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ON THE INTERPRETATION OF THE NASH BARGAINING
SOLUTION AND ITS EXTENSION TO NON-EXPECTED
UTILITY PREFERENCES'

By ARIEL RUBINSTEIN, ZVI SAFRA, AND WILLIAM THOMSON

The paper reexamines the foundations of the axiomatic Nash bargaining theory. More
specifically it questions the interpretation of the Nash bargaining solution and extends it
to a family of non-expected utility preferences.

A bargaining problem is presented as (X, D, >, >, ) where X is a set of feasible
agreements (described in physical terms), D is the disagreement event and >; and >,
are preferences defined on the space of lotteries in which the prizes are the elements in
X and D. The (ordinal)-Nash bargaining solution is defined as an agreement y* satisfying
for all pe[0,1] and for all x €X: if px>; y* then py* >, x and if px>, y* then
py* >; x where px is the lottery which gives x with probability p and D with probability
1-p. ’

Revisions of the Pareto, Symmetry, and IIA Axioms characterize the (ordinal)-Nash
bargaining solution. In the expected utility case this definition is equivalent to that of the
Nash bargaining solution. However, this definition is to be preferred since it allows a
statement of the Nash bargaining solution in everyday language and makes possible its
natural extension to a wider set of preferences. It also reveals the logic behind some of
the more interesting results of the Nash bargaining solution such as the comparative
statics of risk aversion and the connection between the Nash bargaining solution and
strategic models.
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1. THE NASH BARGAINING SET-UP

Tuis PAPER REEXAMINES the foundations of the axiomatic bargaining theory as
formulated by Nash (1950). More specifically, it questions the standard interpre-
tation of the Nash bargaining solution and extends its scope to a family of
non-expected utility preferences.

Let us review the basic elements of Nash’s (two-person) bargaining theory.
The bargaining problem consists of the “feasible set”, S, and a “disagreement
point”, d. Each element of S gives the utility levels reached by the two agents
at one (or more) of the possible agreements. The utilities are understood to be
von Neumann-Morgenstern utilities in that they are derived from preferences
over lotteries which satisfy the expected utility assumptions. A bargaining
solution is a function which assigns a unique pair of utility levels to each
problem {S, d) taken from some domain (usually containing all problems ¢S, d)
where S is compact and convex and contains a point that strictly dominates d).

! This paper is a combination of two projects. It contains a previously unpublished paper
coauthored by the first and the third authors entitled “On the Interpretation of the Nash Bargaining
Solution” and includes new material regarding the extension of the Nash solution to non-expected
utility preferences prepared by the first and the second authors.

We wish to thank the editor and two referees of this journal for very valuable comments.
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Nash showed that there is a unique solution satisfying the following four
axioms:

(IAT) INVARIANCE TO PoSITIVE AFFINE TRANSFORMATIONS: The solution is
invariant to all independent person-by-person, positive affine transformations of
utilities.

(SYM) SymMmETRY: If the set S is symmetric with respect to the main diagonal
and if d, =d,, then the solution should assign equal utilities to both players.

(PAR) Paretro OptiMaLITY: There is no point in S which Pareto-dominates
the solution outcome.

(ITA) INDEPENDENCE OF IRRELEVANT ALTERNATIVES: If S C T and f(T,d) €
S, then f(T,d) =f(S,d).

The unique solution satisfying the above four axioms is the Nash solution, i.e.,
the function N defined by

N(S,d) = argmax {(u, — d,)(u, — d,)|(u;,u,) €S and
u; > d, for both i}.

The very simplicity of this formula is in itself an attractive feature and is
responsible for the widespread application of the solution. However, the solu-
tion lacks a straightforward interpretation since the meaning of a product of two
von Neumann-Morgenstern utility numbers is unclear. One of the main goals of
this paper is to provide a more attractive definition. We will therefore start by
restating Nash’s model in terms of preferences. This will prove useful not only
in re-interpreting the axioms and the Nash solution, but also in exposing the
logic behind some of the more interesting results of the Nash bargaining
solution such as the comparative statics of risk aversion and the connection
between the Nash bargaining solution and strategic models. Furthermore, in
recent years there has been a growing interest in non-expected utility theories of
decision making under uncertainty, since they explain a wide range of behavior
patterns and experimental results that are inconsistent with expected utility
theory. The statement of the model in terms of preferences allows us to extend
the definition of the Nash solution to a significant class of non-expected utility
preferences. As such, we view this paper as a part of the big project of
examining the significance of the expected utility assumptions for the founda-
tions of game theory.

Let us start by restating the Nash bargaining model.

2. STARTING FROM PREFERENCES

In our search for a more natural definition of the Nash solution we switch
from utility language to alternatives-preferences language. A Nash problem,
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(S,d), is a condensed version of a more natural problem, (X, D, >, >, )
where X is a set of feasible alternatives (described in physical terms), D is the
disagreement alternative, and >; and >, are preferences defined on the space
of lotteries (probability measures with finite support) in which the prizes are D
and the elements of X.2 We think about the feasible alternatives as being
deterministic outcomes. From now on, we refer to a quadruple { X, D, >,, >, )
as a problem. We restrict the set of problems as follows:
(i) X is a compact set (in some topological space).

(ii) The preferences >, and >, are continuous.

(iii) For all x € X and both i, x >; D and there exists at least one x € X such
that x >; D for both i.

(iv) The problem is convex in the sense that for all x,y €X and for all
a €[0,1] there is z € X such that both players are indifferent between z and
ax + (1 — a)y, the lottery which gives x with probability & and y with probabil-
ity 1 —a.

To simplify the presentation we make two additional assumptions:

(v) There are no two alternatives x and x’ such that x ~; x’ for both i.

(vi) For each i, there is a unique best agreement B; € X, which satisfies
B; ~; D (and thus is strongly Pareto optimal).

Specifying the domain of a solution is a delicate issue. A certain pair S, d)
can be derived from many different quadruples { X, D, >,, >, ). Nash’s space
of pairs (S, d) may be spanned by either varying preferences over a fixed set of
alternatives or by keeping preferences on a universe of possible alternatives
fixed and varying the set of alternatives. Nash’s hidden assumption is that all
problems that produce the same pair S, d) have the same payoff vector. The
significance of the space choice lies in its use within the axioms. Recall that
whereas two of the axioms, PAR and SYM, refer to problems in isolation, the
other two, IAT and IIA, require some relationship between the solution
outcomes for any two problems which are related in a certain manner. The
larger the domain of a solution, the more restrictive are the axioms imposed on
it. In particular, if all possible quadruples { X, D, >, , >, ) are included in the
domain, axioms pertaining to pairs relate the solution outcomes of problems
that may be different either in terms of sets of alternatives, in terms of
preference relations, or both. Conversely, if we “overrestrict” the domain, the
axioms lose some of their power and may cease to characterize a unique
solution. Thus, the choice of domain has to be related to the consideration that
leads to the imposition of the IAT and IIA axioms in the first place. Therefore,
let us reexamine the justification of those two axioms.

The textbook justification of IAT (see for example Luce and Raiffa (1957)) is
that the choice of utility representations should not affect the solution. The

21t is assumed implicitly by this formulation that compound lotteries are reduced to simple
lotteries by the usual multiplication rule.
Without this assumption there could be a multiplicity of agreements, all of which are equivalent
in terms of the players’ preferences. Eliminating the assumption only requires rephrasing of several
definitions and results in terms of equivalent classes of agreements.
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von Neumann-Morgenstern utility representations are unique up to positive
affine transformations. Rescaling the utilities should not, therefore, affect the
alternative predicted by the solution. As such, IAT appears to be a minimal
requirement. However, if we allow the domain to include problems with
different sets of alternatives, the axiom loses its innocence. Consider, for
instance, two risk-neutral expected utility maximizers who must divide a prize
worth one dollar for bargainer 1 and one thousand dollars for bargainer 2. IAT
requires that Player 2 receives the same share of the prize as he would were the
prize worth only 1 dollar for bargainer 2. Thus, when IAT is applied to a
solution with a domain comprising a varied set of alternatives, it is more
demanding than when it is justified as giving meaning to the preferences.

The textbook interpretation of IIA is that it relates the solution outcomes of
problems with different sets of alternatives. If a* is the solution outcome of the
problem {T,d) and is a member of a set S which is a subset of T, then a* is
also the solution outcome of {S,d). As has often been emphasized, this
justification of IIA fits in with a normative theory, where the solution concept is
intended to reflect the social desirability of an alternative. In this paper we
consider bargaining as a strategic interaction of two self-interested bargainers
and in this context IIA is questionable (see Binmore (1987a)).

Our resolution of the modelling dilemma regarding the choice of domain
consists of the fixing of a set of alternatives and varying the bargainers’
preferences. Given a pair of preferences on X, a bargaining solution is hence-
forth a function which assigns a unique element of X to every pair of
preferences on the set of lotteries on X within some domain.

The above definition makes IAT redundant, while availing us of a more
attractive interpretation of IIA. We use the letter F to denote a solution and
the symbol px for the lottery which gives x with probability p and D with
probability 1 — p.

IIA: Let F(>,, =,) =y* and let > be a preference which agrees with >; on
the set of deterministic agreements, X, such that: (i) for all x such that x >; y*, if
px ~; y*, then px <, y*; and (ii) for all x such that x <; y*, if x ~; qy*, then
X"’Ii qy*- Then F(?,‘, >j)=F(>,ia >j)-

The switch of agent i’s preference from >; to > reflects his increased
apprehension towards the risk of demanding alternatives which are better than
the outcome y*. Though player i still prefers x to y* he is less willing to risk
demanding x. The axiom captures an intuition that the bargaining solution
outcome y* should be defendable against possible objections. The change in
player i’s preference described in the axiom, makes player i “less eager” to
object and does not change the intensity of player j’s objections. Thus, the
change in the preference “should not” change the bargaining outcome.

‘We denote the axiom as IIA because of its connection with Nash’s Indepen-
dence of Irrelevant Alternatives Axiom. However, as we have already empha-
sized, our axiom refers to a comparison between two problems where the
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preferences vary, while Nash’s axiom refers to two problems, in one of which
“irrelevant alternatives” are dropped.

The above definition of IIA is related to the second part of what Binmore
(1987¢) calls ITIA which states: “...we require that, if both players’ utilities for
all feasible trades except the solution outcome of the no-trade point decrease,
then the solution (outcome) remains unchanged.”

Before redefining the Nash solution let us restate PAR and SYM. There is no
difficulty in defining PAR in terms of preferences.

PAR: If F(>,, >,) =y*, then there is no x € X such that for all i, x >; y*
with a strong preference on the part of at least one i.

In order to formulate the symmetry axiom we first define a symmetric prob-
lem as one for which there exists a symmetry function ¢: X U {D} - X U (D}
which satisfies ¢(x) =y, if and only if ¢(y)=x and ¢(D)=D such that
for all lotteries L, and L,, L, >; L,, if and only if ¢(L,) >, ¢(L,), where
¢l pa + (1 — p)b] is the lottery pd(a) + (1 — p)¢(b).

SYM: If (X, D, >,, >, ) is a symmetric problem with a symmetry function ¢
and the preferences >, and >, satisfy the expected utility assumptions, then
F(>,, =>,) is a fixed point of the symmetry function ¢.

To see that the above formulation of SYM is essentially the same as Nash’s
original symmetry axiom, consider a symmetric problem { X, D, >, , >, ) where
the preferences satisfy the expected utility assumptions. To every x € X there
are two numbers p, and p, such that x ~; p,B, + (1 —p,)B,. The function ¢
must assign to x an agreement in X such that ¢(x) ~; p;B, + (1 — p,)B,. Thus,
in terms of von Neumann-Morgenstern utilities, if we choose u,(D)=0 and
u/(B;) = 1 we receive ¢ which transforms an agreement x with a pair of utilities
(u(x),u)(x)) =(a,b) into ¢(x) satisfying (u,(¢(x)), u,($(x))) = (b, a). It fol-
lows that for symmetric problems with preferences satisfying the expected utility
assumptions there is a unique symmetry function ¢ with a unique Pareto-opti-
mal fixed point. One should note that a point x* is a fixed point of ¢ if and
only if u(x*) =u,(x*).

Before we redefine the Nash solution, recall the common definition of the
Nash solution as applied to the problem (X, D, >,, >, ) where >, and >,
are expected utility preferences represented by the utility functions u; and u,.
The (utility)-Nash bargaining solution of (X, D, >, >, ) is

argmax {(uy(x) — u(D))(uy(x) —uy(D))lx €X}.

CoMmMENT: Several other papers have also dealt explicitly with the underlying
physical structure of the set of agreements (see Binmore (1987¢), Chun and
Thomson (1988), Roemer (1986), and Roemer (1988)). In contrast to our model,
these papers present the set of agreements as one of the variables in the domain
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of the bargaining solution. Usually, an algebraic structure is imposed on the set
of agreements and some of the axioms utilize this structure. Roemer (1990) is
particularly relevant to our discussion. He argues that by fixing von Neumann-
Morgenstern preferences and varying the set X, “the natural generalization of
the Nash axioms hardly restricts the bargaining solution.” Thus, Roemer’s work
may be considered as additional support for our choice of domain. Notice,
however that Roemer’s result relies on a weak generalization of Nash’s Symme-
try Axiom.

3. REDEFINING THE NASH BARGAINING SOLUTION

In this section we look for an alternative definition of the Nash solution, one
which only uses the terms ‘““alternative,” “disagreement,” and “preference” and
avoids the term “utility.” After translating Nash’s axioms into the alternatives-
preferences language, one may think that the conjunction of the axioms is a
proper definition of the Nash solution. However, as already emphasized, while
PAR and SYM refer to each problem in isolation, the other axiom, IIA,
requires consistency between the solution outcomes of different problems. We
look for a definition that specifies an outcome of a particular problem directly in
terms of the problem, without referring to its consistency with outcomes
suggested by the solution in other problems. The definition of the Nash solution
which uses utility language fulfills this requirement since it is appliéd to each
problem in isolation. However, as already stated, it requires a noninterpretable
maximization and is applicable only in the expected utility case.

DEeFINITION: An (Ordinal)-Nash solution outcome for the problem X, D,
>,, >, ) is an alternative y*, such that for all p €(0,1] and for all x € X and i,
if px >; y*, then py* >; x.

The definition of the (ordinal)-Nash solution has a clear interpretation.
Assume that the players perceive that whenever they raise an objection to an
alternative, they face a risk that the negotiations will end in disagreement. If
player i appeals against y* by suggesting an alternative x, which is to his
advantage, notwithstanding the risk that the appeal could cause disagreement
with some probability 1 — p, then it is optimal for player j to insist on the
original alternative y* even though his insistence may cause disagreement with
the same probability 1 — p.

First, we wish to verify that for the expected utility case the ordinal definition
coincides with the definition of the (utility)-Nash solution. The following propo-
sition shows the equivalence of the definitions for all classes of problems (not
just those satisfying assumptions (i)—(v)).

ProrosiTiON 1: Let {X,D, >,, >, ) be a problem (not necessarily satisfying
‘assumptions (i)—(v)) such that the preferences are expected utility preferences. The
(ordinal)-Nash solution outcome is then well defined and is equal to y* if and only
if the (utility)-Nash solution outcome is well defined and is equal to y*.
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Proor: Let u; and u, be utility representations of >; and >,. We show
that y* is an (ordinal)-Nash solution outcome of { X, D, >,, >, ) if and only if
y* = argmax {(u,(x) — u,(D)Xu,(x) — u,(D))|x € X}.

Without loss of generality we can assume that u,(D)=0 for both i. The
alternative y* satisfies u;(y*)u,(y*) > u,(x)u,(x) for all x if and only if for
both i, for all x >;y* for all p <1, if p>u(y*)/u(x) then p >u(x)/u(y*)
if and only if for all i, x and p <1 satisfying pu,(x) > u,(y*), it is also true that
pu(y*) >u(x) if and only if for all i, x, and p <1, px >; y* implies py* >, x.

Q.E.D.

REeEmMARK: It is appropriate at this point to mention here the connection
between the above definition of the Nash solution and previous related ideas.
Zeuthen (1930) was the first to suggest a theory in which negotiators bear in
mind the risk of a breakdown in the negotiations. He describes a dynamic
process which reflects what he calls “psychological considerations.” The set X
is taken to have a finite number of Pareto-optimal alternatives. At each stage,
given the two current positions x; and x,, one of the players with the lowest
1 —p, (where p; is defined by p;x; + (1 —p,)D ~; x;) makes a “slight” conces-
sion. Thus, a concession is made by a player whose position is associated with a
product of utilities which is no greater than that of the other player’s position.
By its definition this process must converge and it was Harsanyi (1956) who
showed, through an argument similar to the above proof, that the process
converges to the Nash bargaining solution outcome. Similarly, Aumann and
Kurz (1977) define a measure of a player’s boldness as the maximum probability
which makes him willing to take the risk of losing the entire gain against an
additional small gain. They observe that the Nash solution outcome is the point
at which both players are equally bold.

4. THE FAMILY OF PREFERENCES

We will endeavor to show that the revisions of the axioms PAR, SYM, and
IIA characterize the (ordinal)-Nash solution for a family of preferences wider
than those which satisfy the expected utility assumptions. The interest in
preferences which violate the independence axiom* is now well-established.’
This section contains a preliminary discussion of the family of preferences for
which we are able to extend the Nash theory.

We consider preferences which satisfy the following assumptions:

DOM (First ORDER STOCHASTIC DOMINANCE): If x>; D and p > q, then
px+ry>; qx +ry (where px +ry is the lottery which gives x, y, and D with
probabilities p, r, and 1 —p — r accordingly).

“If L, > L,, then for all p and for all L, pL,+ (1 ~p)L >pL,+(1~p)L.
For surveys of the literature on non-expected utility preferences see, for example, Machina
(1987), Fishburn (1989), or Karni and Schmeidler (1990).
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Q (Quast Concavity): If L'>; L, then aL' + (1 —a)L >; L.

CCE (ConpiTioNAL CERTAINTY EQUIVALENCE): If x ~; L, then ax +
(1-a)z>;al’+ (1 —a)z for any z such that z>;y for all y in the support
of L.

H (HoMoGEeNEITY): If x >; L, then ax >; aL, and if x ~; L, then ax ~; aL.

Conditions DOM and Q are quite standard. DOM requires that a shift of
probability from an inferior prize to a superior one makes the lottery more
attractive. Notice that Q in this context is no more plausible than quasiconvex-
ity. However, for our purposes we do not need the more restrictive assumption
that L' ~; L implies L’ + (1 — a)L >; L. Thus, we allow for preferences which
satisfy both quasiconcavity and quasicovexity (as do preferences which satisfy
the expected utility assumptions). Condition CCE states that if x is the certainty
equivalent of the lottery L', then whenever L' is an element in a compound
lottery with a prize z which is better than all prizes in the support of L', the
individual is willing to exchange L' for x. In other words, the decision maker is
at least as risk-averse when there is a chance to win a superior prize (receiving a
prize z with probability 1 — a)) as when there is no such chance. A player willing
to insure himself by trading L' for some sure outcome would be willing to do so
for a less favorable outcome if more uncertainty existed. Condition CCE is
satisfied whenever the preference satisfies the fanning out property defined by
Machina (1987). An example of a preference which satisfies DOM, Q, and CCE
is the preference defined over the lotteries on the interval [1, 2] and represented
by the expectation of the product wv divided by the expectation of w where
w(x)=x" (t<0) and v(x)=Ax (A>0).5 This preference belongs to the
weighted utility class (see Chew (1983)).

Finally, condition H is a strong restriction on the set of preferences. It
permits arbitrary preference on the set of lotteries over X; however, if this
preference is represented by a functional V, then condition H is satisfied if the
decision maker decomposes a lottery L into al' + (1 —a)D, where L is a
lottery over X, and evaluates the lottery L as aV/(L). (Notice, however, that if
the preference is represented by the function f(a)V(L') for nonlinear function
f, it does not satisfy H.)

Before we proceed to the main proposition we need some notation and two
lemmas. For x,y € X, define x >y if there is a bargainer { and a number p
such that both px >; y and x >; py. In other words, x >y if one of the players,
player i, can “appeal” successfully against y by suggesting x. That is, he prefers
x to y, even when taking into account a probability 1 — p of breakdown, and his
opponent, player j, who also fears that his insistence on y will cause a

6 Q is satisfied since this preference is both quasiconcave and quasiconvex. CCE is satisfied since
local risk aversion increases when a stochastically dominating shift is made. DOM is satisfied since
every local utility function is increasing.
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breakdown with probability 1 —p, prefers agreeing on x. If p and g satisfy
px ~, y and gy ~, x, then (assuming DOM and continuity) x > y if and only if
p <gq. Thus if x>y, then not [y > x]. Using the new terminology we can say
that the alternative y* is the Nash solution outcome if there is no x such that
x> y*. Under expected utility x>y if and only if u,(x)u,(x) > u,(y)uy(y)
where for both i, u; is taken to represent >; with u,(D)=0.

LemMA 1: Consider a pair of preferences (>, >,) which satisfy conditions
DOM, Q, and H. Let y, x, z be Pareto-optimal alternatives in X satisfying z >,
x >, y. If not [x > z] then x > y. '

Proor: Assume the contrary. Let p and g satisfy pz ~; x and gy ~, x. Since
not [x > z] then z >, px and since not [x > y] then y >, gx. By the continuity
of >, there exists ¢ such that x ~, £z + (1 —#)y. Using H, gpz ~, gx and by Q,
(1 -q(1 -1)pgz +q(1 — 1)y >, gx. Now, by H again gx ~, gtz + q(1 — t)y and
by DOM we conclude that (1 — g(1 —¢))p > ¢. Similarly, by H pgy ~, px and by
Q px <, ptz+ (1 —pt)pgy. By the convexity of the bargaining problem ¢z +
(1 —1¢)y <, x which implies by H that ptz +p(1 —t)y <, px. Now, by DOM
p(1—t)<( —pt)pg and it is simple to verify the contradiction with
A-qd-t)p>t. Q.E.D.

LemMA 2: Consider a pair of preferences (>,, >,) which satisfy conditions
DOM, Q, and CCE. Let y* be a Nash solution outcome of (>,, >,). If p and x
satisfy x ~, py*, then [1/(2 —p)lx <, y*.

ProoOF: Assume the contrary that [1/(2 —p)lx >, y*. We will find « and ¢
such that a[tx + (1 —#)y*]1>, y* and [&x + (1 — t)y*]>, ay™*. Since by convex-
ity there is w € X such that w >, &x + (1 —¢)y* for both i, then aw >, y* and
w >, ay*, a contradiction to y* being a Nash solution outcome. By property
CCE, x + (1 —)y* >, tpy* + (1 —t)y* = (ep + 1 — t)y* and thus, by the conti-
nuity of the preferences and setting a« =tp + 1 — ¢, it is sufficient to find ¢ such
that [ip + (1 — D)ex + (1 — t)y*1>, y*. Now, for all a,

alx+ (1—t)y*] =atx +a(1 —1t)y*
=(1-a(1-t))[(at)/(1-a(1-1))x]
+a(l-t)y*.

By Q, it is left to show that (at)/(1 —a(l —¢))x >, y* for some ¢. This can
be shown by using L’hospital’s rule to verify that lim, , ,(at)/(1 —a(1 —1¢)) =
1/(2 — p) and by our assumption [1/(2 — p)lx >, y*. Q.E.D.

. REMARk: Notice that in the proof of Lemma 2 we do not use H and use only
a weak version of Q which requires that if L >; x then aL + (1 —a)x>; x. We
refer to this property as WQ. Also notice that Lemma 1 can be derived without
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condition H, by strengthening condition CCE to CCE*’ (a condition which
implies WQ):

Conprtion CCE*: If x >; L' then ax+ (1 —a)L >; aL' + (1 — a)L for every
lottery L.

Thus, both sets of conditions {DOM, Q, CCE, H} and {DOM, CCE*} imply
the two lemmas. Since the proof of the main proposition will use the conditions
on the preferences only in the sense that they imply the two lemmas, it follows
that the analysis in the next section is valid for both sets of assumptions. The
reason for emphasizing the first set of conditions will be discussed later.

5. THE NASH THEOREM

We are now ready to prove a theorem analogous to that of Nash (1950). The
theorem refers to a more general family of preferences and to the ordinal
definition.

ProrosiTiON 2: (a) The Nash solution is well defined for all problems in which
the preferences satisfy conditions DOM, Q, and H.

(b) Let B be any domain of problems in which the Nash solution is well defined.
Then the Nash solution satisfies PAR, SYM, and IIA.

(¢) Let B be any domain of problems containing all problems (>, , >,) where
(>;)i=1,, are expected utility preferences and in which the preferences satisfy
DOM, Q, CCE, and H. Then, the Nash solution is the unique solution on B which
satisfies PAR, SYM, and 1IA.

A special case of Proposition 2 is as follows.

ProposiTION 2*: For the domain of problems which includes only all expected
utility preferences, the (ordinal) Nash solution is well defined and is the unique
solution which satisfies PAR, SYM, and IIA.

7 Assume the contrary. Let p and q satisfy pz ~; x and gy ~, x; then, z >, px and y > gx. By
the continuity of >;, there is a number ¢ such that #z+ (1 —1¢)y ~; x. However, pz <; x and
gx <, y, together with CCE*, imply that

(t+Q=-t)gp)z=tz+ (A -t)gpz < tz+ (1 —-t)gx < tz+ (1 —t)y ~ x~ pz

and by condition DOM it follows that ¢ + (1 — t)gp < p.
On the other hand, the convexity of X implies that £z + (1 — t)y <, x and using condition CCE*
twice more we get

(tpg+ (A =))y=tpgy+(1-t)y<; tx+ (1 =t)y < tz+ (1 —t)y <, x~, qy

which by DOM implies that tpg + (1 — t) < g. Summing this inequality with the previous one we
arrive at 1 + pg <p + g which implies 1 — p < g(1 — p) which is a contradiction given that g # 1 and
p#*1
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Proor: (a) This part is proved in three stages:

A Nash solution outcome exists: If this were not so, there would exist a
problem such that for all x € X there is a y such that y > x. By Lemma 1, for
any Pareto-optimal x, it is impossible for both y and z to satisfy y >, x, y >x,
z>, x, and z > x. Thus we can split the Pareto frontier of X into two exclusive
sets, ¥, and V,, where V;={x|there exists y such that y >, x and y>>x}.
Obviously B; € V,. Thus V; and V, are nonempty open sets which cover the
compact Pareto frontier which is a contradiction.

A Nash solution outcome is always Pareto optimal. Let y* be a Nash solution
outcome for the pair (>, , >,). If there exists an x which satisfies x >; y* and
x >; y* then for large enough p, px >, y* but x >; y* >; py*, in contradiction
to y* being a Nash solution outcome for the pair (>, >,).

Uniqueness of a Nash solution outcome. Assume that both y and z are Nash
solution outcomes of a particular problem and z >, y. Thus, neither z >y nor
y > z. By the convexity of the problem there exists a Pareto-optimal x such that
x>; 5y +.5z for both i. It follows (using Q) that z>; x>, y. Since not
[x>z], Lemma 1 implies that z>y, in contradiction to y being a Nash
solution outcome.

(b) We have already seen that the Nash solution satisfies PAR. Next we show
that it satisfies SYM and IIA.

The Nash solution satisfies Symmetry. Assume (>, , >,) is a symmetric prob-
lem and ¢ a symmetry correspondence. If ¢(z) > ¢(y) then z > y. Thus, if y*
is a Nash solution outcome then so is ¢(y*). Therefore $p(y*) =y*.

The Nash solution satisfies IIA. Let y* be the Nash solution outcome for
(>,,>,) and let >’ be a preference which preserves >; on X, such that for
all x>, y*, if px~; y*, then px <, y* and for all x <; y*, if x ~; gy*, then
x ~; gy*. Then for any p and x for which px >} y* we have px>; y* and
py* >; x. For any p and x for which px >; y*, we have in addition py* >, x
and py* >, x. Thus, y* is also a Nash solution outcome for the pair (>}, >,).

(c) Let y* be the Nash solution outcome of (>;, >,). We construct >}
band >, to be expected utility preferences preserving the orderings of >; and
>, on X defined as follows: For any Pareto-optimal x,

€)) if x <, y*: x ~, py* implies x ~| py* and y* ~,[1/(2—p)]x;
(2 if x>, y*: x ~, py* implies x ~, py* and y* ~{ [1/(2—-p)]x.

Thus, we can choose von Neumann-Morgenstern utility functions u,; and u, to
represent >, and >', respectively, such that u(D)=0 and u,(y*)=1 and
such that, for all Pareto-optimal x, u,(x) + u,(x) = 2. The problem (> , > ) is
convex and by defining ¢(x) so that pB, ~| x implies pB, ~, ¢(x), we obtain
a symmetric problem. From B, ~, Oy* it follows that 1/2B, ~} y* and from
B, ~, Oy* it follows that 1/2B,~, y* which implies ¢(y*)=y*. By SYM,
F(>, >%)=y*. The problems (>}, >}) and (>, >, ) satisfy the hypothe-
sis of IIA since by Lemma 2 if x ~; py* then [1/(2 —p)lx <; y*. Therefore
F(>, 2,)=F(G}, >%)=y" Q.E.D.
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CoMmMENT: We have already noted that conditions DOM and CCE* imply
Lemmas 1 and 2 and thus are alternative conditions for Proposition 2 to hold.
Though we find DOM and CCE* more appealing conditions than DOM, Q,
CCE, and H, we hesitate to adopt then as the conditions in the proposition
since we do not have examples of convex problems in which the preferences
satisfy DOM and CCE*.

ComMmenT: In the standard Nash framework Roth (1977) has shown that
replacing PAR with Strong Individual Rationality (by which the bargaining
outcome is strictly better than the disagreement point) is sufficient to derive
the Nash solution. It is interesting to note that in the current setting IIA (as
defined here) combined with SYM and strong individual rationality do not char-
acterize the Nash solution. Denote the Nash solution by N(>;, >,).
The function which assigns to (>, >,) the outcome x X, which satisfies
x~;aN(>,, >,), is a proper counterexample where 0 <a < 1.

ComMENT: The following is an example which demonstrates the role of
condition H in deriving the existence of a Nash solution. Assume that X = [0, 1]
where x € X is interpreted as the partition of a dollar where player 1 receives x
and player 2 receives 1 —x, while in D both get 0. Assume that player 2 is an
expected value maximizer and that player 1 decomposes a lottery L into
al’ + (1 —a)D, where L is a lottery on X, and evaluates L as f(a)V(L) where
V(L) is the expected value of L' and f is an increasing function with f(0) =0,
f(1) =1, and f'(1)=0. The problem does not have a Nash solution. Obviously
the partition x =1 is not a Nash solution since choosing p > 0 so that f(p) <
1/2 would result in px <;1/2 and p(1/2) >, 1 —x. For any x <1 thereis y >x
and p such that f(p)y >x and (1 —y) =p(1 —x), i.e., there exists y >x such
that g(y) =fI[(1 —y)/(1 —x)Dy >x which follows from g(x)=x and g'(x)=
fQ) =[x/ —x)]f'(D) = 1. Intuitively, player 1 does not care about taking small
risks and thus for any x, he is able to set y > x and p so that he prefers py to x
while player 2 is better off accepting y than remaining with the lottery px.

CommMmenT: A different extension of the Nash bargaining solution to a family
of non-expected utility preferences (requiring smoothness) is suggested in Safra
and Zilcha (1990). This extension is based on the dynamic scenario that
bargainers sequentially bargain over “small” pieces of the surplus. At each stage
they agree on the regular Nash bargaining solution with respect to local
expected utility approximations of the bargainers’ preferences.

6. INSIGHTS ON SOME OF THE BASIC RESULTS OF BARGAINING THEORY
Comparative Statics of Risk Aversion

We show here that with respect to the Nash bargaining solution, the more
risk-averse the player, the worse his outcome in the bargaining. We say that >
is more risk-averse than >, if for any lottery L where x >; L for some x € X,
then x >) L.
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ProposITION 3: If > is more risk-averse than >, then N(>|, >,) =x* <,
y*=N(>,, =,) (where N(>,,>,) is the Nash solution to the problem
(1,220

ProoF: Assume that x* >, y*. Choose Pareto-optimal z such that x* >,
z >, y*. Since y* =N(>,, >,) not [z>> y*] and by Lemma 1 z > x*; that is,
there is a number p such that pz >, x* and z >, px™*. Since >) is more risk
averse than >,, it is also true that z > px™*, a contradiction to x* being the
Nash solution outcome for (>, >, ). Q.E.D.

The Connection with the Strategic Alternating Offers Model

The ordinal definition of the Nash solution makes very clear the relationship
between the strategic alternating offers model of Rubinstein (1982) and the
Nash solution (see also Roth (1989)). The connection between these two
different models was first pointed out by Binmore (1987b). See also Binmore,
Rubinstein, and Wolinsky (1986).

Recall the version of the infinite alternating offers model where at the end
of each period there is a probability 1 —p > 0 of breakdown. For the expec-
ted utility case the model has a unique subgame perfect equilibrium charac-
terized by two alternatives x*(p) and y*(p) satisfying px*(p) ~, y*(p) and
py*(p) ~, x*(p). Player 1 always offers x*(p) and accepts any alternative y
such that y >, y*(p), while player 2 always offers y*(p) and accepts any
alternative x such that x >, x*(p).

PROPOSITION 4: The alternating offers equilibrium outcomes, x*(p) and y*(p),
converge to N(>,, >,) where p — 1.

Proor: There is no x >; x*(p) such that x > x*(p) since if there was, the
fact that not [x*(p) > y*(p)] together with Lemma 1 imply that x*(p) > x.
Similarly there is no x>, y*(p) such that x> y*(p). Therefore for all p,
x*(p) =, N(>,, =,) >, y*(p). For any subsequence (p,) converging to 1 such
that x*(p,) and y*(p,) converge to x* and y* respectively, it has to be true
that x* ~; y* for both i and thus x* =y*. Furthermore, x* >, N(>,, =,) >,
y* and thus the sequences converge to N(>,, >,). Q.E.D.

Exact Implementation of the Nash Bargaining Solution

Howard (1988) suggests a game which implements the Nash solution exactly.
The following is a variation of Howard’s game:
Phase 1: Player 1 announces y € X.
Phase 2: Player 2 announces x € X and p €[0,1].
Phase 3: Nature makes a choice:
With probability 1 — p the game terminates with D.
With probability p the game continues.
Phase 4: Player 1 chooses between x and the lottery py.
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If the preferences satisfy condition H then the only subgame perfect equilib-
rium outcome of this game is the Nash solution outcome y*. To see this, note
the following:

(i) In all subgames starting in Phase 2 after player 1’s announcement y,
player 2 announces a number p and an outcome x, such that py ~; x. If
py <, x then player 1 chooses x and player 2 will do better by increasing p (and
decreasing the probability that the game ends in Phase 3). If py >, x, then
player 1 chooses py and the lottery p?y is worse for player 2 than y (which he
can guarantee by choosing x =y and p=1).

(ii) After player 1 announces y* then, in equilibrium, player 2 chooses
x =y* and p = 1 since if there is a subgame perfect equilibrium in which player
2 chooses (x, p) # (y*, 1) it has to be that x ~; py* and px >, y*. But since y*
is the Nash solution and x #y* then x ~; py* implies y* >, px.

(iii) We will show that if player 1 announces y >, y*, the subgame perfect
equilibrium outcome must be worse for player 1 than y*. Since y is not a Nash
solution, there exists g and z such that gz >, y and z ~, gqy. In equilibrium if
player 1 announces y, player 2 announces z and g. If the outcome after y is
better for 1 than y*, it implies that gz >, y*. Choose x such that z >, x >, y*.
Let py ~; x. Since player 2 chooses (z, g), it has to be that gz >, px and by H,
z>,(p/q)x. By H, (p/q)z ~, py and thus (p/q)z ~; x. Thus, not [x > z]
and, by Lemma 1, x > y* contradicting the fact that y* is a Nash solution.

The Kalai-Smorodinsky Solution

The meaning of other solutions can also be clarified by the use of preference
language. Consider, for example, the Kalai-Smorodinsky (1975) solution. Trans-
lating their definition from utility language to preference language implies that
the Kalai-Smorodinsky solution to the problem (X, D, >,, >,) is the Pareto-
optimal alternative y* for which there is a p €[0,1] such that both pB, ~, y*
and pB, ~; y*.

In their axiomatic characterization Kalai and Smorodinsky used an axiom
which implies the monotonicity axiom which requires that if S 5 T and if both S
and T have the same “ideal point” (the vector whose ith component is agent i’s
maximal utility over all x which Pareto-dominates D), then the solution
outcome of S Pareto dominates that of T. A straightforward implication of the
axiom is the following: if the solution for S is Pareto optimal in 7" and if S and
T have the same ideal point, then R =S U T has the same ideal point as S and
has the solution to S as a Pareto-optimal point. The solution to R has to
dominate both solutions to S and T and therefore the solutions to S and T
must coincide. Translating into preference language, we obtain the following:

MON: Assume F(>,, >,)=y* and assume that, for both i, > is a prefer-
ence relation such that if p;B,+ (1 —p,)B, ~; y*, then p;B; + (1 —p;)B, ~; y*.
Then, F(>}, >,) =y*.



NASH BARGAINING SOLUTION 1185

It is easy to verify that the only solution which satisfies PAR, MON, and SYM
is the Kalai-Smorodinsky solution. The result regarding the sensitivity of this
solution to risk aversion also follows easily from the ordinal definition.

7. CONCLUSION

In this paper we have provided and analyzed a more verbal interpretation of
the Nash bargaining solution. We interpret the solution as a convention which
assigns to very bargaining problem an outcome with the following property: if it
is worthwhile for one of the players to make a demand for an improvement
upon the convention, combined with actions which may cause a breakdown of
the negotiations, then it is optimal for the other player to reject the demand and
to insist on following the convention even if he takes into account the existence
of the hazard conditions.

Although this paper has dealt almost exclusively with the Nash solution, it has
a more general message regarding the methodology of formal models in eco-
nomics. The Nash bargaining theory is typically defined in utility language which
allows the use of geometrical presentations and facilitates analysis; however, the
parametric presentation results in an unnatural statement of the solution and
axioms. The judgment and interpretation of the axioms and bargaining solution
is thus made more difficult. The difficulties are even more severe when “techni-
cal” assumptions (such as continuity and differentiability) are made. The switch
to the alternative-preferences language allows a more natural statement of the
Nash solution. It enables us to extend the definition to non-expected utility
preferences and helps us to better understand certain well-known results. This
transition may also prove beneficial in other areas of economics and game
theory.
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