A5, the structure of = on (X, 2) versus
(X, 1) is precisely the same as the structure of = on (X, 1) versus (X, 0) when
2eT. With u(x, 1)=au(x, 0)=af(x), this means that u(x, 2)=au(x, 1)=0?f(x)
satisfies part (i) of the theorem for t=2 versus t=1. It then follows from tran-
sitivity that u(x, f)=a/f(x) preserves = on X x {0, I, 2}. The same argument
applied to successive integers in T shows that (i) holds on X x T.

Continuous-time proof. For convenience, assume that 1€ X. Let [a, b]
be a bounded closed interval within X with 1 € [a, b], and let [0, t*] be a bounded
interval in T, with a<b and 0<t*. Set f(1)=1. We shall note that f is then
uniquely determined on [a, b] in such a way that «’f(x) represents 2 on [a, b] X
[0, t*]. We can then expand [a, b] and [0, t*] as necessary in a countable num-
ber of steps so that every point in X x T'is covered by some [a, b] x [0, t*]. An
f with f(1)=1 is defined to satisfy (i) at each step: by uniqueness, each new f is
identical to its predecessors on their common domain. We thus get f defined on
all of X x T to satisfy (i), and it is unique, given f(1)=1. If the value of f(1) is
changed, say to A>0, then our construction shows that all other f values must
be multiplied by A to preserve (i), so f is unique up to multiplication by a positive
constant. (A similar result holds for f defined on negative x when X goes below
0. Different positive constants can be used in the two domains.) Clearly, f
must be increasing when (i) holds, and it follows from the construction that f is
continuous.

We work henceforth in [a, b] x [0, t*]. This region is covered by continuous
indifference curves of the type shown in Figure 2. The curve through (b, 0) is a

t* (b, 1%

(b, T (y))

FIGURE 2
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single point at (b, 0), and the same is true at (a, t*) unless a=0, in which case
the vertical line between (0, 0) and (0, t*) is an indifference curve by A3, and any
sequence like y*, y**, ... will be denumerable and approach 0 (cf. L1 in discrete
proof). If a>0, then the boundary point that is indifferent to (b, t*) at the upper
right corner can either be (y*, 0), as shown on the figure, or a point (a, t) for 0<
t<t*. When a>0, a sequence like y*, y**, ... must be finite (cf. L2).

Let 7(b)=0, and for each ye[a, b) with y>0 let ©(y) be the unique ¢ in (0, t*]
such that either (y, 0)~(b, 7(y)) or else there is a finite sequence )i, V..., Vu
such that (y, 0)~(y, %), (y1, 0)~(yas 1%)seees (Vu—15 0)~(yy, %) [with p,<b]
and (y,, 0)~(b, t©(v)). Figure 2 illustrates the latter for n=2. Let

G(y) = (0, z=(y) if (¥, 0) ~ (b, 1(»)
G(y) = (n, (¥) it (1, 0) ~ (yy, %), (s 0) ~ (b, T()))

for all positive v in [a, b]. If G(y)=(n, ©()) for y >0, then part (i) of Theorem 2
requires

F(¥) = (Yot f(b) = a"*+f (b) .

Given f(1)=1, this equation determines f(b) and then determines f(y) for every
positive y in [a, b]. 1f a=0, then f(0)=0 as before. We see that fis continuous
and increasing on [a, b]. (Continuity needs to account for the change from n
to n+1 in G(y)=(n, 1(y)), but there are no unusual problems with this.)

Our proof for continuous time is essentially complete if o'f(x) as just defined is
constant on each indifference curve in [a, b] x [0, t*], for then (i) will indeed
hold on the rectangle. In comparing (x, t) and (y, s), (i) clearly holds if either
x or y is 0, so assume that both x and y are positive. Given (x, t)#(y, s), we
can have (x, t)~(y, s) only if (y<x, s<t) or (x<y, t<s), so assume for definite-
ness that (y<x, s<t). Let z; be the value of x on the lower or left boundary of
the rectangle that gives indifference with (b, t¥). That is, z, € {y*, a} as shown
in Figure 2. With y<x, suppose first that z, <y. Then

(AS) (x, 1) ~ (y, s)iff (x, t —s) ~ (¥, 0)

(A1) iff (x, 1 — s) ~ (b, 1(y))

(A5) iff (x, 0) ~ (b, ©(y) — t + 5)
(A1) iff (b, 7(x)) ~ (b, ©(y) — t + 5)
(A2) iffr(x) =1(y) —t+s

iff ot () = orsore(»)
iffa’f(x) = «*f(y) (def. of f).

If z,=a, this completes the proof. Suppose henceforth that a<z;=y* Let
z, be the x value at the lower or left boundary of the point indifferent to (y*, t*),
so that z,e{a, y**}. We suppose next that z,<y<z,. If z;<x then, with
G(y)=(1, ©(») and (y, 0)~(y,, t%),
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(AS) (x, 0) ~ (v, )IfF(x, 1 — 8) ~ (v, 0)

(A1) iff(x, t —s) ~ (v, 1)
ifft(x) +1 — s =1* 4+ 1(y) (see above)
iffalf(x) = «5f(y) (def. of f);

and if z, <v<x<z, with G(x)=(1, ©(x)) and (x, 0)~(x,, (*), then

(A5) (x, 1) ~ (), 9)iff(x, 1 — s) ~ (1, 0)

(A1) iff (x, 1 —5) ~ (), %)

(AS) i (x, 0) ~ (00 1% — 1+ 5)
(A1) iff(x,, %) ~ (v,, * — 1+ 5)

iff t(x) + t* = 7(y) + t* — t + s (first case)
iffalf(x) = o3f(y) (def. of f).

If z,=a, this completes the proof. Otherwise, we continue in the manner just
indicated (define z;, use results just proved,...) until all possible x, y>0 in [a, b]
have been covered. Q.E.D.

4. SEPARABILITY

Although stationarity may fail to hold in many cases that seem suitable for
A0-A4, weaker conditions can lead to representations for 2 which separate the
effect of time preference from outcome preference. We shall comment here on
one such condition, which has been used previously by Debreu [ 1960] and others
for additive measurement representations. The following Thomszn condition
applies to ail x, y, ze X and all r, s, te T.

A6. If (x, )~(y, s) and (y, r)~(z, t) then (x, r)~(z, s).

1

f ~\ a a /~

-X (0,0) +X
FIGURE 3
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Because A3 and other axioms prohibit (x, 1)~ (v, s) when x<0<y or x<0<y,
interesting occasions of A6 arise only when all of x, v and = have the same sign.
Figure 3 illustrates the axiom for positive and negative outcomes. In either
domain, A6 says that {a~bh, c~d}—-e~f, and {a~b, e~f}—>c~d.

Although A6 is considerably weaker than A5 in the context of AO-A4, there
seems to be no simple defense of A6 in this context. However, the next section
offers justification for A6 within a richer structure of preference: we shall come
to that soon. Meanwhile, we remark that A6 is necessary for the type of sepa-
rability considered here and will now prove that it is sufficient when time is con-
tinuous.

The following theorem is stated only for nonnegative outcomes, for expository
convenience. A similar representation holds for negative outcomes. If there
are both positive and negative outcomes, we get say u(x, 1)=p(t)f(x) for x>0
and u(x, t)=0(t) f(x) for x <0, where f is continuous and increasing with f(0)=0,
and each of p and o are positive, continuous and decreasing. Because x=0 in
A3 separates the positive and negative regions, there need be no spzcial relationship
between p and o.

THEOREM 3.  Suppose A0-A4 and A6 hold, T is an interval, and X >0. Then
there are continuous real valued functions fon X and p on T such that:
(i) Sorall (x, 1), (3, )€ X X T, (x, (v, 8) iff p(0) f(x)=p(s)f (1)s
(ii) fis increasing with f(0)=0 if 0 X, and p is decreasing and positive;
(iii) f"on X and p' on Tsatisfy (i) and (ii) along with f and p iff there are positive
numbers k, k, and k, such that f'=k, f* and p'=k,p*.

Proor. Given the hypothesis of the theorem, let X+*={xe X:x>0}. It
then follows readily from Theorem 5.4 in Fishburn [1970] that there are contin-
uous real valued functions F on X* and G on T such that, for all (x, t), (y, s)€
XtxT

(x, H = (y, 5) it F(x) + G(t) > F(y) + G(s),

with F and G unique up to similar positive affine transformations. That is, F’
and G’ represent 2 along with F and G if and only if there are numbers k>0, b,
and b, such F'=kF+b, and G'=kG+b,. By A2 and A3, F must increase in
x, and G must decrease in r. In addition, if 0e X, then F(x) must approach
—oaoo as x | 0: cf. L1 in the discrete proof of Theorem 2.

Let ¢ be any number that exceeds 1, and definc

f(x) = cF™ forall xeX*
o(t) = ot forall teT,

and (for A3) set f(0)=0if 0e X. Then (i) and (ii) of the theorem follow.

FFor (iii), suppose {f, p} and {f’, p'} satisfy (i) and (ii). Given any c¢>1, let
F=log.fand F'=log.f' on X*, and let G=log,p and G'=log.p" on T. By the
uniqueness result in the preceding paragraph there are k>0, b, and b, such that



