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An aggregation procedure merges a list of objects into a representative object.
This paper considers the problem of aggregating n rows in an n-by-m matrix into a
summary row, where every entry is an element in an algebraic field. It focuses on
consistent aggregators, which require each entry in the summary row to depend
only on its column entries in the matrix and to be the same as the column entry if
the column is constant. Consistent aggregators are related to additive, linear and
projective aggregators. Journal of Economic Literature Classification num-
bers: 025,213, © 1986 Academic Press, Inc.

1. INTRODUCTION

Many aggregation problems in economics and other areas share com-
mon structural features. This paper explores an algebraic formulation for
aggregation that captures much of this commonality and offers a unifying
framework for the analysis of diverse aggregation problems.

Following the appearance of Arrow’s impossibility theorem [1], social
choice theory has studied logical restrictions on ways to aggregate
individuals’ preferences into social preferences [4]. Robert Wilson, in a
remarkable but largely ignored paper [7], pioneered the extension of the
social-choice approach into other areas by asking “whether procedures for
aggregating attributes other than preferences are subject to similar restric-
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TABLE 1
i J
1 2 m
X1 X1z Xim
Xa1 X223 Xam
X3 X3y X3m
n Xal Xn2 Xnm
h) £() f0)

tions” (p. 89). The current paper renews Wilson’s concern. We believe that
its main contribution is the adoption of a unifying algebraic framework for
the theory of aggregation.

We consider the situation illustrated in Table 1. Each element in the »-
by-m matrix is contained in an algebraic field B, and each row is a
vector x; = (x,;,..., X;,) in a designated subset X of the vector space B™ over
the field B. An aggregator f is a mapping from X into X:

f(xl 3enes xn) = (fl(xl’"'s xn)r“!fm(xl’"'i x,,)).

We consider the real field R and finite (Galois) fields for B and will focus
on so-called consistent aggregators. These require each f; to depend only
on the elements in column; and to have value b when every element in
column j is b.

We stress that a great variety of aggregation problems can be modeled
within this algebraic framework. The parameters n, m, B, and X and the
interpretations of the rows and columns in the matrices to be aggregated
are subject to choice. We illustrate possible choices by descriptions of five
problems that include the requirements imposed on consistent aggregators.
Table 11 shows how these problems fit into our formal model. GF(2) is the
Galois field of order 2 where B= {0, 1}.

ProBLEM 1. Each of n experts assigns a probability distribution over m
states. The aggregator is to assign a probability distribution over the m
states that depends on the individuals’ distributions. The aggregate
probability for each event is to depend only on the individuals’
probabilities for that event.

The same formulation applies to aggregation problcms in which a single
person numerically rates each of m objects against each of » criteria.
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TABLE I

Formulation of Five Aggregation Problems

Problem #
and type n m B Xin B™
1: Experts or Events R {(x.,x™):x’>0and
Probabilities individuals Tx=1}
2: Individuals Event ratios R {(x"...., x™): ¥ >0 and
Probabilities Jover I[Ix=1}
Jj+1{mod m)
3 Voters Candidates GF(2) {(0,.,0,1,,0,..,0):
Voting 1<j<m}
possibilities
K
4: Voters Ordered pairs ~ GF(2) {(Xp)icnckckin {0,1}(2):
Orderings of candidates >witha>kifxy, =1,
k>hifx;; =0,isan
ordering}
K
5: Equivalence Pairs of GF(2) {(xu)i<chr<ckin {0,1}(2):
Equivalence criteria items mwith hxkiff x, =11is
relations an equivalence relation }

PrOBLEM 2. Probabilities are to be aggregated as in Problem 1, and
probability 0 is never allowed in a distribution. Unlike Problem 1, we now
require that the ratio of the aggregate probabilities of any two events shall
depend only on the individuals’ probability ratios for those two events.

PrOBLEM 3. Each of n voters is to vote for one of m nominated can-
didates. The determination of each candidate as the winner or a loser is to
depend only on the voters’ reactions to that candidate.

ProBLEM 4. Each of n individuals is to submit a total ordering of K
social alternatives—a typical assumption in some social choice problems.
The aggregator is to provide a social ordering of the K alternatives that
satisfies Arrow’s binary independence condition (social preference between
two alternatives depends only on the individuals’ preferences between those
two) and Pareto unanimity (if every individual prefers a to b, then a is
socially preferred to b).

A similar formulation applies to non-voting situations. An individual-
tastes example of the type considered by May [6] assumes that a person is
to rank songs according to her tastes. She may simply say that s, ranks
ahead of 5, because she likes s, more. However, such a preference may be
based on more primitive factors such as originality, rhythm, emotional
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content, and chord structures, so her holistic ranking can be viewed as an
aggregation of other relations.

ProBLEM 5. In a classification situation, a population of X items, such
as flowers, firms, or football teams, is to be partitioned into subsets of
similar items. The classification may be based on more primitive
equivalence relations, each of which corresponds to a row of the matrix.
For example, rows for flower classifications might refer to color, number of
petals, growing season, and so forth. The aggregation combines the
primitive relations into a global equivalence relation. The global
equivalence of any two items is to depend only on the primitive relations
between those two.

These descriptions illustrate a few of the situations in which algebraic
aggregation theory is applicable. We comment on them further in later sec-
tions. The next section says a little more about the algebraic orientation of
our approach, then defines consistent aggregators and other types of
aggregators that are used in our analysis. The third section presents basic
aggregation theorems for special X structures.

2. AGGREGATORS

Throughout, n and m are positive integers greater than or equal
to2, and B is a field (see [5] for background on finite fields). We view
B™ as a vector space over B: with (x',..,x™), (y',...y™)eB™ and
beB, (x', X+ 0y =("+y4., x"+y") and b(x!,., x")=
(bx',.., bx™). We say that Y < B™ is a linear subspace of B™ if the restriction
of B” to Y is a vector space over B (closed under the same addition and
multiplication operations as for B™}). A translate of a linear subspace ¥ of
B™ is a set of the form Y+ x={y+x:ye Y} with xe B™. In addition,
Y< B™ is a hyperplane if there are b;e B for j=1,.., m and be B such that

Y= {ye B™: i bjyfzb}.

i=1

A hyperplane in B™ is a translate of a linear subspace, for if
Y={yeB™ Y b,y =b} then any set of the form Y — x for fixed xe Y is a
linear subspace of B™. On the other hand, a linear subspace need not be a
hyperplane.

We always assume that X = B™ with | X] = 2. Vectors in X will be written
as x,x;, and (x;,., X;,). A constant vector (a,..,a) in B™ or X will
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sometimes be denoted as a. Similar symbols for column vectors in B” will
be used in some proofs, with appropriate warning,

An aggregator is any mapping f: X" - X. The set of all aggregators is
denoted by F. A key aspect of this definition, which could be relaxed in a
more general approach, is that f(x,,..., x,) must be in the same “feasible
set” X as each of its arguments. The Jth component of f(x,,..,x,) will
sometimes be denoted by Si{X sy x,), 5O

f(xl reey xn) = (fl(xl LAt xn)r'ﬂfm(xl L] xn))‘

Depending on the setting and purpose of aggregation, it may be natural
to impose certain constraints on aggregators. Two such constraints, applied
to all (xy,.., x,) and (x,.., x\) in X" and all jin {1,..,m}, are

C<l - (xlj’---v xnj) = (xlljy---’ x::j) =>f}(x1 LR xn) =]_‘r(x’1 LAt x;l)
Co. (Xyp X)) = (b, b) = fi%) ey x,) = b.

Condition C, is an independence condition which says that the jth com-
ponent of the aggregator shall depend only on the jth column of the
aggregation matrix. In preference aggregation, C, might indicate that the
group preference between candidates ¢, and ¢, shall depend only on the
individuals’ preferences between those two candidates. In straightforward
subjective probability aggregation, C, says that the consensus probability
for state j depends only on the individuals’ subjective probabilities for that
state.

Condition C, is a unanimity, constancy, or faithfulness condition. If
everyone prefers ¢, to c,, then ¢, is socially preferred to ¢,; if everyone
assigns probability 0.4 to state j, then the consensus probability for state ; is
0.4; if two flowers are equivalent for every classification criterion, then they
are holistically equivalent.

Each column interpretation in the preceding two paragraphs is only
meant to illustrate one way of identifying columns in each context. In the
votinig context or the probability context, columns could be interpreted dif-
ferently with corresponding and different interpretations of C, and C,.

We refer to aggregators that satisfy C, and C, as consistent aggregators
and let

Fe={feF:fsatisfies C, and C, |3

We regard F, as a preeminent class of aggregators and will focus on it in
the present work. Since Arrow’s impossibility theorem and related results
tell us that consistent aggregators may have initially unsuspected proper-
ties, we consider their relationships to other classes of aggregators. Some of
these are useful and interesting in their own right.
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One such class is F,, the set of additive aggregators. With X the projec-
tion of X on its jth coordinate,

F,={feF:fsatisfies C,, and f(y + z) =f;(y) +f(2)
for all j<m and all column vectors y and z

for which y, z, y +ze X7}.

A closely related class is the set Fg of normalized linear aggregators:

Fg={ fe F: there exist A,,.., 4,€ B such that
Z4i;=1 and, for all (x,,..,x,)e X",
SX s Xp) = Zix,}.

It is easily shown that if X is a translate of a linear subspace of B™ then
every function f(x,,..., x,)=ZA;x; with Z4,=1is in Fs.

Our final general class of aggregators is the set F, of projection
aggregators (dictatorial aggregators):

Fp={feF:there is an i€ {1,.., n} such that, for
all (x;,., X,) € X7, fXy500 X)) =X }.

Note that F,c Fgc F,.

3. HYPERPLANES AND LINEAR SUBSPACES

This section presents a general theorem for consistent aggregators on
hyperplanes, then considers ramifications of the theorem and related
results. Specific applications are discussed in the next section.

THEOREM 1. Suppose m >3 and X = {(x',..,x")e B™: X;b,x’ =b} with
b;#0 for all j<m. Then FccF,.

Remark 1. As shown by the following proof, the theorem is true also if
b;#0 for at least three j if the projection X; is a singleton for each for
which b;,=0.

Proof. Throughout the proof of Theorem 1, y and z denote n-element
column vectors in B", and b denotes the n-vector with b as each com-
ponent. Assume the hypotheses of the theorem along with fe F.. We are to
show that fe F,. It suffices to work with m =3 since extension to larger m
is straightforward.
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Consider first the aggregation matrices M, and M,:

M,=(y0,1)
M2=(0,'Z—ly, t) Witht=(b"b1y)/b3.
2
Since f(M,) and f(M,) are in X,
b fi(y)+0+byf(t)=b,

0+5,/, (%:—y)+b3f3(t)=b.

and therefore b, f,(y) = b, f5((b,/b;) y).
Let w=[b—b,(y+2)3/b;. Then M, and M, are in X when

My=(y+2z0, w) and M,=(z, (bllbz)y’ w).
Since f(M;), f(M,)e X,

bifily+2)=b—b;f3(w)
b f1(2) + b2/5((b1/b2)y) = b— b, fi(w),

so that

bifiy+2)=b.£i(z) + by f5((b, /b2)y) = b fi(2) + b, fL(»).
Thus fi(y +z) =£,(y) + f1(2). A similar proof applies to j>1. |

Our first corollary gives a bounded version of Theorem 1 when B=R.
Because of its relevance to applications, we focus on nonnegativity.

COROLLARY 1. Suppose m>3, X={(x'..,x")eR™: Zbx'=b and
x' 20 for all j} with b and all b, positive. Then F. F,.

The proof is a repetition of the preceding proof with nonnegativity
checks.

The next corollary provides a condition that forces all aggregators to be
in Fg as well as in F,,.

COROLLARY 2. Given the hypothesis of Theorem 1, let f be in F. Then
SfeFsif Bis a finite field, or if B=R and every J; is continuous or monotone.

Proof. Assume the hypotheses of Theorem 1 along with fe F, so that
SfeF,. If Bis a finite field, let 1,=f,(e}), where &} is the column vector with
1 in position i and 0 elsewhere. By additivity for general y,
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1 0 0
0 1 :

FAVIETSY B2 I B371 B EaRAE 'S 0 =Ly
0 0 1

Then the generalization b,f,(y) =b,f.(b;/bi)y) of the similar result for
(J, k}=(1, 2) in the proof of Theorem 1 implies f}(y) = X4y, for everyj, If
B=R then, as in the finite case, we get f,(y)=2Z4,y, for integral y, then
fiy)=2A,y, for a rational subset of R"” that is dense in R". Either
monotonicity or continuity implies that the linear form holds for all y e R",
Finally, given ae B, a#0, since a=f,(a)=X4,a, £1,=1 and therefore
feFs. |

The restriction of m >3 (or b;#0 for at least three ) is important in
Theorem 1, since otherwise the theorem can fail Consider m=2,
B=1{0,1}, and b, =b,=b=1, so X=1{(1,0),(0,1)}. Take n=2, let
f{x,, x3)=(1,0) when at least one x, is (1,0), and let f(x,, x,)=(0, 1)
otherwise. Then f'is consistent, but not additive, since additivity would give

owto1e1 (0 ()13 (3) 4 ()

We conclude this section with observations on the projective or dic-
tatorial aggregators in Fp.

The following theorem says that if B is a finite field and X is not a trans-
late of a linear subspace of B™, then Fp=F.n Fyg, i.e., every linear con-
sistent aggregator is dictatorial. The proof of this theorem demonstrates the
algebraic approach’s potential in the theory of aggregation.

THEOREM 2. If B is a finite field and F-\Fy# Fp, then X is a translate
of a linear subspace of B™.

Proof. Let B be a finite ficld and suppose that fe (FonF)\Fp with
S(x1ps X, ) =Z4,x;, where TA,;=1. With x#0 fixed in X and Y=X—x,
we claim that Y is a linear subspace of B™, and therefore need to prove that
it is closed under addition and under multiplication.

Assume that y,,..,y, are in Y. Then y,+xec X for alli, and therefore
ZA(y;+x)=2Ay;+xisin X and X4,y,is in Y. Since 0 Y, it follows that
yeY=AyeYforalliIf ,¢ {0, 1} for some i, then all scalar (b€ B) mul-
tiples of yeY are in Y since B\{0} = {4, 42, 13,..} by virtue of the fact
that the nonzero elements of a finite field B form a cyclic multiplicative
group. Suppose A€ {0, 1} for alli. Then, since f¢ F, by assumption, at
least two 4,=1, say 4, =4,=1 for definiteness. Since y and 0 are in ¥,
Ay+d,y=(4+4)pe Y. If A +4,#0, then, since A,+4,%1, the
preceding argument for B\ {0} with 4, + 4, in place of i, shows that ¥ is
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closed under multiplication. On the other hand, if A,+A4,=0, then
B=GF(2), and again we get closure under multiplication since B= {0, 1}.

It remains to prove that Y is closed under addition. Let A, and 1, be
nonzero 4;, and let =4, 4,. Clearly, u+#0, and there is some X > 0 such
that p* =1, so uXy =y for all ye Y. Since it follows from (ye Y= 41,y€e Y)
in the preceding paragraph that A%~ !iXy and AXA%X-1z are in Y when
¥, ze Y, we conclude that y+ ze Y whenever y, ze ¥ since

y+z=pfy+ufz=20QAF 1Ay + L4825 2).

Hence Y is closed under addition. ||

4. APPLICATIONS TO PROBABILITY AGGREGATION

Although the preceding resuits apply to many different kinds of
aggregation problems, we shall illustrate them with two examples of
probability aggregation,

Suppose first that each of n experts is to be consulted for his or her
probability distribution p;= (p,;,..., Pi,) Over m = 3 mutually exclusive and
exhaustive events. Their distributions are to be aggregated in such a way
that the aggregation for eventj depends only on the individuals’
probabilities for event j. If the aggregator is to satisfy C, and C, also, then
Coroliary 1 with

X={@p'.p"):p=0and Zp'=1}

implies that it is additive. If it is also required to be continuous, then
Corollary 2 says that the aggregator is a weighted sum of the experts’
probability vectors with nonnegative weights that sum to 1.

Our second example gives a simple proof of an unpublished result of
Kim Border (see also [2]) that was suggested to us by Ed Green. Let

do={(p",r p"):p’>0 and Sp’ = 1),

with all probabilities strictly positive. We apply the consistency conditions
to ratios of probabilities rather than to single-event probabilities as in the
preceding paragraph. For all p,=(p, . Pim) a0d pi= (D}1 s Pin) 1N A
(i=1,.., n), and all distinct j and & in {1,.., m}, assume the following:

(Cy) if py/py=py/pi for alli, then the aggregate probability ratios
for j and & are the same;

(C2) if py/pa=> for all i, then the aggregate ratio is b.
Since (p’,.., p™)€ 4, is determined by positive p/*!/p/ for j<m—1 along
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with p'/p™—so (p*/p')--- (p™/p" ") (p'/p™)=1—Theoreml can be
directly applied to X defined as

X={(log (p*/p"),.., log (p™/p™ "), log (p'/p™)): pe 4o}
= {(x',... ") e R™: Zx/=0}.
Since (C,) and (C,) imply that the aggregator for X" is in F., Theorem 1

implies that it is also in F,, and if continuity is assumed also, then the
aggregator is linear: symbolically, for allj<m—1,

Agg (log (¢/*'/p')) =3, 4;108 (pij+1/py)

=log [n (pij+ 1/17:‘,')1'],

and similarly for p'/p™. These imply that the aggregate probability for
event j, based on p;= (Pi1,..., Pim) fOr i<, is

I'L(Pg)“
Zkl—[i(pik)li

5. WILSON SETS

Our final three sections take B=GF(2) or, equivalently, B=Z,, the
integers modulo 2. In B™,

e;=1(0,..., 0, 1 (position j), 0,..., 0)
1—e;=(1,.., 1, 0 (position j), 1,.., 1).

The present section focuses on X< B™ that are suggested by Wilson’s
analysis [7]. Wilson does not assume that X (his attribute space) is mul-
tidimensional. Our use of {0, 1}™ provides a concrete geometric inter-
pretation for some of his ideas.

Our first observation is a direct implementation of Corollary 2.

COROLLARY 3. Suppose mz3 and X={(x',..,x"):3Tx'=b} with
be{0,1} and X< {0, L}™. Then Fo=Fy.

When m=3, the two X sets that satisfy the hypotheses of the corollary

are
(p=0) {(1,1,0),(1,0,1), (0, 1, 1), (0,0,0)},

(b=1)  {(1,6,0),(0,1,0),(0,0,1), (1,1, 1)}.
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In terms of edges of the unit cube, the set for b = 0 consists of the three ver-
tices adjacent to (1, 1, 1), plus (0, 0, 0), the complement of (1, 1, 1), The set
for b= 1 consists of the three vertices adjacent to (0, 0, 0), plus (1, 1, 1), the
complement of (0, 0, 0). For general m, the =0 and b=1 sets are com-
posed of vectors with an even number of 1's and an odd number of s,
respectively.

With Arrow as well as Wilson in mind, we now consider X that yield
Fo=F,, ie, that force all consistent aggregators to be dictatorial. We
know from Theorem 2 that if F.< Fg and X is not a translate of a linear
subspace of B™, then F.=F,. The W-sets defined in the next paragraph
satisfy this condition on X (proof omitted).

We say that points in {0, 1} are adjacent if they differ in exactly one
coordinate, and are complements if their sum is 1. Given X< {0, 1}", Xis a
Wy-set if it consists of three or more points adjacent to a given vertex. In
addition, X is a W;-set if m>3 and it contains every point adjacent to a
given vertex and every point adjacent to the complement of the given ver-
tex, but contains neither the given vertex nor its complement. If a W,-set
has k <m points, then it will be constant (]X,| = 1) on all but k¥ dimensions.
It turns out that the dimensions on which it is constant can be ignored in
the proof of our next theorem: see Remark 2 following the proof of the
theorem. Hence, for now, we assume without loss of generality that a W,-
set consists of all points adjacent to a given vertex.

By complementary changes of variables, all W-sets are isomorphic to
{€1,.s €}, and all W -sets are isomorphic to a W -set that satisfies

0,1¢X,
e,eX  foreachj,

1—e;eX  foreachj.

THEOREM 3. If X< {0, 1}" is either a W-set or a W -set then Fo= Fp.

Proof. For convenience, we adopt the canonical representations of W-
sets in the preceding paragraph, and will let x, y, 0, and 1 denote column
vectors in B”". Given the hypothesis of the theorem, we assume that fe F..
Our first task is to prove that f, is the same for allj. Letting
g=fi=" =f,, it is then shown that g is additive, so that f is additive.
Linearity for f then follows from the argument used in the proof of
Corollary 2, and fe F, is implied by Theorem 2,

To verify fy=f,=--- =f,,, we need only show that f, =/,. Consider
aggregation matrices

M0=(y’ 1 . 0""1 0),
M,=(y,1—y,1,.,1).
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Since M, is in X™ for both W, and W,, fe F. implies for both cases
that f,(y)=0=/,(1—y)=1. Matrix M, for W, also gives fi(y)=1=
fo{l—y)=0, and matrix M, for W, yields the same implication. Since
X;={0, 1} for both cases,

Sip)=1-f(1—y)  forall ye{0, 1}"

This hoids for every two indices. Therefore, since m >3,

L) =1-f(1=y)=1-[1=£f(»})]=1iy)

and hence f;=f,.
Let g=f,= -+ =f,,- We show next that

g(x)=g(y)=0=g(x +y)=0, (1)

so assume for now that x and y are fixed and that g(x}=g(y)=0. Let
N(of) = {i: the ith components of x and y are « and B, respectively} for
a, fe{0,1}, and let 1, be a column vector with 1 for all ie4 and 0
otherwise,

To verify (1), assume first that (1, 1, 0,..., 0) ¢ X, which must be true if X'
is the canonical Wy-set. Contrary to (1), suppose g(x+ y)=1. Then the
matrix

(lN(l())s 1N(01)’ lN(ll)uN(OO)s 03---; 0)

implies either g(1y0)=0 or g(lye,)=0 since g(0)=0 and
g(lyanuneo) =8{(1—(x+y))=0. Assume for definiteness that
g(l N 10)) = 0. Then the matrix

(lN(l())r lN(Ol)uN(ll)( =y lN(OO)’ 0..90)

implies g(1 0y} =1 since its other aggregators are 0. Next,

(lN(OO)’ IN(OI)!IN(IO)U N(ll)( =x)s 0’---, 0)

gives g(1 .1, =0, since otherwise its f'is (1, 1, 0,..., 0), which is not in X by
prior assumption. Finally,

(IN(lO)a lN(Ol)b 1N(ll)u N(0O)» 0""9 0)

yields a contradiction, since its f is (0, 0,..., 0).
This verifies (1) if (1, 1, 0,..., 0) ¢ X, so assume now that (1, 1,0,..,0)e X
and that X is a W,-set. Then

(x’ ¥ lN(OO): 05-"5 O)GXna
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and it implies g(1 y.0y) = 1, since g(x)=g(y)=g(0)=0. In addition,
(Inwoys L, x4 Yy, x+y)e X7,

and to prevent its f from being (1, 1,.., 1), we require g(x+ y)=0. This
completes the proof of (1).

As explained in the opening paragraph of this proof, it remains only to
show that g is additive. This follows from (1) if g(x) =g(y) =1, for we then
have g(1 —x)=g(1—y)=0, hence

O=g(l-x+1-y)=g(—x—y)=g(x+y).

Moreover, if g{x)=0 and g(y)=1, then g(x+y)=1, for otherwise
y=(x+y)+xand (1) imply g(y)=0. Since this covers all cases, the proof
is complete. |

Remark 2. 1t is significant that the W, part of the preceding proof
never uses an aggregation matrix with more than three nonconstant
columns. This shows that, since the dictatorial functions forj that have
|X;|=1 are the same as all other consistent functions for thosej, the
Fp conclusion applies to all W-sets as originally defined. Moreover, it has
another implication which bears on the question of the X’s that imply
Fe=Fp. In particular, we can use it to verify that there are X’s that force
Fo=Fp and are neither W, nor W,-sets. Consider m=5 and

X={e}iu{l-¢}u{l},

which is not a W,-set. The {e;} by themselves force F.=F, and, since
every x € X that is not an e; has at least four 1’s, the W, proof is unaffected
by their presence. In other words, this X forces F= F, by the preceding
W, proof.

6. APPLICATIONS TO ARROW IMPOSSIBILITY

We illustrate Theorem 3 by proving a variant of Arrow’s theorem. Let
Jj=1,2,3 correspond respectively to ba, ac, and ch. Let x,;=1 if voteri
prefers the first alternative in j to the second, with x,=0 for the opposite
preference. The W -set situation is

ba ac ch preference order
e 1 0 0 bea
e 0 1 0 abc
2

e 0 0 1 cab
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The three preference orders allowed by {e,, e,, e;} form a “cyclic” set. If
voters’ preferences are restricted to this set and the social order is also
restricted to this set and satisfies C; (binary independence) and C, (Pareto
optimality), then the W, part of Theorem 3 shows that one of the n voters
dictates the social order.

To get the full flaver of Arrow’s result, we form the W -set by adding the
1—e; to the ¢; of the preceding paragraph. This generates the other three
total orders on {a,b,c}, namely bac, acb and cha. The W, part of
"Theorem 3 then says that if fe F., there is one i such that f(x,,.., x,)=x,
for all (xy,.,x,)e[{e;}u{l—e;}]" Arrow’s dictatorial conclusion for
m 24 is obtained by an immediate application of this result to overlapping
three-candidate subsets that have two candidates in common.

7. SUMMARY OF GF(2) AND m =3

Table III provides a summary of relationships between consistent
aggregators and other types for all symmetric subsets X< {0, 1}* with
three or more elements. We use two aggregators not defined previously,
namely the conjunctive aggregator

F, ={feF:thereisanonempty Nc {1,..,n}
such that, for all j < m and all
(xl gevesy xn) € anfj.‘(xla---’ xn) = Hi’e Nxzj}:

TABLE III

Summary Implications for Consistent Aggregators for X in {0, 1}* and Al n22

1 X1 X Type Result Reference
3 {100, 010, 001} W, Fe=F, Theorem 3
{110, 101,011} W, Fe=F; Theorem 3
4 {0, 100, 010, 001} F,.cF, Compute
{1, 110, 101,011} F, cF. Compute
{0, 110,101,011} Hyperplane F.=Fs Corollary 2
{1, 100, 010, CO1 } Hyperplane Fe=Fg Corollary 2
5 {0, 1, 100, 010, 001} Fc=F, 3]
{0, 1, 110, 101, 011} Fc.=F, (3]
fe,Ju{l—¢;} W, Fe=Fp Theorem 3
{0, 1}3\{0} F,cF. Compute
{0, 1}\{1} F,.cF. Compute

8 {0,1}3 Fgc Fe Lemma 1
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and the disjunctive aggregator

F, ={feF:thereis a nonempty Nc {1,.., n}
such that, for all j < m and all
(X150 X,) EXT, fi(X 150y X, ) =1 =T T;en (1 — x) }.

The relevant citation to the text is given in the final column of the table,
where “compute” invites the reader to check this result. The results for
|X]=15 apply to equivalence relations as discussed in Fishburn and
Rubinstein [3].

The inclusions in the table are all proper. For example, the first X given
for |X| =4 has fe F. when [ is determined by majority quota a> 4, ie.,
Jf;=1if there are at least na 1I's in column j, but this f is not generally in
F,. A majority quota f>2 gives the same result for the second X for
| X} =7. Note that the F.= F, conclusion is valid only for Wilson sets.
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