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1 INTRODUCTION

Whenever we have to choose a rule of behaviour we are confronted with
the following dilemma: on the onc hand we would like the rule to serve
our goals and interests in the best possible way, and on the other hand we
would like the rule to be as simple (as uncomplicated) as possible. As
economists, we very often feel that it is unreasonable to allow economic
agents to choose arbitrary rules of behaviour. Frequently we restrict the
sct of fcasible rules by omitting those which are ‘not simple enough’.
However, it is only recently that economic theorists have begun to model
explicitly the endogenous choice of complexity of rules of behaviour. It
is the purpose of this paper to introduce the reader to some of these
developments.

One can think of a variety of reasons for an economic agent’s desire
to reduce the complexity of his rules of behaviour. A more complex rule
is more likely to break down; it is more difficult to train an agent who is
supposed to carry it out; it may take more time to use and so on. But we
do not address the sources of the advantages of simple rules in this paper.
Rather, we just assume that complexity is ‘costly’.

A rule of behaviour instructs an agent on what to do whenever he
has to act. At each instance the action is an application of the rule. It
is assumed that the agents are not restricted in their ability to choose
the optimal rule of behaviour. Neither do they take into account the

*The paper follows Rubinstein (1986) and Abreu and Rubinstein (1986). My deep
thanks to Dilip Abreu for his cooperation while working on our joint paper.
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complexity of the ‘meta-rule’ by means of which they choose the optimal
rule of behaviour. Thus we do not deal with the complexity of the optimal
choice of the rule of behaviour.

From a wider perspective, we follow a direction of research advocated
a long time ago by Herbert Simon (see, for example, Simon, 1957, 1978).}
Simon argues that economists should expand the scope of their research to
include questions of ‘procedural rationality’. We have to deal not only
with what decisions agents make but also with Zow they make them. The
actual processes of decision making in organisations and the bounds of
rationality of human beings should be represented in the formulation of
the economic model. Although Simon has received worldwide recognition,
his ideas have had a limited impact on mainstream economic theory. The
reasons are quite clear to anyone who has tried to embed ‘bounded ration-
ality’ ideas into economic theory. It is very difficult to formulaie the
decision making process. There is a sense of arbitrariness and ad hocness in
any model in which the decision-making procedure is simply grafted onto
a basically traditional model. I believe that in the absence of a more firmly
established methodology, however, we can fruitfully address some issues
ol bounded rationality even in ad Aoc models.

Our main aim is to explore the effect of introducing considerations of
complexity of the rules of behaviour on the equilibrium outcomes of
games. When the complexity of rules of behaviour is included in the
model, is ‘predicted behaviour’ approximately the same as that in a standard
model in which complexity is excluded?

2 THE BASIC MODEL

Since this chapter is supposed to be only an introduction to the topic I
will restrict myself to a detailed discussion of a single example. Two
players, she, player 1,and he, player 2, are involved in a long-term relation-
ship. Every night she decides whether to date him or to date an alternative
‘outside option’ and he buys the tickets either for his favourite entertain-
ment, ‘Football’, or for hers, ‘Ballet’. She likes most meeting him at the
Ballet (pay-off 3) and she dislikes Football most even if he is at her side
(pay-off 1). The outside option is in between (pay-off 2}. For him, the
outside option is a dreadful event (pay-off 0). He likes dating her at the
Football stadium (pay-off 3) and Ballet is a second best to not meeting
her at all (pay-off 1).

Thus the basic (one shot) situation can be described by the following
2 X 2 game:
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Ballet Football
Dating him 3,1 1,3
Outside option 2,0 2,0

This one-shot game has a unique equilibrium in which he buys football
tickeis and she chooses the outside option. This equilibrium is not Pareto
Optimal since dating at the Ballet dominates the equilibrium outcome for
both players.

The long-term relationship allows the players to settle on a better out-
come. Assume that the game is repeated again and again at points of
time 1, 2, 3 .. . ad infinitum. The long term situation is called a repeated
game.? The basic idea is that in the repeated game, he might go to the
Ballet in spite of his ability to make a short-term gain, because he fears her
choosing the outside option were he to buy tickets for Football.

To be precise we have to spell out the long-term preferences and to
explain what a long-term strategy is. An outcome of the repeated game
is a sequence of one-shot outcomes. This sequence corresponds to a
stream of one-shot pay-offs. It is assumed that the players are interested
in the limit of the averages of their finite period pay-offs. (Discounting
pay-offs does not lead to significantly different results.) Notice that in the
repeated game the one-shot pay-offs have more than an ordinal meaning.

A long-term strategy is a plan of what action to choose at any one
point in time based on the information gathered by the player up to that
point. It is assumed that at the end of each period the players have perfect
recall of the history of the relationship. Thus, a player may base his action
at time ¢ on the entire list of the preceding r — 1 outcomes.

Notice that player 1 can enforce on player 2 a level of pay-off 0 (by
choosing the outside option). Player 2 can ensure that player 1 will not get
more than 2 by buying Football tickets. These levels are called the min-
max levels.

Let (U,, U,) be an arbitrary point in the triangle formed by the one-
shot game pay-off vectors (3, 1) (1, 3) and (2, 0). Using the time dimen-
sion as a coordination device the players are able to form a sequence of
one-shot game outcomes such that the averages of the pay-offs will con-
verge to (U, U,) (Figure 2.1).

The characterisation of the long-term pay-offs of equilibria for this
repeated game is very simple. Take any sequence of one-shot outcomes in
which the sequence of averages converges to a pair of utilities (Uy, Us)
such that U; > 2 and U, > 0 (that is, U; and U, are both above the
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Figure 2.1 The pay-offs set

minmax levels). Consider the strategies that would follow this sequence
in the event that no player deviated and would react to any deviation by
playing the one-shot equilibrium for ever after. These strategies are called
‘grim strategies’. They provide an equilibrium for the repeated game with
the limit of the means. (It is easy to see that for all (U,, U,) where U, > 2
and U, >0 there is a discount factor large enough for a pair of grim
strategies to be a Nash Equilibrium with the discounted average pay-offs
(U1, U2))

The grim strategies are not the only Nash Equilibria of the repeated
game. One could think of many other ‘types’ of such equilibria. For
example, consider the arrangement to go to the Ballet on odd days and
to Football on even days. The arrangement might be supported by his
grimm threal and by her threat that if he buys tickets for Football on a
Ballet day she will punish him by choosing the outside option for n
periods where # is the number of occasions on which he broke the arrange-
ment in the past. Our intuition is that the latter equilibrium is much more
complicated than the grim strategy equilibrium.
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3 THE MACHINES GAME

We depart now from the traditional definition of a strategy. Henceforth a
player is limited to carrying out his strategy by use of a ‘machinc’ (finitc
automaton).”> A machine for player 1 (and analogously for player 2)
includes four elements:

1. A set of States. The set may be any finite set. The names of the states
in the set are meaningless.

2. An Initial State. The initial state has to be one of the elements of the
set of states.

3. An Output Function which specifies an action, either D or O, for
every state. The interpretation of the output function is that whenever
the machine is at a certain state the machine plays the one-shot action
corresponding to the state.

4. A Transition Function which spells out how the machine moves from
one state to another. At each period the machine receives as input the
action that player 2 chose, namely either B or F and then it moves
into a new state. The new state is determined by the transition function
depending on the current state and the input received.

One can interpret the machine as a mechanical tool for carrying out a
sirategy. Less naively, it is possible to think of a machine as an abstraction
of the process by which the repeated game rule of behaviour isimplemented.

To demonstrate the concept of a machine, let us look at a few machines
for player 1. The first machine carri¢s out the ‘grim’ strategy. The machine
starts at the state $ in which it plays D and it stays there unless it observes
the action [7. Then the machine moves to the other state, which is an
absorbing state (the machine stays there whatever player 2’s action). At £
the machine plays the action O. Notice that the grim strategy can be
carried out also by more complicated machines. Figure 2.2 shows the
simplest machine needed to carry out the grim strategy.

D 0
Start o\ £
{8} ] (£}
B B, F

Figure 2.2 The grim strategy machine
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In the nexti example, the machine altcrnates between playing D and O
independently of player 2’s moves (Figure 2.3):

D 0
Start @ B, F A

B F
Figure 2.3 The alternating machine

The next machine is programmed to play D as long as the other piayer
plays B and to play O for 3 periods if player 2 plays F while M, is at the
state $. Notice the need for at least 4 states to carry out this strategy
(Figure 2 .4).

M
0 o] 0

D
F B, F B
()2 ()
it
Y

B, F

Start

Figure 2.4 T'he three-period tit-for-tat machine

The last example is a machine for player 2 (Figure 2.5).

My

B F

Start @ D @-

D
o T

Figure 2.5 An example of a machine for player 2

The machine M, starts by playing B. Then player 1’s D is followed by
the state Qy (and playing F) and O is followed by the state Qp (and
playing B).

Not every strategy can be executed by a finite machine. Consider for
example player 1’s strategy to play one D and one O, followed by one D
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and two Os, followed by one D and three Os and so on independently of
player 2’s actions. This strategy cannot be carried out by a finite state
machine.

We now move o to describe how Lhe repeated garue is played by a pair
of machines. The description is demonstrated on the above machines M,
and M,.

The machines start at the states $ and Qp. The outcome of the first
round of the repeated games is (D, B) since the output function of M,
assigns the action D to the state § and the output function of M, assigns
B to the state Q. The next period states are determined by the transition
functions. The transition function of M, leaves the machine at § after it
observes that player 2 played B. The transition function of M, transfers
the machine from Qj to Qf as a response to the input D. Thus period 2’s
pair of states is (3, @p). The output functions determine period 2’s out-
come (D, F) and M; now moves from § to P, while M, stays at Q.

lime M ’sstate Mj’sstate  the one-shot outcome  pay-offs

1 S Qs (D, B) 3.
2 $ Of (D, F) (1,3)
3 P, Or (0,F) (2,0
4 Py Op (0,B) (2,0
5 Py O» (0.B) (2.0
6 $ O

At the sixth period the pair of states are the same as at period I and
then the play of the repeated game starts to repeat itself. Because of the
finiteness of the set of states and the Markovian structure of the machines
all pairs of machines must eventually enter into a cycle, although not
necessarily immediately, as in the above example.

4 COMPLEXITY

Although not all repeated game strategies can be executed by a finite
machine, the restriction to strategies which can be is not significant in
itself. It is made here to enable us to make the next conceptual departure
from the conventional repeated game literature. We are about to include
explicitly the complexity of a strategy in the players’ optimising calcu-
lations.
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First we have to define the term ‘complexity of a machine’. There are
many possibilities available. We will make do with a very naive and simple
measure of complexity. The complexity of a machine is defined by the
number of states in the machine. Thus the complexity of the transition
function is ignored.

Given a pair of machines a player gets a stream of pay-offs which is
evaluated by him according to the limit of the averages. Notice that the
limit of the averages is always well-defined since the sequence of pairs of
machine states must eventually enter a cycle. The limit of the means of a
player’s pay-offs is equa! to the average of the player’s pay-off in the
cycle.

In an equilibrium of the machine game a player chooses a ‘best res-
ponse’ against the other player’s machine. A player’s preference depends
only on two numbers:

1. the repeated game pay-off, and
2. the machine complexity.

The preference relation is assumed to be monotonic in the two numbers:
increasing with the repeated game pay-off and decreasing with the com-
plexity. Sometimes we will be interested in the model where the prefer-
ences are lexicographic, in the sense that a player’s first priority is the
repeated game pay-off, and only secondarily does a player care about the
complexity of the machine. The model with lexicographic preferences is
the ‘closest’ possible model to the standard model without complexity.

5 EXAMPLES

In this section we will look at two examples of pairs of machines: in the
first example her machine, M, is the two-state machine which carries out
the ‘grim strategy’ and his machine, M,, is the one-state machine which
plays B (see Figure 2.6). The machine M, is a best response against the
machine M,. Even by using a more complex machine, player 2 cannot
achieve a higher repeated game pay-off. Player 1 cannot achieve a higher
repeated game payoff but she is able to reduce the number of states in her
machine by dropping £ without reducing the repeated game pay-off. Given
M,, the state £ is used only to threaten player 2. But in equilibrium the
threat is redundant and player 1 can omit £. Thus, this pair of machines is
not a Nash Equilibrium in the machine game. The general conclusion we
note is that in equilibrium all states must be used at least once.
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M

o]

D
Start ° F @
B

M,

Start

Figure 2.6 A pair of machines which are not in equilibrium

The next pair of machines is a Nash Equilibrium in the machine games
if the players do not give too much weight to complexity (see Figure 2.7.

M, (Her}
0 p 0 D
Start ) F.. __» F @- 5
B B F
M- (His)

. F F B

—ﬁ (0)° O'?‘ @]
- D
D D —r

Figure 2.7 An example of an equilibrium with the outcome (D, B)
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Here the players start by “showing® their ability to punish. After the ‘dis-
play of threat’ the players move to the more ‘cooperative’ phase where
they date for the Ballet. After they reach the ‘cooperative’ phase they
punish a deviator by moving back to the initial state. The length of the
cycle in the play of the machine game is 1 and the length of the ‘intro-
ductory period’ is 3 (she needs 3 periods to erase his gain from playing F
instead of B). If player 1 used only a one- or two-state machine he could
achieve a limit of averages of at most 2. The machine M; is her best
response if the pay-off 3 with complexity 3 is preferred by her to the pay-
off 2 with complexity 1. As to player 2. one-, two- or three-state machines
will give him a repeated game pay-off of at most 0.75, and if the pay-off
0.75 with complexity 1 is not preferred to the pay-off 1 with complexity
4 then M, is a best response against M.

6 THE STRUCTURE OF EQUILIBRIUM IN THE MACHINES GAME

We are able to derive several conclusions about the structure of machines
in equilibrium. The following properties are true in general for all repeated
games. A full presentation of the results and proofs appears in Abreu and
Rubinstein (1986).

First, notice that in equilibrium the number of states in both machines
must be equal. The reason for this is that a Markovian problem with m
states has an optimal stationary solution. Given player i’s machine of size
m, player jdoes not need more than an m-state machine to achieve the best
repeated game pay-off.

We have noticed already that all the states in the machines must be used
at least once in the course of playing the game. Some of the states appear
in the cycle and some do not. It can be shown that all non-cycle states are
used only once and appear consequently in the beginning of the play of
the game. After that, only cycle states are used (although a deviation of
the opponent may activate a non-cycle state). Finally the length of the
cycle is equal to the number of cycle states. In other words a state does
not appear twice in the cycle.

Thus, in equilibrium, during the introductory phase before cycle states
are used, and in the cycle itself there is a one-to-one correspondence
between his and her states. This means that in equilibrium in any period
one machine ‘knows’ the state that the other machine is in at the same
time (except during a possible intermediate phase after the introductory
phase and before the cycle begins).
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These results have a dramatic consequence for the set of Nash Equi-
librium outcomes in the machine game. In any equilibrium the one-shot
outcomes are either (D, B) and (O, F) only, or (D, F) and (O, B) only.
Therefore if there is a period in which the couple dates at the Ballet they
never date at the Football stadium. In equilibrium there is a one-to-one
correspondence between player 1’s actions and player 2’s actions. The
proof of this assertion is beyond the scope of this paper but I would still
like to provide some intuition by examining the following pair of machines
(see Figure 2.8): The play of the game by this pair of machines starts with

M,y {Her)

0 (9} D
Start FF F F

P 2 (2)

B B B
M, (His)
D

F 0 F F

Start | /5 D (o9 . /o)

Figure 2.8 Another pair of machines which is not an equilibrium

K periods of ‘threat display’ (K ‘large’ enough). Then the machines enter
into a cycle of length 4 in which the outcomes are (D, B), (D, B), (0, F)
and (D, F). Any deviation from the pattern of behaviour in the cycle
causes the opponent’s machine to move to its starting point and by doing
so to inflict a punishment of K periods on the deviator. The average pay-
offs are 2.25 for player 1 and 1.25 for player 2. It is easy to verify that the
machines form a Nash Equilibrium in the repeated game with the limit of
the means but do not form an equilibrium in the machine game. Inspect
M. Player 1 needs @4, @, and Q4 in order to know when to play the out-
side option, O. However she can execute the procedure of counting up to
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3 without Q,. The output of player 1’s machine at Q, and at Q, is the

same (D). However when M, is at Q; the machine M, plays B and when

M, is at O, the machine M, plays F. She can save one state by replacing

Q; and Q4 by one state that does the same job as the two states do in M.
The revised machine is shown in Figure 2.9.

The New M,
F
. 0 0 } b, b0, O
tart /fﬁ% /"» EwﬂF 6\ -:O;;: ‘P—(/Og
B B F F B
{ Y \I/ Y Y

Figure 2.9 A profitable deviating machine (for the Figure 2.8 example)

By using the new machine player 1 does not change the sequence of
played outcomes, yet her machine is more ‘economical’ than the original
M. The pair comprising the new machine and M, is not an equilibrium
since player 2 may use the fact that player 1 does not monitor his behaviour
when he is at state Q and he may deviate profitably to the K + 1 state
machine that forms the one-period cycle with the outcome (D, F).

7 A CHARACTERISATION OF THE EQUILIBRIUM OUTCOMES

In the previous section a result was given where the set of outcomes which
appear in the play of any equilibrium must be either a subset of {(D,B),
0, F)} or a subset of {(D, ), (0, B)} . It is easy to exclude the possi-
bility that an equilibrium play in the machines game includes the outcomes
(D, F) and (O, B) only. For any pair of machines in which the outcomes
are only from among these elements, player 1’s repeated game pay-off is
at most 2. She is able to achieve the repeated game pay-off 2 by a one-
state machine which plays . Thus if M, is not this one-state machine
player 1 can deviate profitably. If M, is the one-state machine which plays
O then player 2’s machine must be the one-state machine which plays B
and then player 1 can deviate profitably to the one-state machine which
plays D. Therefore in equilibrium the one-shot outcomes played must
include (D, B) and (O, F) only.



Rubinstein: Strategies and the Resolution of Conflict 29

The set of equilibrium outcomes has now been reduced dramatically.
The exact characterisation of equilibrium outcomes depends on the
players’ tradeoff between the repeated game pay-off and the complexity
of the machines. In the case of lexicographic orderings {when the players’
consideration of complexity is only secondary to the repeated game pay-
off) for any two integers m and n there is an equilibrium with a cycle of
length m + n in which (D, B) appears m times and (O, F') appears n times.
To demonstrate this result we will look at the next pair of machines in
which the players alternate in the cycle between (D, B) and (O, ),
(m =n = 1) (see Figure 2.10).

Mq (Her)

Mo {His)

D

r F }/F B
Start
P, o 0 Pe 0 51\ 0 @

Figure 2.10 An equilibrium with a combination of outcomes (D, B) and
(0, F)

Notice the following:

1. A deviation by player 2 during the cycle is punished for 5 periods,
which is long enough to offset his gain from the deviation.

2. 1f the order of the outcomes in the cycle is reversed (first playing
(D, B) and then playing (O, F)) then the pair of machines ceases to be an
equilibrium and each of the players can save a state by omitting s and at
P, transiting to (), as the response to O or to F.

3. The length of the punishment depends on the mixture of outcomes
we would like to sustain, that is on m and n.
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4. It can be shown that it is impossible to sustain an equilibrium in
which (D, B) is one of the outcomes without having an introductory phase
to the play of the game.

For more general preference relations the above is an equilibrium in the
machines game if player 1 prefers a repeated game pay-off 1.5 with com-
plexity 7 to the pay-off 2 with complexity 1 and if player 2 prefers a
pay-off 0.5 with complexity 7 to a pay-off 3/7 with complexity 1.

8 FINAL REMARKS

The complexity of behaviour in a repeated game has three major com-
ponents:

1. The complexity of the routine. A path of outcomes in which the
players have to change their actions in the cycle in an ‘irregular’ order
requires the machines to have many states.

2. The complexity of punishment. The need to threaten the opponent
with the carrying out of a punishment if he deviates might require holding
extra states.

3. The complexity of monitoring. A player might need states for moni-
toring the hehaviour of the opponent.

In the above analysis, due to the complexity of punishment the players do
not hold special states for punishing the opponents, and the complexity of
monitoring prevents equilibria in which the couple will date at every
period and the man will switch back and forth from Ballet to Football.

In the repeated game, mixtures of (D, B) and (D, F) could be sustained in
equilibrium. In the machine game any non-degenerate mixture of (D, B) and
(D, F) requires player 2 to make changes in his actions from B to F and
from # to B. An arrangement whereby she monitors him is unstable
because it requires her to maintain special states. Relying on him is
unstable because he might gain by changing the mixture of B and F
without being detected.

To summarise, | have tried to introduce the reader tc a new model in
which the complexity of a strategy is included explicitly in the players’
consideration. Since there are ad hoc and arbitrary assumptions in the
model I would hesitate to regard the model and the results as a now theory
of repeated games. It is probably better to think of the work in its current
stage as a modelling exercise. However, the topic is fundamental and the
possible implications dramatic, so 1 am quite confident that it will con-
tinue to attract attention and that we will be seeing exciting results in the
very near future.
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Notes

1. For an introduciion to Simon’s ideas on ‘Bounded Rationality’ see
for example Simon (1972) and Simon.(1978). A pionccring work
in the direction of connecting ‘Bounded Rationality’ with economic
theory is Radner and Rothschild (1975).

2. For introductions to the literature of rcpcated games with perfect
information see Aumann (1981), Rubinstein (1979) and Abreu
(1983). For early attempts to use automata in economic theory see
Futia (1977), Gottinger (1983), Marschak and McGuire (1971) and
Varian (1975). For attempts to use ‘Bounded Rationality’ ideas to
recover from the ‘paradoxical’ results in finitely repeated games see
Radner (1986), Smalc (1980) and Green (1982). Green (1982) is
the closest in spirit to the work reported here. Recent works using
Finite Automata to discuss finitely repeated games include Ben-
Porath (1986), Lehrer (1986), Megiddo and Wigderson (1986) and
Neyman (1985). Another related work is Kalai and Stanford
(19806).

3. For a textbook on Automata Thcory sce Hopcroft and Ullman
(1979). The idea of using finite automata in the repeated game
context was first suggested in Aumann (1981).

References

Abreu, D. (1983) ‘Repeated Games with Discounting’, PhD Thesis, Princeton
University.

Abreu, D. and A. Rubinstein (1986) ‘The Structure of Nash Equilibrium in
Repeated Games with Finite Automata’, London School of Economics
and Ilarvard University.

Aumann, R. J. (1981) ‘Survey of Repeated Games’ in Essays in Game
Theory and Mathematical Economics in Honour of Oskar Morgenstern
(Mannheim: Bibliographisches Institut), 11-42,

Ben-Porath, E. (1986) ‘Repeated Games with Bounded Complexity’,
mimeo,

Futia, C. (1977) ‘The Complexity of Economic Rules’, Journal of Mathe-
matical Economics 4, 289-99.

Gottinger, H. W. (1983) Coping with Complexity {Dordrecht: Reidel).
Green, E. (1982) ‘Internal Costs and Equilibrium; The Case of Repeated
Prisoner’s Dilemma’, mimeo.

Hopcroft, J. E. and J. D. Ullman (1979) Introduction to Automata Theory,
Languages and Computation (Reading, Mass: Addison Wesley).

Kalai, E. and W. Stanford (1986) ‘Finite Rationality and Interpersonal
Complexity in Repeated Games’, Northwestern University.

Lehrer, E. (1986) ‘Repeated Games with Stationary Bounded Recall
Strategies’, mimeo.

Marschak, T. A. and C. B. McGuire (1971) ‘Economic Models for Organi-
zation Design’, unpublished lecture notes.



32 Global Macroeconomics

Megiddo, N. and A. Wigderson (1986) ‘On Play by Means of Computing
Machines’, mimeo.

Neyman, A. (1985) ‘Bounded Complexity Justifies Cooperation in the
Finitely Repeated Prisoners’ Dilemma’, Economics Letters 19, 227-9.
Radner, R. (1986) ‘Can Bounded Rationality Resolve the Prisoners’
Dilemma?’, in A. Mas-Colell and W. Hildenbrand (eds), Essavs in Honour
of Gerard Debreu, (Amsterdam: North-Holland).

Radner, R. and M. Rothschild (1975) ‘On the Allocation of Effort’,
Journal of Economic Theory 10, 358-76.

Rubinstein, A. (1979) ‘Equilibrium in Supergames with the Overtaking
Criterion’, Journal of Economic Theory 21, 1-9, '

Rubinstein, A. (1986) ‘Finite Automata Play the Repeated Prisoner’s
Dilemma’, Journal of Economic Theory 39, 83-96.

Simon, H. A. (1957) Models of Man (New-York: Wiley).

Simon, H. A. (1972) ‘Theories of Bounded Rationality’ in C. B. McGuire
and R. Radner (eds), Decision and Organization (Amsterdam: North-
Holland).

Simon, H. A. (1978) ‘On How to Decide What to Do’, Bell Journal of
Fconomics 9,494-507.

Smale, S. (1980) ‘The Prisoner’s Dilemma and Dynamical Systems Asso-
ciated to Non-Cooperative Games’, Fconometrica 48, 1617-34,

Varian, H. R. (1975) ‘Complexity of Social Decisions’, mimeo.



