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Repeated Two-Player Games with Ruin' )

By R.W. Rosenthal, Murray Hill?), and A. Rubinstein,Jerusalem®)

Abstract: The class of repeated two-player games (with long-run average payoff criterion) is exten-
ded to accommodate initial holdings of wealth and the pogsibility of ruin. Equilibria of these games
are studied under the assumption that each player regards his own ruin as the worst possible out-
come of the game and his opponent’s ruin as the best possible outcome.

. I, Introduction

In recent years increasing effort has been devoted to the study of equilibria of
infinitely-repeated games. Interest in this subject probably stems from the recognition
that cooperative behavior is widely observed in real-life situations which do not in-
volve binding agreements, that such behavior occurs in equilibria of noncooperative
games when the indefinite future is a factor in players’ preferences, and that infinite
repetition of a single game is a relatively uncomplicated model in which co-operative
play in equilibrium can be observed.

In modelling infinitely-repeated games one is immediately faced with the question
of how a player’s preferences over infinite sequences of payoffs is to be specified. One
possibility is for the player to maximize some form of long-run average of his own
payoff sequence, thereby implicitly assigning all of the weighting to the tail of the se-
quence. This is the choice in much of the literature [see, for example, Aumann, 1959;
Aumann/Shapley; Kohlberg, 1975; Rubinstein, 1977, 1980]. (Actually, not alt of these
references are concerned exactly with repetition of a single game. In some the infor-
mational conditions may change as time advances, but in all cases there is significant
similar structure attached to the possible games at each stage.) In all of these papers
the assumed preferences of the players give no weight to the payoffs received at any
particular stage of the game, and this feature has profound influence on the structure
of the equilibrium (or perfect equilibrium) set.
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Another part of the literature [e.g., Cave] avoids the all-weight-in-the-tail objection
by assuming maximization of a geometrically weighted average of the player’s own
payoff sequence. This “discounting” approach has many desirable features, but it
still posits a significant restriction about the form of preferences.

In the present paper we study repeated games in which “impatience” in preferences
is assumed to arise from the possibility of ruin. What we have in mind is that in many
situations (primarily economic ones) permanent effects can occur in the “short-run”
(like economic ruin, preemption, elimination of competition, etc.). These effects can
be of overwhelming importance to players: and only after they are taken account of
can consideration be given to, say, the long-run average of the payoff sequence. There
is a small literature on games involving ruin [e.g., Milnor/Shapley,; Shubik; Shubik/
Thompson], and there has also been some attention to the related subject of repeated
games with absorbing states [e.g., Blackwell/Ferguson; Kohlberg, 1974]; but no gen-
eral picture has yet emerged concerning the general structure of the equilibria (or
classes of equilibria) which can come about in such games. The goal of the present
paper is to make some progress in that direction.

More specifically we shall consider here the special case of two players, starting
from initial positions of wealth, repeating the same “stage game” infinitely often at
discrete points of time. The wealth positions of the players are altered after each
repetition by the addition (or subtraction) of the payoffs in the stage game to {from)
the previous-period wealth positions, A player’s ruin occurs if his wealth becomes
nonpositive before his opponent’s does. (We adopt the following convention in the
event that both players’ wealths first become nonpositive after the same stage. Assume
that the payoffs from any stage game are distributed to the players uniformly in time
between the successive plays of the stage game. Updating wealths continuously, if one
of the players’ wealth positions hits zero before his opponent’s does he is the ruined
player; if both hit zero simultaneously both are ruined.) Each player’s least preferred
payoff sequences (in the grand “ruin game™) are those in which he is ruined. Each
player’s most preferred sequences are those in which his opponent alone is ruined.

In between are all those sequences which ruin neither player, and these last se-
quences are ordered relatively according to the limit of the player’s own sequence of
average payoffs. This preference structure is admittedly quite special. What we are
attempting to capture is the situation in which ruin forces a player to withdraw to
some other game which is surely less favorable to himin the long-run than any sequence of
payoffs in the present game and in which the ruin of his opponent leaves a playerin a
position for the long-run which is more favorable than any sequence of payoffs in the
present game. For example, as 2 monopolist a player might expect earnings worth more
than anything he could hope to achieve as a duopolist; and any short-run costs incurred
in becoming a monopolist could be more than offset by the future benefits. (To extend
the assumed preferences to games with more than two players, some choices would
have to be made from among various alternatives, We shall refrain from a discussion of
such options in this paper.)

The preferences described above are purely ordinal. In this paper no cardinal assump-
tions on preferences will be necessary, since all uncertainty is ruled out. There are no
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chance moves in our games, and no randomization is permitted by the players either
within a stage game or across stages.

We are interested in (Nash) equilibria of the two-player ruin games described above.
Although a complete characterization of such equilibria is not achieved in this paper,
we do produce results which reveal a great deal of simple, interpretable geometric
structure in a subset of the equilibria for these games. These equilibria are in some re-
spects similar to the familiar equilibria of the “Folk Theorem™ [see Aumann, 1976] in
ordinary repeated games. In the equilibrium strategies of this paper (as in the “Folk
Theorem™) the players keep track of relatively little information about the history of
play. In other respects, however, our equilibria exhibit features which seem new, and
the striking new piece of information which the players monitor in these strategies
is the ratio of their current wealths. The way in which this statistic is used by the
players is sometimes subtle, but we suspect that it is not unrealistic.

The rest of the paper is organized as follows. Notation and definitions 'for the model
are presented in Section 2. In Section 3 those ruin games are characterized in which
one of the players can bring about the ruin of his opponent alone, no matter what the
opponent does. In Section 4 the approachability idea of Blackwell [1956] is used to
provide necessary conditions for an arbitrary positive pair of numbers to be the long-
run average payoffs of some equilibrium in which neither player is ruined. In Section S
sufficient conditions are established which are similar to but not quite the same as the
necessary conditions. Still (as pointed out in Section 8) these conditions together
generalize the “Folk Theorem™ when it is applied to our setting. Section 7 is devoted
to a constructive proof of existence of equilibrium; but this existence result requires
some extra assumptions, and Section 6 is devoted to some preliminary lemmas as well
as to examples which do not satisfy the assumptions and do not possess equilibria.
Section 8 contains a discussion of several features of the model and results.

2. The Model

Let'= (X, Y, u, v) be a two-person game in normal form. In T’, the players are
named I and 2; the respective action sets are X and Y, each of which is a compact
subset of some topological space; and the respective payoff functions are u and »,
each of which is a function from X X Y into R (the reals) assumed continuous in the
product topology. Let My = (Ko, Lo) be an element of R, ( the subset of R?
composed of strictly positive pairs). We are concerned here with repetitions of T',
payoffs from which are added to initial stocks of wealth M,.

A ruin game is specified by a pair (T, M,,) as above and is composed as follows. A
strategy for Player 1 in (T', M, ) is a sequence f = {f}, fa, . . .) where f; is simply an
element of X and, forn 22, f, is a function from (X X Y)*-! into X (no randomi-
zation is permitted). F is the set of all such strategies for Player 1. The strategy set
G for Player 2 is defined similarly. If (f, g) is any strategy pair in (T, M),

o, (f, g) denotes the pair of actions played at the n-th repetition of T, i.e.,

0y (f, 8 = (f1, 81), and, inductively,
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o, (=0, (01 (£8),....0,, (. 8))g, (01 (i 8)....0,,(8)

forn=2,3,... Player 1’s wealth after the n-th repetition of I' is
K,(e)=K, (& +u(o, ) forn>1(K, (f, g) =Ko). Similarly,
L, (f, g) is Player 2’s wealth after the n-th repetition of I'; and M, (f 8=
X, (£ 8),L, (f, &). For the pair (f, g), the ruin time NV = inf

{n>1: M, (f, g) €R3,}. I N < oo, let

X=min A€, 1:\My, (,£) + (1 =N My, (£ ) €RLY;
and if
7TKN o+ _X)KN.l e=0,

we say that (f, g) ruins Player 1. Similarly for Player 2. (Note that both players are
ruined only if N < e and

My, (f,8) + (1= X) My, | (f,8)=0)
In words, draw the line between M, ; and M,,. If it passes through the origin, both
players are ruined; if it first crosses the horizonta) axis, only player 2 is ruined; if it
first crosses the vertical axis, only Player 1 is ruined.

In any ruin game, the players have complete, transitive preference orderings over
the set of all strategy pairs which either lead to ruin of one (or both) players or
generate Cesaro summable payoff sequences in the repetitions of T'. Each player’s
most preferred strategy pairs are those that ruin his opponent but not himself (the
player is indifferent among all these). The least preferred pairs are those that ruin
himself, regardless of whether they also ruin his opponent (again indifference among
all of these). In between are those pairs that ruin neither player, and those pairs are
ordered by each player according to the Cesaro limit of his own payoff sequence.

Accordingly, a strategy pair (f*, g*) is an equilibrium of (I, M,) if any of the
following three conditions hold.

1) (f*g*) ruins Player 2; and, ¥ g € G, (f*, g) ruins Player 2.
2) (f*, £*) ruins Player 1;and, V f€F, (f, g*) ruins Player 1.
3) Neither player is ruined by (f*, g*), the limits

.1 XN 1 N
u*=1lim — 2 u L g®andy*=lim — % . g*) exist, and
N—PmNna]_ n(f*g) N—PoeNn=1vn(f*g)

i) for every fE€ F: (f, g*) does not ruin Player 2 alone, and either (f, g*) ruins
Player 1 alone or

o
liminf

ii) for every g € G: (f*, g) does not ruin Player 1 alone, and either
(f*, g) ruins Player 2 alone or

N
El (u, (f, g") —u*)<0;and
n=

...l N ow
hjr{}_.ulfN nz:l v, ™ 5 —v"<0.
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We say that f™ is a best strategy for Player 1 if v g € G, (f*, g) ruins Player 2 alone.
{Note that this represents a strengthening of Condition 1).) Similarly for Piayer 2.
Some additional notation and terminology will be helpful in the remainder of the
paper. In R? the locus of points lying on any straight line through the origin with
nonnegative (possibly infinite) slope will often be identified with the angle between
the line and the horizontal axis. In Figure 1,! € [0, #/2] is such a line. If 4 is any
point in R? and / € [0, 7/2], then a ® ! denotes the line through a parallel to  (see
Figure 1). Qbviously, 0 ® /=1/. For any such a @] let A (g ® [) denote the closed
half space above and/or to the left of a @ I (see Figure 1), and B (z ©7) denote the
closed half-space below and/or to the right of 2 ® /. Similarly SA (2 @) (resp.
SB (a @ I)) denotes the corresponding open half-space strictly above (resp. strictly
below) a @ I. The pair (u (x, ), v (x, ¥)) will often be denoted w (x, y); and
w (x, *) denotes

{w:w=w(x, y)forsomey €Y}

Similarly for w (*, ¥). The set W C R? is 1-enforceable in T" (enforceable by Player
1)if 3x € X such that w (x, *) C W. Enforceability by Player 2 is defined similarly.

Ala®.£) g

o

— &

Fig. 1

3. Best Strategies

This section provides a geometric characterization of all ruin games (T, M, ) with
the property that there exists a best strategy for Player 1. (Evidently, in such games,
all equilibria involve the ruin of Player 2.) There is an obvious analogue when the
players’ names are reversed.
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Theorem I: Let

z-=sup{7e [o,g] VOIS SB(Dis l-enforceablemr}.

Then Player 1 has a best strategy in (T, M, ) if and only if M, €SB (I*).
Before proving Theorem 1 we shall illustrate the argument of the proof by censtruc-
ting a best strategy for Player 1 in the followigg example.

Example 1: X = {a, 8,7}, Y = {9, ¥}. The functions u and v are read in the customary
way from the following table. ‘ o

¢ y
(G4 | G4
*l 4 d
ﬂ ("“41_3) ("4:_3)
a a
(4:1) ('_l :_4)
L b

Tab. 1

(See Figure 2.) In Example 1, it is easy to see that I* = n/2. Therefore, according to
Theorem 1 Player 1 has a best strategy for every Mo .

\

Ly

Fig. 2
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Case 1: My €SB (I ). In this case Player 1 simply plays §. M, moves on the line
(M, 1) in the direction indicated in Figure 3, crossing the u-axis before the

p-axis.
v

£o

7
/Moelo

e
d

Fig. 3

Case 2: My €SB (I,) N A (). In this case Player 1 begins by playing . Whatever
Player 2 does, M, is of the form My + n [Ab + (1 — N) ¢]. From Figure 4 it is clear
that for some N, M,, €SB () and M, | €4 (1,)). If My, € B (0), 2 is ruined alone;
otherwise M,, €SB (/) and 1 continues as in Case 1.

Case 3: Mo €A (1,)). Here Player 1 begins with «, eventually forcing M, into SB (I, ).
The strategy continues as in Case 2.

Proof of Theorem 1: Suppose M, & SB (I*). Then I* # /2, and SB (I*) is not 1-
enforceable. Therefore, for every x € X there is y (x) € Y such that w (x, y (x)) €4 (I*).
For any f€ F, choose g such that 2’s move at any time is y (x) adapted to the x

selected by f. Thus M, €A ("), ¥ n >0, and 2 cannot be ruined alone.

Suppose M, €SB (I*). Pick T< 1* such that M, € SB (7). It will be sufficient to show
that there exists a finite collection of subintervals Iy .., Iy in[0,!]and

Xgs -+, X1 €X such that if M, is on an element oij and Player 1 chooses X; from

(n + 1) on, then 3 m > n.such that M, lies on some line in f, , with j > h (where [,
denotes B (0)), and 1 is not ruined between n and m. Forx € X,

C, =UE, T} e ) S SB (O}

is an open interval m[O, T]. From the hypothesis of Theorem 1 {C, } is an open cover
of [0, T]. Let {C*}, el Ci, Jbea muumal subcover. We may assume that

1, =sup ij > sup Cxqu = li-l (5o =0.).



/// |
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Let M lie on an element of I C . There exists l I 1 such that
*j

w (x *)CHB (l )JNB (l p)andw (x , V)}is bounded away from the origin umfonnly
for all yeEY. NowM G SB (I ); M, 1emains in SB (I ); and therefore 1 is not ruined
(see Figure 5). After a finite number of repetitions M must enter SB ( 1) and thus
: must be on a line inf,, withj>h
- Notice that the same argument establishes.

‘ Remark 1:If v I€[1, T), SB (I) is 1-enforceable, then if M, € (L, 7) Player 1 can
dnve M, into SB (1) without himself being ruined.

4, Necessary Conditions for Nonruining Equilibria

Section 3 was concerned with ruin games in which all equilibria involved the ruin
of one player. Here we describe necessary conditions for any nonnegative pair
(u®, v*) ECH to be the long-run average payoff at some nonruining equilibrium, where
CH is the convex hull of the set of feasible payoff pairs in T i.e.

CH =conv ({w(x, y:x€X,yEY}).

The key idea in establishing our necessary conditions is Blackwell’s “approachability”.
First, we need to introduce notation for the average payoff in the first # repetitions of
I'. Accordingly, let

_ 1z _ _1 n -
u,,(ﬁg)=-,;m§1um(ﬂg), v,,(f,g)—;mflvm(f,z),andwn-(u,,,vn)-

Now, let W C R? be a closed set. W is 1-approachable (in repetitions of T} if  fEF
such that v € > 0, 3 NV () such that for all n > N () and for all g € G, the Euclidean
distance of the point w, (f, g) from the set W is less than €. (Of course, 2-approacha-

bility is defined similarly.) The first lemma is a direct application of Theorem 1 in
Blackwell [1956] to our setting.

Lemma 1: Lete > 0. Let W =B ((0, — ) ® ) N B ((0, v) @ 0), and let a be the vertex
of W as in Figure 6. Then W is 1-approachable if and only if VI€[0, 7], B (@ ® ) is
l-enforceable.

Some additional notation and definitions are now necessary. If / is any line in
[0, 7/2] and (, v) > 0 ER? then

@MN=BNHNB{0,»)e0)and wh=A () NA ((u, O)e%).

See Figure 7.
Remark 2: If (1.v) is 1-enforceable then it is 1-approachable.
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Lemma 2: Let My €1,y . Assume that for every I € [ly, 7/2] the set ({.»*) is not 1-
approachable in repetitions of I". Then for every f € F, there exists g € G such that
either Player 1 is ruined in (T, Mo ) orlim'inf* ¥, (f, g) >v* "~ - s

L g ) - o

Strategy g in the proof of Lemma 2 has a sithple-form. The idea is that
{lo, m/2] is subdivided into a finite collection of intervals. When M, is on aline in one
of these intervals, Player 2 has a response to Player 1 which guarantees for himself
strictly more than ¥* on average or drives M, into the next higher interval. Thus

either 1 is ruined or 2 receives at least v* in the long rub. ~

Proof of Lemma 2: For every line ! € (0, n/2], let V (I, v*) denote the vertex of the
set (1.v*) and for every I € [lp, n/2],let o ' ' o

Hp={> T B(V (i, v*) @ T)is not 1-enforceable}.

(In Figure 8, for a typical x EX, w (x, ) €B (V (I, v*)® 7). If this were the case
for all x € X, it would follow that / € H;.) The following are immediate.
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Now, let I = (H\ {7}). From 2) and 3), Iy is an (possibly empty) open interval.
From 1) and 4), {IT}TG(O /2] COVeTS the interv'al [fo, #/2]. Hence there is a minimal
finite cover {Il~ sees ,I~ } (listed in increasing order). Forj =1,... ,k— 1 choose

B in (I N I ) and Bk = nf2. For a given strategy f the strategy g required by the

I.cmma will be constructed in k phases. In the first phase g selects y €Y in responce
to 1’ planned x such that w (x, ¥) €SA (V (B, v* + €,) @ I ), where ¢, > 0 is small
enough that such a selection is possible for every x. (See Figure 9.) Strategy g contin-
ues in this phase until M, enters 4 (B, ). Player 2 cannot be ruined in this phase

(since I; <1I,); and if phase 1 never ends then lim inf7, (f,g)>v* Forj=2,...,k,
n—roo

Player 2’s strategy £ is in phase j whenever M, € (4 (ﬂ 1) SB (,Gi)) In each such

phase j, 2’s g picks y such thatw (x, y) € S4 (V(ﬁ v"'+ )9 I) As before if any

phase continues indefinitely then lim inf 7, ¥4 > Ve (Of course, Player 1 can be
Nn—>oo

ruined alone in any of these phases.)

—

Fig. 9

Theorem 2: Suppose (T, My) has a nonruining equilibrium with long-run average
payoff w* = (u*, v*) on the line I*. Then

(1) ifly =1!* 3121, such that (/.v*) is 1-approachable; and
(2) ifly <I* F1=1*such that (I.v*)is 1-approachable.
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Proof: (1) is immediate from Lemma 2. Assume then that /, <I* and for every

1€ * =/2], (I.v*) is not 1-approachable. It follows that 3 7' <I* such that for every
1€, 1*}, (.v*) is not 1-enforceable; and, indeed, ¥ I € {7, n/2], (I.v*) is not 1-
enforceable. Now, at the equilibrium, /, ~I*, where M, €1 ;hence 3 N such that

M), € A (7). But substituting M, for M, in Lemma 2, we see that 2 can deviate and
do better than v* from V on.

The obvious analogues of these conditions with the players reversed are also
necessary for stationary equilibria.

5. Sufficient Conditions for Nonruining Equilibria

We tum now to sufficient conditions for any strictly positive pair (u*, v*) € CH
to be the long-run average payoff at some nonruining equilibrium. The gap between
the sufficient and the necessary conditions is mainly in the notion of approachability
used in this section.

For sets of the form (1.v) and (u'7) we introduce a strengthening of approachability.
(1.v) is I-strongly approachable if (1.v) is 1-approachable and SB (J) is 1-enforceable.
Similarly for 2-strongly approachable with S4 (7).

The following are useful consequences of Lemma 1 and the above definition.

Remark 3: 1f (I.v) is 1-strongly approachable and 1< 1r/2 then 37>1, N, and
f 1-approaching (I.v) such that ¥ g €G and ¥V n > N, w .9 EB ().

Remark 4: 1f (I*.v*) is 1-approachable and 3 T>I*suchthat v/ e[I* 11 SB()is
1-enforceable, then (I.v*) is 1-strongly approachable.

Theorem 3: Let 0 € w* = (u*, v*) € CH, where w* is on the line I*. Suppose M, is
on the line 7, and there exist lines /, and J, in (0, 7/2) with

LoP>L L > >,
(1,.v*) 1strongly approachable, and (u*l;) 2-strongly approachable, then there

exists a nonruining equilibrium with long-run average payoff w* (See Figure 10.)

Proof: Let w* be a convex combination of {w (x;, yi)}{ﬂ. Evidently there exists a
sequence {z, } such thatz, € {(x, y,.)}‘i'=1 for every n and

N - -
lim (1/N) El w (z,) =w*. Let NV be such that for all V> N
n=

N
¥, E W) E6B@)NS ).
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Fig. 10

According to Remark 3 there is a line [; > l, ,a number &, , and a strategy _
f' € Fsuch that f' 1-strongly approaches (7;.v*) and ¥ n >N, , w, (. 8)€B ().
Similarly define g, I, and N, . Let

r=WN+N, +N, + 1)max || w (x, ») II.
xly

We are now ready to define a nonmixﬁng equilibrivm strategy pair (/*, g*) which
realizes w*. The strategy pair is composed of three parts.

Part 1: Player | begins with an action % which 1-enforces SB (I, ). Similarly Player 2
begins with  which 2-enforces SA (I, ). These actions are played until the first time
n, at which one of the following two events occurs.

* Neither player has deviated from (%, 7) and the distance from Mho to both
1, and I, is greater thanr.

**  Player 2 (resp. 1) has deviated from (%, 7) some time in the past, and the
distance from Mno to I; (resp. I,)is greater than r.

If * occurs the strategies continue with Part 2 below. If ** occurs the strategies
continue with Part 3 below.

Part 2: The players play according to the sequence {z,,} until a deviation occurs. After
a deviation they continue with Part 3.

Part 3: The players continue with (', £').
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Notice the following:

a)  If Player 1 uses % on every play, then whatever 2 does M, remains in B )
and after a finite number of repetitions the distance from M, to I, must be
greather than r. Similarly for Player 2 with 7.

b) I£M, €SB (L), the distance from M, to [ is greater than (Vy + 1)
maJJ;c llw (x, ) I, and 1 uses f” after ng, then M, €SB (1) for every n and the

lim inf of Player 2’s average payoff sequence cannot exceed »*. Similarly when
the players are interchanged.

If there are no deviations, then from a} Part 1 ends after a finite number of iterations
and neither player is ruined during Part 1. If there are no deviations, after Part 1
terminates Part 2 continues forever and from b) neither player is ruined. From the
defining property of {z,}, if Part 2 continues forever (*, g*) realizes w*.

We will next show that (f*, g*) is an equilibrium. Assume first that Player 2 deviates
during Part 1. From a) Part 1 must terminate without ruining Player 1; hence Part 3
is entered with 1 playing f'. From b) Player 2 cannot gain from the deviation. Assume
next that Player 2 deviates during Part 2. At the time of the deviation M, must be in
SB (I;) and the distance from M, to 7, must be larger than (V; + N,) max 1w L, ) .

Applying b), the deviation cannot be profitable for Player 2. Interchangmg the players
completes the proof.

6. Existence: Preliminary

We are now ready to begin discussing the general question of existence of equili-
brium in ruin games. Additional assumptions are evidently necessary; consider, for
example, as I" the game “matching pennies’ with no randomization. For any M,
any fixed strategy in the ruin game by either player will obviously result in his own
ruin alone if the opponent responds appropriately. We are led therefore to impose
the following.

Assumption 1. X and Y are convex (compact) subsets of vector spaces. The function
u is concave in its first argument and convex in its second. The function v is convex
in its first argument and concave in its second.

In the familiar situation of X and ¥ being the mixed extensions of finite sets, the
restrictions of Assumption 1 are not strong ones. In our context with no randomi-
zation permitted, however, they are. On the other hand, since we hope that our
results can be extended ultimately to situations involving randomization and other
sources of uncertainty, we shall exploit what this assumption permits.

In fact, although familiar from classical existence results, Assumption 1 is not
quite enough to guarantee existence of an equilibrium here. Before presenting a
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counterexample, however, it is helpful to establish an additional lemma which employs
Assumption 1. For fixed I" consider the following partition of [0, 7/2]. Let

T, = {I: SB () is 1-enforceable}

T, = {I: SA (I) is 2-enforceable}

T, =([o,§]\m ur,)).

Obviously T, and T, are disjoint. Furthermore, since T; and T, are evidently open in
[0, /2], T, must be closed. Any of these sets may, of course, be empty.

Lemma 3: Under Assumption 1, for every [ € Ty, B (I) is 1-enforceable and A () is
2-enforceable.

Proof: Fix 1 €ETy. For every y €Y, let ¢ () be the set of x € X which maximize
the distance between the parallel lines (w (x, ) @) and /, subject to the constraint
that w (x, y) €B (). Since ! & T, , ¢ () is nonempty; and from Assumption 1 ¢ is
a convex-valued (see Figure 11) compact-valued, upper-semicontinuous correspondence.
Similarly, let ¥ (x) denote the set of maximizers of the same distance, subject to the ..
constraint that w (x, ) €4 ({). The correspondence (¢, ¥/) mapping X X Y into itself
satisfies the hypotheses of Kakutani’s Theorem and therefore has a fixed point. Any
fixed point of this correspondence is, however, a pair (x, ) with the property that
x l-enforces B (I) and y 2-enforces A ().

Now for the counterexample.

v

wix'y)

Aw(x, yHH1-A)wixy)

o wlAx+{I-\)x\y)
wix,y)

Fig. 11
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Example 2: X and Y are both copies of the unit simplex in R*. The functions « and
v are the usual linear extensions of the payoff pairs read from the following symmetric
table.

a b '

«a}l—1,-1 1,1 1,—1

B 1,1 —-1,—1| —2,1

v | —11 1,—-2 | —1,—-1

Tab. 2

We will argue that for this I' and for M, on the line 7/4, (I', M, ) has no equilibria.
First, for I it is a relatively simple matter to check that:

=17 L =1;.7 LS =]
Tl —{I.0<l<4}; T2 —{1.4<I<2}1T0 {4}'

The action « 1-enforces B (n/4) in I. For any ! <n/4 an appropriate convex combina-
tion of @ and y may also be seen to 1-enforce SB (/). Considerations of symmetry
complete the argument for the structure of Ty, T}, and T, . From Theorem 1, there-
fore, if in (T, My ) M,, ever leaves {r/4}, one of the players has a best strategy beginn-
ing from that time. Next, suppose that (f*, g*) is an equilibrium of (T, M, ). Player 1
has a response to g* such that he is not ruined; namely, play (1/2, 1/2, 0) until the
first time at which g* calls for ¥’ with nonzero weight, at this time play a, and from
the next repetition on initiate a strategy which ruins Player 2. It follows from sym-
metry that neither player is ruined at (f*, g*) and that M, remains forever in
{n/4}. Therefore at each time n Player 2 places zero weight on v’ and a weight of at
least .6 on o' (otherwise Player 1 can respond to bring M, into SB (w/4)). The
symmetric argument implies that Player 1 always places no weight on 7y and weight
of at least .6 on . But any such sequence ruins both players, a contradiction.

In the light of Example 2, more structure is needed to guarantee that equilibria
exist. The following assumption will be seen to suffice in Section 7.

Assumption 2: For every I €[0, 7/2]: if B (I) is 1-enforceable, so is (B (D) \ {0});
and if A (7) is 2-enforceable, so is (4 (I} \ {0}).

Without going into details, for any of the spaces of games customarily dealt with in
the literature, Assumption 2 holds “generically”. With Assumption 2 we can establish
some more geometrical facts which will turn out to be useful in the next section.

Lemima 4: Under Assumptions 1 and 2, if I* € T then there exists € > 0 such that
either i) or ii) holds.

i) I€@* *+¢e)impliesIE T,
andl € (I*—¢, I*)implies/ € T,.
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ii)7€(* 1*+¢)implies! ET, 3
and € (* —¢, I*)impliesIET,. -

g

Proof: Let x* 1-enforce B (I*) and y* 2-enforce 4 (I*) (by Lemma 3). From Assump-
tion 2 we may assume that x* 1-enforces (8 (I*)\ {0}) and y* 2-enforces (4 (I*) \ {0}]
It follows that w (x*, »*) is either strictly positive in both components or strictly nega-i
tive in both components.

Case 1: w (x*, y*) > 0. Consider the intersection of the set w (x*, «) with I*. This
intersection must consist only of strictly positive pairs; for otherwise for some |
Y E€Y,w(x* y)would lie in the second quadrant of R?, a contradiction. From the 7
compactness of ¥ and the continuity of w, it should be clear that in Figure 12 x*
l-enforces SB (I), for € (I*, I* + €). The lines in this interval are thereforein T;. .
A symmetric argument establishes that the other half of i) holds. o

Case 2: w (x*, y*) <0. A similar argument establishes ii).

Lemma 5: Under Assumptions 1 and 2, [0, 7/2] is structured- as follows. Ty is a finite _
set. Each open interval between two neighboring elements of T, lies entirely in elthef
T; or T, and these intervals alternate as to their classification. The alternation ex-

tends to the half-open (when Ty, is not empty) intervals on either end of [0, m/2]. 2

(When T, is empty [0, 7/2] is entirely in either T or T, .) . » ‘1
v :
e s
£ it
g
Wt
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Proof: All but the finiteness of T follows from Lemma 4 and the fact that T, and .
T, are open. If T, were not finite, it would contain an infinite sequence of disjoint
elements {lj} converging to some ! € [0, m/2]. But T, is closed, hence I € Ty. From

Lemma 4 there is a neighborhood of ! which is contained in ({I} U T; UT,),a
contradiction.

7. Existence: Construction
This section is devoted to a constructive demonstration of

Theorem 4: If (T', M, ) satisfies Assumptions 1 and 2, then it has an equilibrium.

The construction involves consideration of several cases. For the most part the equi-
librium strategy combination has the following form: if M, is in the guaranteed-ruin
region of Theorem 1 (or its analogue for Player 2), then (of course) the player possess-
ing a best strategy employs it and the other player’s strategy is arbitrary; otherwise,
the players employ strategies as in the proof of Theorem 3. For certain starting regions
certain modifications in this construction must be made.

Because of the repetitious nature of the construction, we shall be somewhat less
formal with this argument than in the rest of the paper.

Case 1: My €lo €T, 1/2 > 1*=min {€ Ty: 1> 1p}. 3 (u*, v*) E1* which is
(weakly) Pareto optimal in CH (see Figure 13).

v

L€ 1,

(u*,v*)
loE T2

Fig. 13

First note that (/*.»*) is 1-enforceable, since /* € Ty and (u*, v*) is Pareto optimal.
By Remarks 2 and 4 and Lemma 4 there exists /, € T, (I; > I*), such that (I;.v*) is
1-strongly approachable. Similarly there exists I, < lo such that (u*1,) is 2-strongly
approachable. Theorem 3 applies.
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Case 2: My €1y €Ty. 3 e > 0such that: ifI € (ly —¢,lp) thenlE€T,. I W™ v*H El,
(weakly) Pareto optimal in CH.
The argument is similar to that of Case 1.

Case 3: Same as Case 1 except n/2 ={*=min € Ty:1>1,}.

In this case, we define the strategies as follows. Player 1 plays throughout a constant
x which 1-enforces B (m/2). Player 2’s strategy is in two phases. At first he plays to
2-enforce SA (Ip). When L, becomes sufficiently large that M, ., cannot be driven

below Iy, he switches to a best response to x. If Player 1 ever deviates, Player 2 picks a
sequence {{; } - /2 and plays in stages such that in the x-th stage he drives M, into

SA (1) (see Remark 1). Player 2 thereby drives Player 1’s average payoff to zero.
Player 2 obviously has no profitable deviation.

Case 4: My €1y €ETy. Je>0s.t.:if IE (I, —¢, lp) then I E T

a) There are no other lines in T, .
Here if M, ever leaves ly, one of the players can be ruined (Theorem 1). Our con-

struction calls for Player 1 to 1-enforce B (Ip) and Player 2 to 2 -enforce A (I,) as
long as M, remains inl (otherwise, the appropriate player uses his best strategy).

By Assumption 2 the ruin of both players results, but neither player can avoid
ruin by deviating.

b)*=min {{ €Ty:1>1,}. 3 (u*, v*) EI* (weakly) Pareto optimal in CH.
The equilibrium strategy pair here is similar to that of Case 1 (or, when
I* = n/2, Case 3). The only change required is at the beginning in order to
move into T, since Player 2 can only afford to 2-enforce A (/o) \ {0}. Player
1 therefore plays only to 1-enforce B (I*) at the first play while Player 2
2-enforces A (Ip) \ {0}. Deviations at the first play are treated in the obvious
way. Player 1 cannot gain by attempting to keep M, on Iy, however, since anything
he plays to keep M, on l; results in the ruin of both players.

Case 5: Same as Case 1, but the largest (u*, ¥*) €1* is not (weakly) Pareto optimal in
CH, and all Pareto optima are on lines above I*.

In Case 5 the difficulty with employing the strategy from Case 1 is that (u*-1*)
need not be 2-enforceable, and Player 1 might have a profitable deviation from Part 2
of the strategy pair. The construction now requires that (#*, »*) be replaced as the
target of Part 2 of the strategy pair by a new pair (&, ¥). The location of (&, 7) depends
on the location of (u’, ¥') — the “nearest” Pareto optimum to /, — and is specified in
the subcases below. The first parts of the equilibrium strategies are in all subcases
similar to what we have already seen. Details about these parts will be omitted in the
interest of brevity.

a) (u', ) E T, . (See Figure 14.)
In this subcase (i, ¥) = (&', v"). There exists /; € T, such that (/,.7) is 1-strongly
approachable (Remark 4) and ("1, ) is 2-strongly approachable. Theorem 3 applies.
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b) (', ¥') €T, . (See Figure 15.)
In this subcase I, must lie in an interval of T, below the interval containing (', v').
The point (&, 7) is set to either (", »") or (u”, »™) (as in Figure 15) according to
which has the larger first component. In the first event the players will use strate-
gies to 1-enforce SB (J) for some ! € T, greater than [, and to 2-enforce SA (Io).
A slight modification in Theorem 3 completes the proof.

c) @, v)ET,.
In this subcase (i, ¥) = (u’, v'). (It is immaterial which of the two possible Ty, T,
configurations surrounds the T, line containing (u', v').)

Case 6: Same as Case 5 except all Pareto optima lie on lines below /*,

a) (', v") in the same T, interval as /,.
Set (@, ¥) = (', v').

b) (', v') in the T, line which forms the lower bound of the T, region in
subcase a).
Set (@, ¥) = @', v").

All other subcases are similar to subcases of Case 5 with the roles of the players
reversed.

If we add to the above the regions in which best strategies exist and the cases
which differ from the above only in the roles of the respective players, we find that all
possibilities have been covered.

8. Discussion

When w (x, ¥) = 0 for all (x, y) €X X Y, ruin is impossible. In this case our equili-
brium conditions are the same as those for ordinary repeated two-person games with
long-run-average payoff criterion. For such games the “Folk Theorem™ states that
(u*, v*).is the long-run average payoff to an equilibrium of (I, My ) if and only if:
©* v") = lx, y),v(x, ) forsome (x, y) EX X Y, and

u*>min maxu (x, y)=u
yeY xeX

y* > min max v (x, )= ».
xeX yeY

This theorem is implied by our Theorems 2 and 3 as follows. If y* > v then 3 x such
that v (x, y) <v*forall y € Y. Thus ((n/2). v*) is 1-strongly approachable. Similarly
(u*-0) is 2-strongly approachable. Hence Theorem 3 applies. Conversely, if (u*, v*) is
the long-run average payoff at an equilibrium then (no matter where /, is) 3 1 > *
such that (I.v*) is 1-approachable. Hence 3 x such that v* >v» (x, y) forally €7, i.e.
y* >y, Similarly, u* > u.

In the “Folk Theorem” the equilibrium strategies are “grim™: deviations are
punished (with constant punishment) forever in such a way that the deviator is made
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Fig. 14

(u|l| 'vlll )

Fig. 15
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worse off in the long-run than if he had not deviated. The equilibrium strategies dis-
cussed in this paper are similar even when ruin is possible. They are not always exactly
as in the “Folk Theorem” in two respects. First, when one player can ruin his
opponent, he does. Second, the players must protect themselves against deviations
which could force them into their respective ruining regions. This makes necessary a
transient phase in general for the equilibria which may, in some cases, not end.

Finally, some remarks about assumptions in our general model. First, the notion
of ruin we have adopted is quite special: especially the identification of the ruined
player when both wealth positions become nonpositive at the same play. An alterna-
tive would be to have both players ruined at such times. This alternative leads to
somewhat messier results we think, since strategies in equilibrium must depend in
even more detail on the location of M, . A possibility is to adopt this notion of ruin,
but to confine the analysis to situations where || M, || is sufficiently large. This
possibility leads to results quite comparable to those of this paper, although the
proofs are a bit more cumbersome.

Another interesting extension of our model would be to allow randomized actions
at each time. We have avoided that possibility here because it would necessitate a
cardinal description of the players’ preferences, and thus assumptions about trade-offs
between ruining and various non-ruining outcomes. In addition, the analysis becomes
significantly more difficult when a pair of strategies can lead to the ruin of either
player with probability strictly between zero and one; see, for example, Milnor/
Shapley [1957].
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