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1. Introduction

John Nash’s (1950) path-breaking paper introduces the bargaining problem as
follows:

A two-person bargaining situation involves two individuals who have the
opportunity to collaborate for mutual benefit in more than one way (p. 155).

Under such a definition, nearly all human interaction can be seen as bargaining
of one form or another. To say anything meaningful on the subject, it is
necessary to narrow the scope of the inquiry. We follow Nash in assuming that

the two individuals are highly rational, . . . each can accurately compare his
desires for various things, . . . they are equal in bargaining skill . . ..

In addition we assume that the procedure by means of which agreement is
reached is both clear-cut and unambiguous. This allows the bargaining problem
to be modeled and analyzed as a noncooperative game.

The target of such a noncooperative theory of bargaining is to find theoreti-
cal predictions of what agreement, if any, will be reached by the bargainers.
One hopes thereby to explain the manner in which the bargaining outcome
depends on the parameters of the bargaining problem and to shed light on the
meaning of some of the verbal concepts that are used when bargaining is
discussed in ordinary language. However, the theory has only peripheral
relevance to such questions as: What is a just agreement? How would a
reasonable arbiter settle a dispute? What is the socially optimal deal? Nor is
the theory likely to be of more than background interest to those who write
manuals on practical bargaining techniques. Such questions as “How can I
improve my bargaining skills’? and “How do bargainers determine what is
jointly feasible?”’ are psychological issues that the narrowing of the scope of
the inquiry is designed to exclude.

Cooperative bargaining theory (see the chapter on ‘cooperative models of
bargaining’ in a forthcoming volume of this Handbook) differs mainly in that
the bargaining procedure is left unmodeled. Cooperative theory therefore has
to operate from a poorer informational base and hence its fundamental
assumptions are necessarily abstract in character. As a consequence, coopera-
tive solution concepts are often difficult to evaluate. Sometimes they may have
more than one viable interpretation, and this can lead to confusion if distinct
interpretations are not clearly separated. In this chapter we follow Nash in
adopting an interpretation of cooperative solution concepts that attributes the
same basic aims to cooperative as to noncooperative theory. That is to say, we
focus on interpretations in which, to quote Nash (1953), “the two approaches
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to the [bargaining] problem . .. are complementary; each helps to justify and
clarify the other” (p. 129). This means in particular that what we have to say
on cooperative solution concepts is not relevant to interpretations that seek to
address questions like those given above which are specifically excluded from
our study.

Notice that we do not see cooperative and noncooperative theory as rivals. It
is true that there is a sense in which cooperative theory is “too general”; but
equally there is a sense in which noncooperative theory is ‘“too special”. Only
rarely will the very concrete procedures studied in noncooperative theory be
observed in practice. As Nash (1953) observes,

Of course, one cannot represent all possible bargaining devices as moves in
the non-cooperative game. The negotiation process must be formalized and
restricted, but in such a way that each participant is still able to utilize all the
essential strengths of his position (p. 129).

Even if one makes good judgments in modeling the essentials of the bargaining
process, the result may be too cumbersome to serve as a tool in applications,
where what is required is a reasonably simple mapping from the parameters of
the problem to a solution outcome. This is what cooperative theory supplies.
But which of the many cooperative solution concepts is appropriate in a given
context, and how should it be applied? For answers to such questions, one may
look to noncooperative theory for guidance. It is in this sense that we see
cooperative and noncooperative theory as complementary.

2. A sequential bargaining model

The archetypal bargaining problem is that of “dividing the dollar” between two
players. However, the discussion can be easily interpreted broadly to fit a large
class of bargaining situations. The set of feasible agreements is identified with
A =[0,1]. The two bargainers, players 1 and 2, have opposing preferences
over A. When a> b, 1 prefers a to b and 2 prefers b to a. Who gets how
much?

The idea that the information so far specified is not sufficient to determine
the bargaining outcome is very old. For years, economists tended to agree that
further specification of a bargaining solution would need to depend on the
vague notion of “bargaining ability”. Even von Neumann and Morgenstern
(1944) suggested that the bargaining outcome would necessarily be determined
by unmodeled psychological properties of the players.

Nash (1950, 1953) broke away from this tradition. His agents are fully
rational. Once their preferences are given, other psychological issues are
irrelevant. The bargaining outcome in Nash’s model is determined by the
players’ attitudes towards risk —i.e. their preferences over lotteries in which
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the prizes are taken from the set of possible agreements together with a
predetermined “‘disagreement point”.

A sequential bargaining theory attempts to resolve the indeterminacy by
explicitly modeling the bargaining procedure as a sequence of offers and
counteroffers. In the context of such models, Cross (1965, p. 72) remarks, “If
it did not matter when people agreed, it would not matter whether or not they
agreed at all.” This suggests that the players’ time preferences may be highly
relevant to the outcome. In what follows, who gets what depends exclusively
on how patient each player is.

The following procedure is familiar from street markets and bazaars all over
the world. The bargaining consists simply of a repeated exchange of offers.
Formally, we study a model in which all events take place at one of the times ¢
in a prespecified set T=(0,¢,,t,,...), where (t,) is strictly increasing. The
players alternate in making offers, starting with player 1. An offer x, made at
time ¢, , may be accepted or rejected by the other player. If it is accepted, the
game ends with the agreed deal being implemented at time ¢,. This outcome is
denoted by (x,¢,). If the offer is rejected, the rejecting player makes a
counteroffer at time ¢,,,. And so on. Nothing binds the players to offers they
have made in the past, and no predetermined limit is placed on the time that
may be expended in bargaining. In principle, a possible outcome of the game is
therefore perpetual disagreement or impasse. We denoted this outcome by D.

Suppose that, in this model, player 1 could make a commitment to hold out
for @ or more. Player 2 could then do no better than to make a commitment to
hold out for 1 — & or better. The result would be a Nash equilibrium sustaining
an agreement on a. The indeterminacy problem would therefore remain.
However, we foliow Schelling (1960) in being skeptical about the extent to
which such commitments can genuinely be made. A player may make threats
about his last offer being final, but the opponent can dismiss such threats as
mere bombast uniess it would actually be in the interests of the threatening
player to carry out his threat if his implicit ultimatum were disregarded. In such
situations, where threats need to be credible to be effective, we replace Nash
equilibrium by Selten’s notion of subgame-perfect equilibrium (see the chapters
on ‘strategic equilibrium’ and ‘conceptual foundations of strategic equilibrium’
in a forthcoming volume of this Handbook).

The first to investigate the alternating offer procedure was Stahl (1967, 1972,
1988). He studied the subgame-perfect equilibria of such time-structured
models by using backwards induction in finite horizon models. Where the
horizons in his models are infinite, he postulates nonstationary time prefer-
ences that lead to the existence of a “critical period” at which one player
prefers to yield rather than to continue, independently of what might happen
next. This creates a “last interesting period” from which one can start the
backwards induction. [For further comment, see Stihl (1988).] In the infinite
horizon models studied below, which were first investigated by Rubinstein
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(1982), different techniques are required to establish the existence of a unique
subgame-perfect equilibrium.

Much has been written on procedures in which all the offers are made by
only one of the two bargainers. These models assign all the bargaining power
to the party who makes the offers. Such an asymmetric set-up does not fit very
comfortably within the bargaining paradigm as usually understood and so we
do not consider models of this type here.

2.1. Impatience

Players are assumed to be impatient with the unproductive passage of time.
The times in the set T at which offers are made are restricted to ¢, ==
(n=0,1,2,...), where > 0 is the length of one period of negotiation. Except
where specifically noted, we take =1 to simplify algebraic expressions.
Rubinstein (1982) imposes the following conditions on the players’ {complete,
transitive) time preferences. Foraand bin A,sand tin T, and i =1, 2:

(TP1) a> b implies (a, t)>, (b, t) and (b, t) >, (a, 1).
(TP2) 0<a<1 and s <t imply that (a, s) >, (a, t)>,;D.
(TP3) (a,s)=,(b,s +7) if and only if (a,t) =, (b, t + 7).
(TP4) the graphs of the relations >, are closed.

These conditions are sufficient to imply that for any 0<§, <1 and any
0 < 8, <1 the preferences can be represented by utility functions &, and &, for
which &,(D)= &,(D)=0, ®,(a,!)= ¢,(a)d], and B,(a, )= ¢,(1— a)d},
where the functions ¢,: [0, 1]— [0, 1] are strictly increasing and continuous [see
Fishburn and Rubinstein (1982)]. Sometimes we may take as primitives the
“discount factors” §,. However, note that if we start, as above, with the
preferences as primitives, then the numbers §, may be chosen arbitrarily in the
range (0, 1). The associated discount rates p, are given by 8, =e™".

To these conditions, we add the requirement:

(TPO) for each a € A there exists b € A such that (b,0)~, (a, 7).

By (TP0O) we have ¢,(0) = 0; without loss of generality, we take ¢,(1) =1.
The function f: [0, 1]— [0, 1] defined by f(u,) = &,(1 — ¢, '(u,)) is useful. A

deal reached at time O that assigns utility u, to player 1 assigns u, = f(u,) to

player 2. More generally, the set U’ of utility pairs available at time ¢ is

U'={(u18',,f(u1)8’2): O=u,=<1}. n
Note that a feature of this model is that all subgames in which a given player

makes the first offer have the same strategic structure.
Our goal is to characterize the subgame-perfect equilibria of this game. We
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begin by examining a pair of stationary strategies, in which both players always
plan to do the same in strategically equivalent subgames, regardless of the
history of events that must have taken place for the subgame to have been
reached. Consider two possible agreements a* and b*, and let u* and v* be the
utility pairs that result from the implementation of these agreements at time 0.
Let 5, be the strategy of player 1 that requires him always to offer a* and to
accept an offer of b if and only if b = b*. Similarly, let s, be the strategy of
player 2 that requires him always to offer b* and to accept an offer of a if and
only if @ < a*. The pair (s,, 5,) is a subgame-perfect equilibrium if and only if

vi=38u} and uj=28,v;. (2)

In checking that (s, s,) is a subgame-perfect equilibrium, observe that each
player is always offered precisely the utility that he will get if he refuses the
offer and s, and s, continue to be used in the subgame that ensues.

Notice that (2) admits a solution if and only if the equation

flx) = 8,f(x8,) (3

has a solution. This is assured under our assumptions because f is continuous,
f(0)=1 and f(1)=0.

Each solution to (2) generates a different subgame-perfect equilibrium.
Thus, the uniqueness of a solution to (2) is a necessary condition for the
uniqueness of a subgame-perfect equilibrium in the game.

In the following we will assume that

(TP5) (2) has a unique solution.
A condition that ensures this is
(TP5*) (a + a, 1) ~;(a,0), (b + B, 7)~,(b,0), and a < b imply that a < S.

This has the interpretation that the more you get, the more your have to be
compensated for delay in getting it. A weak sufficient condition for the
uniqueness of the solution for (2) is that ¢, and ¢, be concave. (This condition
is far from necessary. It is enough, for example, that log ¢, and log ¢, be
concave.)

Result 1 [Rubinstein (1982)]. Under assumptions (TP0)-(TP5) the bargain-
ing game has a unique subgame-perfect equilibrium. In this equilibrium,
agreement is reached immediately, and the players’ utilities satisfy (2).

Alternative versions of Rubinstein’s proof appear in Binmore (1987b) and
Shaked and Sutton (1984). The following proof of Shaked and Sutton is
especially useful for extensions and modifications of the theorem.
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Proof. Without loss of generality, we take 7 =1. Let the supremum of all
subgame-perfect equilibrium payoffs to player 1 be M, and the infimum be m,.
Let the corresponding quantities for player 2 in the companion game, in which
the roles of 1 and 2 are reversed, be M, and m,. We will show that m, = u*
and M, = v3, where u} and v} are uniquely defined by (2). An analogous
argument shows that M, = u} and m, =v3}. It follows that the equilibrium
payoffs are uniquely determined. To see that this implies that the equilibrium
Strategies are unique, notice that, after every history, the proposer’s offer must
be accepted in equilibrium. If, for example, player 1's demand of u* were
rejected, he would get at most 8,0} < u?.

As explained earlier, u* is a subgame-perfect equilibrium pair of payoffs.
Thus m,<u} and M,=v}. We now show that (i) 8,M, = f(m,) and (ii)
M, < f(8;m,).

(i) Observe that if player 2 rejects the opening offer, then the companion
game is played from time 1. If equilibrium strategies are played in this game,
player 2 gets no more than 8,M,. Therefore in any equilibrium player 2 must
accept at time ¢#=0 any offer that assigns him a payoff strictly greater than
8,M,. Thus player 1 can guarantee himself any payoff less than f~'(5,M,).
Hence m, = f ~'(8,M,).

(ii) In the companion game, player 1 can guarantee himself any payoff less

(8, u,) =y,

Z
(a‘)ﬁ
(ii)

vi

(& u)=u,

Figure 1.
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than §,m, by rejecting player 2’s opening offer (provided equilibrium strategies
are used thereafter). Thus M, < f(8,m,).

The uniqueness of (u}, v3) satisfying (2) is expressed in Figure 1 by the fact
that the curves f(8,u,) = u, and f ~'(8,u,) = u, intersect only at (u*, v¥). From
(i) and m, < ui, (m,, M,) lies in region (i). From (ii) and M, = v}, (m,, M,)
lies in region (ii). Hence (m,, M,)=(u},v3). Similarly (M,,m,)=
(u1,v3). O

2.2. Shrinking cakes

Binmore’s (1987b) geometric characterization (see Figure 2) applies to prefer-
ences that do not necessarily satisfy the stationarity assumption (TP3). The
“cake” available at time ¢ is identified with a set U’ of utility pairs that is
assumed to be closed, bounded above, and to have a connected Pareto
frontier. It is also assumed to shrink over time. This means that if s < ¢, then,
for each y € U', there exists x € U” satisfying x = y. The construction begins by
truncating the game to a finite number » of stages. Figure 2 shows how aset E,

uz A

Figure 2.



188 K. Binmore et al.

of payoff vectors is constructed from the truncated game in the case when n is
odd. The construction when # is even is similar. The set of all subgame-perfect
equilibrium payoff vectors is shown to be the intersection of all such E, . Since
the sets E, are nested, their intersection is also their limit as n— . The
methodology reveals that, when there is a umque equilibriom outcome, this
must be the limit of the equilibrium outcomes in the finite horizon models
obtained by calling a halt to the bargaining process at some predetermined
time ¢,. In fact, the finite horizon equilibrium outcome in Figure 2 is the point
m.

2.3. Discounting

A very special case of the time preferences covered by Result 1 occurs when
&(a) = ¢,(a) = a (0<a=<1). Reverting to the case of an arbitrary 7 >0, we
have u}=(1-8)/(1-878})—p,/(p, + p,) as 7—0+. When &, =3,, it
follows that the players share the available surplus of 1 equally in the limiting
case when the interval between successive proposals is negligible. If 8, de-
creases, so does player 1’s share. This is a general result in the model: it always
pays to be more patient More precisely, define the preference relation >, to
be at least as patient as > if (y, 0) =, (x, 1) implies that (y, 0) >!(x, 1). Then
player 1 always gets at least as much in equilibrium when his preference
relation is =, as when it is > [Rubinstein (1987)].

2.4, Fixed costs

Rubinstein (1982) characterizes the subgame-perfect equilibrium outcomes in
the alternating offers model under the hypotheses (TP1)-(TP4) and a version
of (TP5*) in which the last inequality is weak. These conditions cover the
interesting case in which each player i incurs a fixed cost ¢, > 0 for each unit of
time that elapses without an agreement being reached. Suppose, in particular,
that their respective utilities for the outcome (a, f) are a — ¢t and 1 — a — c,t.
It follows from Rubinstein (1982) that, if ¢, <¢,, the only subgame-perfect
equilibrium assigns the whole surplus to player 1. If ¢, > c,, then 1 obtains only
¢, in equilibrium. If ¢, =¢,=c<1, then many subgame-perfect equilibria
exist. If ¢ is small (c<1/3), some of these equilibria involve delay in
agreement being reached. That is, equilibria exist in which one or more offers
get rejected. It should be noted that, even when the interval 7 between
successive proposals becomes negligible (r—> 0+), the equilibrium delays do
not necessarily become negligible.
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2.5. Stationarity, efficiency, and uniqueness

We have seen that, when (2) has a unique solution, the game has a unique
subgame-perfect equilibrium which is stationary and that its use results in the
game ending immediately.

The efficiency of the equilibrium is not a consequence of the requirement of
perfection by itself. As we have just seen, when multiple equilibria exist [that
is, when (2) has more than one solution], some of these may call for some
offers to be rejected before agreement is reached, so that the final outcome
need not be Pareto efficient. It is sometimes suggested that rational players
with complete information must necessarily reach a Pareto-efficient outcome
when bargaining costs are negligible. This example shows that the suggestion is
questionable.

Some authors consider it adequate to restrict attention to stationary equilib-
ria on the grounds of simplicity. We do not make any such restriction, since we
believe that, for the current model, such a restriction is hard to justify. A
strategy in a sequential game is more than a plan of how to play the game. A
strategy of player i includes a description of player i’s beliefs about what the
other players think player i would do were he to deviate from his plan of
action. (We are not talking here about beliefs as formalized in the notion of
sequential equilibrium, but of the beliefs built into the definition of a strategy
in an extensive form game.) Therefore, a stationarity assumption does more
than attribute simplicity of behavior to the players: it also makes players’
beliefs insensitive to past events. For example, stationarity requires that, if
player 1 is supposed to offer a 50:50 split in equilibrium, but has al-
ways demanded an out-of-equilibrium 60:40 split in the past, then player
2 still continues to hold the belief that player 1 will offer the 50:50 split in
the future. For a more detailed discussion of this point, see Rubinstein
(1991).

Finally, it should be noted that the uniqueness condition of Result 1 can fail
if the set A from which players choose their offers is sufficiently restricted.
Suppose, for example, that the dollar to be divided can be split only into whole
numbers of cents, so that A ={0,0.01,...,0.99,1}. If ¢,(a) = ¢,(a) =« and
8, =8,=8>0.99, then any division of the dollar can be supported as the
outcome of a subgame-perfect equilibrium [see, for example, Muthoo (1991)
and van Damme, Selten and Winter (1990)]. Does this conclusion obviate the
usefulness of Result 1? This depends on the circumstances in which it is
proposed to apply the result. If the grid on which the players locate values of 8
is finer than that on which they locate values of a, then the bargaining problem
remains indeterminate. Our judgment, however, is that the reverse is usually
the case.
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2.6. Outside options

When bargaining takes place it is usually open to either player to abandon the
negotiation table if things are not going well, to take up the best option
available elsewhere. This feature can easily be incorporated into the model
analyzed in Result 1 by allowing each player to opt out whenever he has just
rejected an offer. If a player opts out at time ¢, then the players obtain the
payoffs 8\e, and &,e,, respectively. The important point is that, under the
conditions of Result 1, the introduction of such exit opportunities is irrelevant
to the equilibrium bargaining outcome when e, <§,u* and e, < 8,v%. In this
case the players always prefer to continue bargaining rather than to opt out.
The next result exemplifies this point.

Result 2 [Binmore, Shaked and Sutton (1988)]. Take ¢,(a) = ¢,(a) =a (0<
a<l)and 8 =8,=8. If e,=0for i=1,2 and e, + e, <1, then there exists a
unique subgame-perfect equilibrium outcome, in which neither player exercises
his outside option. The equilibrium payoffs are

1 8 ) . 5 .
(755 145 tes1ys forizh

1-8(1-¢,),6(1—¢ ife,>i and e, <8(1-¢)),
! ! 1+6 !

(1—-e,,e,) otherwise.

As modeled above, a player cannot leave the table without first listening to
an offer from his opponent, who therefore always has a last chance to save the
situation. This seems to capture the essence of traditional face-to-face bargain-
ing. Shaked (1987) finds multiple equilibria if a player’s opportunity for exit
occurs not after a rejection by himself, but after a rejection by his opponent.
He has in mind “high tech” markets in which binding deals are made quickly
over the telephone. Intuitively, a player then has the opportunity to accom-
pany the offer with a threat that the offer is final. Shaked shows that equilibria
exist in which the threat is treated as credible and others in which it is not.
When outside options are mentioned later, it is the face-to-face model that is
intended. But it is important to bear in mind how sensitive the model can be to
apparently minor changes in the structure of the game. For further discussion
of the “‘outside option” issue in the alternating-offers model, see Sutton (1986)
and Bester (1988).

Harsanyi and Selten (1988, ch. 6) study a model of simultaneous demands in
which one player has an outside option. Player 1 either claims a fraction of the
pie or opts out, and simultaneously player 2 claims a fraction of the pie. If
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player 1 opts out, then he receives a fraction a of the pie and player 2 receives
nothing. If the sum of the players’ claims is one, then each receives his claim.
Otherwise each receives nothing. The game has a multitude of Nash equilibria.
That selected by the Harsanyi and Selten theory results in the division
(1/2,1/2) if @ <1/4 and the division (Ve, 1 ~ Va) if « = 1/4. Thus the model
leads to a conclusion about the effect of outside options on the outcome of
bargaining that is strikingly different from that of the alternating-offers model.
Clearly further research on the many possible bargaining models that can be
constructed in this context is much needed.

2.7. Risk

Binmore, Rubinstein and Wolinsky (1986) consider a variation on the alter-
nating-offers model in which the players are indifferent to the passage of time
but face a probability p that any rejected offer will be the last that can be
made. The fear of getting trapped in a bargaining impasse is then replaced by
the possibility that intransigence will lead to a breakdown of the negotiating
process owing to the intervention of some external factor. The extensive form
in the new situation is somewhat different from the one described above: at the
end of each period the game ends with the breakdown outcome with probabili-
ty p. Moreover, the functions ¢, and ¢, need to be reinterpreted as von
Neumann and Morgenstern utility functions. That is to say, they are derived
from the players’ attitudes to risk rather than from their attitudes to time. The
conclusion is essentially the same as in the time-based model. We denote the
breakdown payoff vector by b and replace the discount factors by 1~ p. The
fact that b may be nonzero means that (2) must be replaced by

vi=pb,+(1-pui and uj=pb,+(1-p)v3, 4

where, as before, u* is the agreement payoff vector when player 1 makes the
first offer and v* is its analog for the case in which it is 2 who makes the first
offer.

2.8. More than two players

Result 1 does not extend to the case when there are more than two players, as
the following three-player example of Shaked demonstrates.

Three players rotate in making proposals @ = (a,, a,, a,) on how to split a
cake of size one. We require that ¢, +a,+a,=1and a,=0fori=1,2,3. A
proposal a accepted at time ¢ is evaluated as worth 4,8’ by player i. A proposal
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a made by player j at time ¢ is first considered by player j + 1 (mod 3), who may
accept or reject it. If he accepts it, then player j +2 (mod 3) may accept or
reject it. If both accept it then the game ends and the proposal a is im-
plemented. Otherwise player j +1 (mod 3) makes the next proposal at time
t+1.

Let 1/2=<8 < 1. Then, for every proposal a, there exists a subgame-perfect
equilibrium in which a is accepted immediately. We describe the eguilibrium‘in
terms of the four commonly held “states (of mind)” a, e', &%, and ¢, where €' is
the ith unit vector. In state y, each player i makes the proposal y and accepts
the proposal z if and only if z, > 8y,. The initial state is a. Transitions occur
only after a proposal has been made, before the response. If, in state y, player i
proposes z with 2, > y,, then the state becomes e’, where j # i is the player with
the lowest index for whom z; <1/2. Such a player j exists, and the requirement
that 8 = 1/2 guarantees that it is optimal for him to reject player i’s proposal.

Efforts have been made to reduce the indeterminacy in the n-player case by
changing the game or the solution concept. One obvious result is that, if
attention is confined to stationary (one-state) strategies, then the unique
subgame-perfect equilibrium assigns the cake in the proportions
1:8:...:8"". The same result follows from restricting the players to have
continuous expectations about the future [Binmore (1987d)].

2.9. Related work

Perry and Reny (1992) study a model in which time runs continuously and
players choose when to make offers. Muthoo (1990) studies a model in which
each player can withdraw from an offer if his opponent accepts it; he shows
that all partitions can be supported by subgame perfect equilibria in this case.
Haller (1991), Fernandez and Glazer (1991) and Haller and Holden (1990)
[see also Jones and McKenna (1990)] study a model of wage bargaining in
which after any offer is rejected the union has to decide whether or not to
strike or continue working at the current wage. [See also the general model of
Okada (1991a, 1991b).] The model of Admati and Perry (1991) can be
interpreted as a variant of the alternating offers model in which neither player
can retreat from concessions he made in the past.

Models in which offers are made simultancously are discussed, and com-
pared with the model of alternating offers, by Stahl (1990), and Chatterjee and
Samuelson (1990). Chikte and Deshmukh (1987), Wolinsky (1987) and

Muthoo (1989b) study models in which players may search for outside options |

while bargaining.
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3. The Nash program

The ultimate aim of what is now called the “Nash program” [see Nash (1953)]
is to classify the various institutional frameworks within which negotiation
takes place and to provide a suitable “‘bargaining solution” for each class. As a
test of the suitability of a particular solution concept for a given type of
institutional framework, Nash proposed that attempts be made to reduce the
available negotiation ploys within that framework to moves within a formal
bargaining game. If the rules of the bargaining game adequately capture the
salient features of the relevant bargaining institutions, then a “bargaining
solution” proposed for use in the presence of these institutions should appear
as an equilibrium outcome of the bargaining game.

The leading solution concept for bargaining situations in the Nash bargaining
solution [see Nash (1950)]. The idea belongs in cooperative game theory. A
“bargaining problem” is a pair (U, g) in which U is a set of pairs of von
Neumann and Morgenstern utilities representing the possible deals available to
the bargainers, and q is a point in U interpreted by Nash as the status quo. The
Nash bargaining solution of (U, q) is a point at which the Nash product

(u, —q) (U, — q,) (5)

is maximized subject to the constraints u € U and u = q. Usually it is assumed
that u is convex, closed, and bounded above to ensure that the Nash bargaining
solution is uniquely defined, but convexity is not strictly essential in what
follows.

When is such a Nash bargaining solution appropriate for a two-player
bargaining environment involving alternating offers? Consider the model we
studied in Section 2.7, in which there is a probability p of breakdown after any
rejection. We have the following result. [See also Moulin (1982), Binmore,
Rubinstein and Wolinsky (1986) and McLennan (1988).]

Result 3 [Binmore (1987a)]. When a unique subgame-perfect equilibrium
exists for each p sufficiently close to one, the bargaining problem (U, g), in
which U is the set of available utility pairs at time 0 and g = b is the breakdown
utility pair, has a unique Nash bargaining solution. This is the limiting value of
the subgame-perfect equilibrium payoff pair as p — 0+.

Proof. To prove the concluding sentence, it is necessary only to observe from
(4) that u* € U and v* € U lie on the same contour of (u, — b,)(u, — b,) and
that u* —v*—(0,0) as p—0+. O
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We can obtain a similar result in the time-based alternating-offers model
when the length 7 of a bargaining period approaches 0. One is led to this case
by considering two objections to the alternating-offers model. The first is based
on the fact that the equilibrium outcome favors player 1 in that u} > v} and
u% <wv3. This reflects players 1’s first-mover advantage. The objection evapo-
rates when 7 is small, so that “bargaining frictions” are negligible. It then
becomes irrelevant who goes first. The second objection concerns also the
reasons why players abide by the rules. Why should a player who has just
rejected an offer patiently wait for a period of length 7> 0 before making a
counteroffer? If he were able to abbreviate the waiting time, he would respond
immediately. Considering the limit as r— 0+ removes some of the bite of the
second objection in that the players need no longer be envisaged as being
constrained by a rigid, exogenously determined timetable.

Figure 3 illustrates the solution u* and v* of equations (2) in the case when
8, and §, are replaced by 87 and &} and p, = —log 8,. It is clear from the figure
that, when 7 approaches zero, both u* and v* approach the point in U at which
u,""'u}’" is maximized. Although we are not dealing with von Neumann and
Morgenstern utilities, it is convenient to describe this point as being located at
an asymmetric Nash bargaining solution of U relative to a status quo g located

Uz 1\

(87 v},8% v3)

(8%}, 87 u3)

Figure 3.
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at the impasse payoff pair (0, 0). [See the chapter on ‘cooperative models of
bargaining’ in a forthcoming volume of this Handbook and Roth (1977).]

Such an interpretation should not be pushed beyond its limitations. In
particular, with our assumptions on time preferences, it has already been
pointed out that, for any & in (0, 1), there exist functions w, and w, such that
w,(a)8" and w,(1 — 4)8" are utility representations of the players’ time prefer-
ences. Thus if the utility representation is tailored to the bargaining problem,
then the equilibrium outcome in the limiting case as 7— 0+ is the symmetric
Nash bargaining solution for the utility functions w, and w,.

This discussion of how the Nash bargaining solution may be implemented by
considering limiting cases of sequential noncooperative bargaining models
makes it natural to ask whether other bargaining solutions from cooperative
game theory can be implemented using parallel techniques. We mention only
Moulin’s (1984) work on implementing the Kalai-Smorodinsky solution. [See
the chapter on ‘cooperative models of bargaining’ in a forthcoming volume of
this Handbook and Kalai and Smorodinsky (1975).] Moulin’s model begins
with an auction to determine who makes the first proposal. The players
simultaneously announce probabilities p, and p,. If p, =p,, then player 1
begins by proposing an outcome a. If player 2 rejects a, that he makes a
counterproposal, b. If player 1 rejects b, then the status quo q results. If player
1 accepts b, then the outcome is a lottery that yields b with probability p,and g
with probability 1-p,. (If p, > p, then it is player 2 who proposes an
outcome, and player 1 who responds.) The natural criticism is that it is not
clear to what extent such an “‘auctioning of fractions of a dictatorship” qualifies
as bargaining in the sense that this is normally understood.

3.1. Economic modeling

The preceding section provides some support for the use of the Nash bargain-
ing solution in economic modeling. One advantage of a noncooperative
approach is that it offers some insight into #ow the various economic parame-
ters that may be relevant should be assimilated into the bargaining model when
the environment within which bargaining takes place is complicated [Binmore,
Rubinstein and Wolinsky (1986)]. In what follows we draw together some of
the relevant considerations.

Assume that the players have von Neumann and Morgenstern utilities of the
form 8u,(a). (Note that this is a very restrictive assumption.) Consider the
placing of the status quo. In cooperative bargaining theory this is interpreted as
the utility pair that results from a failure to agree. But such a failure to agree
may arise in more than one way. We shall, in fact, distinguish three possible
ways:
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(a) A player may choose to abandon the negotiations at time ¢. Both players
are then assumed to seek out their best outside opportunities, thereby deriving
utilities e,8;. Notice that it is commonplace in modeling wage negotiations to
ignore timing considerations and to use the Nash bargaining solution with the
status quo placed at the “exit point” e.

(b) The negotiations may be interrupted by the intervention of an exogen-
ous random event that occurs in each period of length 7 with probability A7. If
the negotiations get broken off in this way at time ¢, each player i obtains utility
b,8:.

(c) The negotiations may continue for ever without interruption or agree-
ment, which is the outcome denoted by D in Section 2. As in Section 2, utilities
are normalized so that each player then gets d, =0.

Assume that the three utility pairs e, b, and d satisfy 0=d <b <e.

When contemplating the use of an asymmetric Nash bargaining solution in
the context of an alternating offers model for the “frictionless” limiting case
when 7— 0+, the principle is that the status quo is placed at the utility pair g
that results from the use of impasse strategies. Thus, if we ignore the exit point
e then the relevant disagreement point is g with

g = lim 2 b,87Ar(1— Aty =Ab/(A+p;) fori=1,2,

0+ j=0

where p, = —log 8,. The (symmetric) Nash bargaining solution of the problem
in which ¢ is the status quo point is the maximizer of uf'u3?, where a;=
1/(A+ p,) (i.e. it is the asymmetric Nash bargaining solution in which the
“bargaining power” of player i is «;). This reflects the fact that both time and
risk are instrumental in forcing an agreement.

It is instructive to look at two extreme cases. The first occurs when A is small
compared with the discount rates p, and p, so that it is the time costs of
disagreement that dominate. The status quo goes to d (=0) and the bargaining
powers become 1/p,. The second case occurs when p, and p, are both small
compared with A so that risk costs dominate. This leads to a situation closer to
that originally envisaged by Nash (1950). The status quo goes to the break-
down point b and the bargaining powers approach equality so that the Nash
bargaining solution becomes symmetric.

As for the exit point, the principle is that its value is irrelevant unless at least
one player’s outside option e; exceeds the appropriate Nash bargaining payoff.
There will be no agreement if this is true for both players. When it is true for
just one of the players, he gets his outside option and the other gets what
remains of the surplus. (See Result 2 in the case that §—1.)

Note finally that the above considerations concerning bargaining over stocks
translate immediately to the case of bargaining over flows. In bargaining over
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the wage rate during a strike, for example, the status quo payoffs should be the
impasse flows to the two parties during the strike (when the parties’ primary
motivation to reach agreement is their impatience with delay).

4, Commitment and concession

A commitment is understood to be an action available to an agent that
constraints his choice set at future times in a manner beyond his power to
revise. Schelling (1960) has emphasized, with many convincing examples, how
difficult it is to make genuine commitments in the real world to take-it-or-
leave-it bargaining positions. It is for such reasons that subgame-perfect
equilibrium and other refinements now supplement Nash equilibrium as the
basic tool in noncooperative game theory. However, when it is realistic to
consider take-it-or-leave-it offers or threats, these will clearly be overwhelm-
ingly important. Nash’s (1953) demand game epitomizes the essence of what is
involved when both sides can make commitments.

In this model, the set U of feasible utility pairs is assumed to be convex,
closed, and bounded above, and to have a nonempty interior. A point g € U is
designated as the status quo. The two players simultaneously make take-it-or-
leave-it demands u, and u,. If u € U, each receives his demand. Otherwise
each gets his status quo payoff.

Any point of V={u=q: u is Pareto efficient in U} is a Nash equilibrium.
Other equilibria result in disagreement. Nash (1953) dealt with this indeter-
minacy by introducing a precursor of modern refinement ideas. He assumed
some shared uncertainty about the location of the frontier of U embodied in a
quasi-concave, differentiable function p: R*— [0, 1] such that p(u)>0if uisin
the interior of U and p(«) =0 if u & U. One interprets p(u) as the probability
that the players commonly assign to the event u € U. The modified model is
called the smoothed Nash demand game. Interest centers on the case in which
the amount of uncertainty in the smoothed game is small. For all small enough
€ >0, choose a function p = p* such that p*(u) = 1 for all u € U whose distance
from V exceeds e. The existence of a Nash equilibrium that leads to agreement
with positive probability for the smoothed Nash demand game for p = p°
follows from the observation that the maximizer of u,u,p(u,, u,) is such a
Nash equilibrium.

Result 4 [Nash (1953)]. Let u® be a Nash equilibrium of the smoothed Nash
demand game associated with the function p® that leads to agreement with
positive probability. When € — 0, u* converges to the Nash bargaining solution
for the problem (U, g).
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Proof. The following sketch follows Binmore (1987c). Player i seeks to
maximize u,p*() + ¢,(1 — p“(v)). The first-order conditions for u® > g to be a
Nash equilibrium are therefore

(u — g () + p(u) =0 for i=1,2, ©

where p; is the partial derivative of p° with respect to u,. Suppose that
p(uf)=c>0. From condition (6) it follows that the vector u® must be a
maximizer of H(u,, u,)=(u; — q,)(u, — q,) subject to the constraint that
p(u) = c. Let w* be the maximizer of H(u,, u,) subject to the constraint that
p(u) =1. Then H(u) = H(w®). By the choice of p® the sequence w* converges
to the Nash bargaining solution and therefore the sequence u* converges to the
Nash bargaining solution as well. O

There has been much recent interest in the Nash demand game with
incomplete information, in which context it is referred to as a ‘“‘sealed-bid
double-auction” [see, for example, Leininger, Linhart and Radner (1989),
Matthews and Postlewaite (1989), Williams (1987) and Wilson (1987a)]. It is
therefore worth noting that the smoothing technique carries over to the case of
incomplete information and provides a noncooperative defense of the Harsanyi
and Selten (1972) axiomatic characterization of the (M + N)-player asymmet-
ric Nash bargaining solution in which the bargaining powers 8, (i=1,..., M)
are the (commonly known) probabilities that player 2 attributes to player 1’s
being of type i and B, (j=M +1,..., M + N) are the probabilities attributed
by player 1 to player 2’s being of type j. If attention is confined to pooling
equilibria in the smoothed demand game, the predicted deal a € A is the
maximizer of II,_, (&) ps:  aron(®,(a))%, where ¢,: A—R is the
von Neumann and Morgenstern utility function of the player of type i
[Binmore (1987c)].

4.1. Nash’s threat game

In the Nash demand game, the status quo g is given. Nash (1953) extended his
model in an attempt to endogenize the choice of ¢. In this later model, the
underlying reality is seen as a finite two-person game, G. The bargaining
activity begins with each player making a binding threat as to the (possibly
mixed) strategy for G that he will use if agreement is not reached in the
negotiations that follow. The ensuing negotiations consist simply of the Nash
demand game being played. If the latter is appropriately smoothed, the choice
of threats ¢, and t, at the first stage serves to determine a status quo q(t,, ¢,) for
the use of the Nash bargaining solution at the second stage. The players can
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write contracts specifying the use of lotteries, and hence we identify the set U
of feasible deals with the convex hull of the set of payoff pairs available in G
when this is played noncooperatively. This analysis generates a reduced game
in which the payoff pair n(t) that results from the choice of the strategy pair f is
the Nash bargaining solution for U relative to the status quo g(¢).

Result 5 [Nash (1953)]. The Nash threat game has an equilibrium, and all
equilibria yield the same agreement payoffs in U.

The threat game is strictly competitive in that the players’ preferences over
the possible outcomes are diametrically opposed. The result is therefore
related to von Neumann’s maximin theorem for two-person, zero-sum games.
In particular, the equilibrium strategies are the players’ security strategies and
the equilibrium outcome gives each player his security level. For a further
discussion of the Nash threat game, see Owen (1982).

The model described above, together with Nash’s (1953) axiomatic defense
of the same result, is often called his variable threats theory. The earlier model,
in which ¢ is given, is then called the fixed threat theory and q itself is called the
threat point. It needs to be remembered, in appealing to either theory, that the
threats need to have the character of conditional commitments for the conclu-
sions to be meaningful.

4.2. The Harsanyi—Zeuthen model

In what Harsanyi (1977) calls the “‘compressed Zeuthen model”, the first stage
consists of Nash’s simple demand game (with no smoothing). If the opening
demands are incompatible, a second stage is introduced in which the players
simultaneously decide whether to concede or to hold out. If both concede, they
each get only what their opponent offered them. If both hold out, they get
their status quo payoffs, which we normalize to be zero.

The concession subgame has three Nash equilibria. Harsanyi (1977) ingeni-
ously marshals a collection of ‘“‘semi-cooperative” rationality principles in
defense of the use of Zeuthen’s (1930) principle in making a selection from
these three equilibria. Denoting by r; the ratio between i’s utility gain if j
concedes and #’s utility loss if there is disagreement, Zeuthen’s principle is that,
if r,> r;, then player i concedes. When translated into familiar terms, this calls
for the selection of the equilibrium at which the Nash product of the payoffs is
biggest. When this selection is made in the concession subgames, the equilib-
rium pair of opening demands is then simply the Nash bargaining solution.

The full Harsanyi-Zeuthen model envisages not one sudden-death encoun-
ter but a sequence of concessions over small amounts. However, the strategic
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situation is very similar and the final conclusion concerning the implementation
of the Nash bargaining solution is identical.

4.3. Making commitments stick

Crawford (1982) offers what can be seen as an elaboration of the compressed
Harsanyi-Zeuthen model with a more complicated second stage in which
making a concession (backing down from the “commitment”) is costly to an
extent that is uncertain at the time the original demands are made. He finds
not only that impasse can occur with positive probability, but that this
probability need not decrease as commitment is made more costly.

More recent work has concentrated on incomplete information about prefer-
ences as an explanation of disagreement between rational bargainers (see
Section 8). In consequence, Schelling’s (1960) view of bargaining as a “struggle
to establish commitments to favorable bargaining positions” remains largely
unexplored as regards formal modeling.

5. Pairwise bargaining with few agents

In many economic environments the parameters of one bargaining problem are
determined by the forecast outcomes of other bargaining problems. In such
situations the result of the bargaining is highly sensitive to the detailed
structure of the institutional framework that governs how and when agents can
communicate with each other. The literature on this topic remains exploratory
at this stage, concentrating on a few examples with a view to isolating the
crucial institutional features. We examine subgame-perfect equilibria of some
elaborations of the model of Section 2.

5.1. One seller and two buyers

An indivisible good is owned by a seller § whose reservation value is v = 0. It
may be sold to one and only one of two buyers, H and L, with reservation
values v = v, = v, =1. In the language of cooperative game theory, we have a
three-player game with value function V satisfying V({S,H})=
V({S,H,L})=v, V({S,L})=1, and V(C)=0 otherwise. The game has a
nonempty core in which the object is sold to H for a price p =1 when v >1.
(When v =1, it may be sold to either of the buyers at the price p =1.) The
Shapley value is (1/6 + v/2, v/2—1/3, 1/6) (where the payoffs are given in
the order S, H, L).
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How instructive are such conclusions from cooperative theory? The follow-
ing noncooperative models are intended to provide some insight. In these
models, if the object changes hands at price p at time ¢, then the seller gets p8’
and the successful buyer gets (v; — p)é’, where v, is his valuation and
0<d& <1. An agent who does not participate in a transaction gets zero.
Information is always perfect.

5.1.1. Auctioning [Wilson (1984), Binmore (1985)]

The seller begins at time 0 by announcing a price, which both buyers hear.
Buyer H either accepts the offer, in which case he trades with the seller and the
game ends, or rejects it. In the latter case, buyer L then either accepts or
rejects the seller’s offer. If both buyers reject the offer, then there is a delay of
length 7, after which both buyers simultaneously announce counteroffers; the
seller may either accept one of these offers or reject both. If both are rejected,
then there is a delay of length 7, after which the seller makes a new offer; and
50 om.

5.1.2. Telephoning [Wilson (1984, Section 4), Binmore (1985)]

The seller begins by choosing a buyer to call. During their conversation, the
seller and buyer alternate in making offers, a delay of length T elapsing after
each rejection. Whenever it is the seller’s turn to make an offer, he can hang
up, call the other buyer and make an offer to him instead. An excluded buyer
is not allowed to interrupt the seller’s conversation with the other buyer.

5.1.3. Random matching [Rubinstein and Wolinsky (1990)]

At the beginning of each period, the seller is randomly matched with one of
the two buyers with equal probability. Each member of a matched pair then
has an equal chance of getting to make a proposal which the other can then
accept or reject. If the proposal is rejected, the whole process is repeated after
a period of length 7 has elapsed.

5.1.4. Acquiring property rights [Gul (1989)]

The players may acquire property rights originally vested with other players.
An individual who has acquired the property rights of all members of the
coalition C enjoys an income of V(C) while he remains in possession. Property
rights may change hands as a consequence of pairwise bargaining. In each
period, any pair of agents retaining property rights has an equal chance of
being chosen to bargain. Each member of the matched pair then has an equal
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chance of getting to make a proposal to the other about the rate at which he is
willing to rent the property rights of the other. If the responder agrees, he
leaves the game and the remaining player enjoys the income derived from
coalescing the property rights of both. If the responder refuses, both are
returned to the pool of available bargainers. In this model a strategy is to be
understood as stationary if the behavior for which it calls depends only on the
current distribution of property rights and not explicitly on time or other
variables.

Result 6

(a) [Binmore (1985)]. If, in the auctioning model, 8’v/(1+ 67) <1, then
there is a subgame-perfect equilibrium, and in all such equilibria the good
is sold immediately (to H if v>1) at the price 8" +(1—-8")v. If
8v/(1+8")>1, then the only subgame-perfect equilibrium outcome is that
the good is sold to H at the bilateral bargaining price (of approximately v/2 if 7
is sufficiently small) that would obtain if L were absent altogether.

(b) [Binmore (1985)]. In any subgame-perfect equilibrium of the telephon-
ing model immediate agreement is reached on the bilateral bargaining price
(approximately v/2 when 7 is small) that would obtain if L were absent
altogether. If v > 1 then the good is sold to H.

{c) [Rubinstein and Wolinsky (1990)]. If, in the random matching model,
v =1, then there is a unique subgame-perfect equilibrium in which the good is
sold to the first matched buyer at a price of approximately 1 when 7 is small.

(d) [Gul (1989)]. For the acquiring property rights model, among the class of
stationary subgame-perfect equilibria there is a unique equilibrium in which all
matched pairs reach immediate agreement. When 7 is small, this equilibrium
assigns each player an expected income approximately equal to his Shapley
value allocation.

5.2. Related work

Shaked and Sutton (1984) and Bester (1989a) study variations of the “tele-
phoning” model, in which the delay before the seller can make an offer to a
new buyer may differ from the delay between any two successive periods of
bargaining. [See also Bester (1988) and Muthoo (1989a).] The case v > 1 in the
“random matching” model is analyzed by Hendon and Tranzs (1991). An
implementation of the Shapley value that is distinct but related to that in the
“acquiring property rights” model is given by Dow (1989). Gale (1988) and
Peters (1988, 1989, 1991, 1992) study the relation between the equilibria of
models in which sellers announce prices (““‘auctioning”, or “‘ex ante pricing”),
and the equilibria of models in which prices are determined by bargaining after
a match is made (“‘ex post pricing”). Horn and Wolinsky (1988a, 1988b)
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analyze a three-player cooperative game in which V(1,2,3)>V(l, 2)=
V(1,3) >0 and for V(C) = 0 all other coalitions C. [See also Davidson (1988),
Jun (1989), and Fernandez and Glazer (1990).] In this case, the game does not
end as soon as one agreement is reached and the question of whether the first
agreement is implemented immediately becomes an important factor. [Related
papers are Jun (1987) and Chae and Yang (1988).]

6. Noncooperative bargaining models for coalitional games

In Section 8.2 we showed that Result 1 does not directly extend to situations in
which more than two players have to split a pie. The difficulties are com-
pounded if we wish to provide a noncooperative model for an arbitrary
coalitional game.

Selten (1981) studies a model that generalizes the alternating-offers model.
He restricts attention to coalitional games (N,v) with the *‘one-stage
property”: v(C) >0 implies v(N\C) = 0. In such a game, let d be an n-vector,
and let F,(d) be the set of coalitions that contain i and satisfy L, d; = v(C).
Then d is a “stable demand vector” if L, d; = v(C) for all coalitions C, and
no F(d) is a proper subset of F;(d) for any j.

Selten’s game is the following. Before play begins, one of the players, say i,
is assigned the initiative. In any period, the initiator can either pass the
initiative to some other player, or make a proposal of the form (C, 4, j),
where C D i is a coalition, 4 is a division of v(C) among the members of C, and
j€ C is the member of C designated to be the responder. Player j either
accepts the proposal and selects one of the remaining members of C to become
the next responder, or rejects the proposal. In the latter case, play passes to
the next period, with j holding the initiative. If all the members of C accept the
proposal, then it is executed, and the game ends. The players are indifferent to
the passage of time.

The game has many stationary subgame-perfect equilibria. However, Selten
restricts attention to equilibria in which (i) players do not needlessly delay
agreement, (ii) the initiator assigns positive probability to all optimal choices
that lead to agreement with probability 1, and (iii) whenever some player i has
a deviation x = (C, d, j) with the properties that d; exceeds player i’s equilib-
rium payoff, d; is less than player j’s equilibrium payoff, and player i is
included in all the coalitions that may eventually form and obtains his
equilibrium payoff, then player j has a deviation (C’, d’, i) that satisfies the
same conditions with the roles of i and j reversed. Selten shows that such
equilibria generate stable demand vectors, in the sense that a stable demand
vector d is obtained by taking d, to be player i’s expected payoff in such an
equilibrium conditional on his having the initiative.

Chatterjee, Dutta, Ray and Sengupta (1992) study a variant of Selten’s game
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in which the players are impatient, and the underlying coalitional game does
not necessarily satisfy the one-stage property. They show that for convex
games, stationary subgame-perfect equilibria in which agreement is reached
immediately on an allocation for the grand coalition converge, as the degree of
impatience diminishes, to the egalitarian allocation [in the sense of Dutta and
Ray (1989)].

Harsanyi (1981) studies two noncooperative models of bargaining that
implement the Shapley value in certain games. We briefly discuss one of these.
In every period each player proposes a vector of “dividends” for each coalition
of which he is a member. If all members of a coalition propose the same
dividend vector, then they receive these dividends if this is feasible. At the end
of each period there is a small probability that the negotiations break down. If
it is not ended by chance, then the game ends when the players unanimously
agree on their dividend proposals. Harsanyi shows that in decomposable
games — games that are the sums of unanimity games —the outcome of the
bargaining game selected by the Harsanyi and Selten (1988) equilibrium
selection procedure is precisely the Shapley value. [For a related, ‘“‘semi-
cooperative” interpretation of the Shapley value, see Harsanyi (1977).]

Various implementations of the solution sets of von Neumann and Morgen-
stern are also known, notably that of Harsanyi (1974). In each period ¢ some
feasible payoff vector x' is “on the floor”. A referee chooses some coalition §
to make a counterproposal. The members of S simultaneously propose alterna-
tive payoff vectors. If they all propose the same vector y, and y dominates x'
through S, then y is on the floor in period ¢ + 1; otherwise the game ends, and
x' is the payoff vector the players receive. The solution concept Harsanyi
applies is a variant of the set of stationary subgame perfect equilibrium.

As things stand, these models demonstrate only that various cooperative
solution concepts can emerge as equilibrium outcomes from suitably designed
noncooperative or semi-cooperative bargaining models. However, these
pioneering papers provide little guidance as to which of the available coopera-
tive solution concepts, if any, it is appropriate to employ in an applied model.
For this purpose, bargaining models need to be studied that are not hand-
picked to generate the solution concept they implement. But it is difficult to
see how to proceed while the simple alternating-offers model with three players
remains open. Presumably, as in the case of incomplete information considered
in Section 8, progress must await progress in noncooperative equilibrium
theory.

7. Bargaining in markets

Bargaining theory provides a natural framework within which to study price
formation in markets where transactions are made in a decentralized manner
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via interaction between pairs of agents rather than being organized centrally
through the use of a formal trading institution like an auctioneer. One might
describe the aim of investigations in this area as that of providing *“‘mini-micro”
foundations for the microeconomic analysis of markets and, in particular, of
determining the range of validity of the Walrasian paradigm. Such a program
represents something of a challenge for game theorists in that its success will
presumably generate new solution concepts for market situations intermediate
between those developed for bilateral bargaining and the notion of a Walrasian
equilibrium.

Early studies of matching and bargaining models are Diamond and Maskin
(1979), Diamond (1981) and Mortensen (1982a, 1982b) in which bargaining is
modeled using cooperative game theory. This approach is to be contrasted with
the noncooperative approach of the models that follow. A pioneering paper in
this direction is Butters (1977).

The models that exist differ in their treatment of several key issues. First,
there is the information structure. What does a player know about the events
in other bargaining sessions? Second, there is the question of the detailed
structure of the pairwise bargaining games. In particular, when can a player opt
out? Third, there is the modeling of the search technology through which the
bargainers get matched. Finally, there is the nature of the data given about
agents in the market. Sometimes, for example, it relates to stocks of agents in
the market, and sometimes to flows of entrants or potential entrants.

7.1. Markets in steady state [Rubinstein and Wolinsky (1985)]

Most of the literature has concentrated on a market for an individual good in
which agents are divided into two groups, sellers and buyers. All the sellers
have reservation value 0 for the good and all the buyers have reservation value
1. A matched seller and buyer can agree on any price p, with 0=<p=<1. If
agreement is reached at time ¢, then the seller leaves the market with a von
Neumann and Morgenstern utility of p8' and the buyer leaves with (1— p)&"

The first event in each period is a matching session in which all agents in the
market participate, including those who may be matched already. Any seller
has a probability ¢ of being matched with a buyer and any buyer has a
probability B of being matched with a seller. The numbers o and B are assumed
to be constant so that the economic environment remains in a steady state.

Bargaining can take place only between individuals in a matched pair. After
the matching session, each member of a matched pair is equally likely to be
chosen to make the first offer. This may be accepted or rejected by the
proposer’s partner. If it is accepted, both leave the market. In either case, the
next period commences after time + has elapsed.

Pairs who are matched at time ¢ but do not reach agreement remain matched
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at time ¢ + 7, unless one or both partners gets matched elsewhere. An agent
must abandon his old partner when matched with a new one. Thus, for
example, a seller with a partner at time ¢ who does not reach agreement at time
t has probability (1 — o) B of being without a partner at time t + 7. (A story can
be told about the circumstances under which it would always be optimal to
abandon the current partner if this decision were the subject of strategic
choice, but this issue is neglected here.)

The model is not a game in the strict sense. For example, the set of players is
not specified. Nevertheless, a game-theoretic analysis makes sense using a
solution concept that is referred to as a “market equilibrium”. This is a pair of
strategies, one for buyers and one for sellers, that satisfies:

(1) Semi-stationarity. The strategies prescribe the same bargaining tactics for
all buyers (or sellers) independently of their personal histories.

(2) Sequential rationality. The strategies are optimal after all possible his-
tories.

Result 7 [Rubinstein and Wolinsky (1985)]. There is a unique market equilib-
rium. As 7— 0+, the price at which the good changes hands converges to
ol(o+ B).

The probabilities ¢ and B depend on the matching technology, which
depends in turn on how search is modeled. Let S and B be the steady-state
measures of sellers and buyers, respectively, and consider the most naive of
search models in which o =¢rB/(B+ S) and B=crS/(B + S), where the
constant ¢ represents a “search friction”. In the limit as 7— 0+, the market
equilibrium price approaches B/{B + §). Thus, for example, if there are few
sellers and many buyers, the price is high.

Notice that the short side of the market does not appropriate the entire
surplus even in the case when several frictions become negligible. Gale (1987)
points out that, if this conclusion seems paradoxical, it is as a consequence of
thinking of supply and demand in terms of the stocks S and B of agents in the
market at any time. To keep the market in a steady state, the flows of buyers
and sellers into the market at any time have to be equal. If supply and demand
are measured in terms of these flows, then any selling price is Walrasian. For
further discussion, see Rubinstein (1987, 1989).

7.2. Unsteady states [Binmore and Herrero (1988a, 1988b)]

Binmore and Herrero (1988a, 1988b) generalize the preceding model in two
directions. The informational difficulties finessed by Rubinstein and Wolinsky’s
“semi-stationarity” condition are tackled by observing that subgame-perfect
equilibria in alternating-offers models can be replaced by “security equilibria”
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without losing the uniqueness conclusion. A security equilibrium is related to
the notion of “rationalizability”” introduced by Bernheim (1984) and Pearce
(1984). Their requirement about its being common knowledge that strictly
dominated strategies are never played is replaced by a similar requirement
concerning security levels. It is assumed to be common knowledge that no
player takes an action under any contingency that yields less than he calculates
his security level to be, given the occurrence of the contingency. Any equilib-
rium notion normally considered is also a security equilibrium. A proof of
uniqueness for security equilibria therefore entails uniqueness for more con-
ventional equilibria also. However, in markets with a continuum of traders,
security equilibria are insensitive to the players’ personal histories. The imme-
diate point is that stationarity restrictions on the equilibrium concept used in
the Rubinstein and Wolinsky model and its relatives are not crucial in
obtaining a uniqueness result (provided & <1).

The second generalization of the Rubinstein and Wolinsky model resuits
from applying the technique to markets that are not necessarily in a steady
state in that the equilibrium measures of traders may vary with time as a
consequence of satisfied traders leaving the market without there being an
exactly counterbalancing inflow of new traders. Closed-form conclusions are
obtained for the continuous time case obtained by considering the limit as
7—>0+. In particular, the equilibrium deal can be expressed as an integral
involving the equilibrium probabilities that a buyer or a seller is matched at all
future times.

Aside from the steady-state model, the simplest special case occurs when no
new traders enter the market after time 0. There is then no replacement of
those traders present at time 0 when they finally conclude a successful deal and
leave the market. With the naive search technology considered in the Rubin-
stein and Wolinsky model, the following Walrasian conclusion is obtained:

Result 8 [Binmore and Herrero (1988a, 1988b)]. There is a unique security
equilibrium. As search frictions become negligible, the equilibrium deal ap-
proximates that in which the entire surplus is assigned to agents on the short
side of the market.

Among many other results, Gale (1987) has extended versions of both
Results 7 and 8 to the case in which there is a spectrum of reservation prices on
both sides of the market.

7.3. Divisible goods with multiple trading [Gale (1986c)]

Gale (1986a, 1986b, 1986c) studies traditional barter markets in which many
divisible goods are traded and agents can transact many times before leaving
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the market. We now describe one of the models from Gale (1986c) [which is a
simplification of the earlier paper Gale (1986a)]. [The existence of market
equilibrium is established in Gale (1986b), and the relation between Gale’s
work and general equilibrium theory is explored in McLennan and Son-
nenschein (1991).]

All agents, of which there are K types, enter the market at time zero.
Initially, there is a measure n, of agents of each type k=1,2,...,K. An
agent of type k is characterized by his initial commodity bundle w, and his
utility function u,: R7 U {D}— R U {~»}, where R, is the space of commodi-
ty bundles with which he might leave the market and D is the event of his
remaining in the market for ever. Agents are not impatient (6 = 1) and bundles
may be stored costlessly.

Each period begins with a matching session which operates independently of
past events. In particular, no matches survive from previous periods, The
probability of a given agent getting matched with an agent with specified
characteristics is proportional to the current measure of such agents in the
population. Once a match is established, each of the paired agents learns the
type of his partner and his partner’s commodity bundle. Bargaining then
begins. Each member of a matched pair is equally likely to be chosen to make
a proposal. This must consist of a vector representing a feasible transfer of
goods from himself to his bargaining partner. This proposal may be accepted or
rejected. If it is rejected, the responding agent then decides whether or not to
leave the market. An important assumption is that agents do not leave the
market except after such a rejection.

As trade occurs, the bundle held by each agent changes. Given the restric-
tions on strategies imposed below, the number of different bundles held is
always finite. Thus, in any period the state of the market can be characterized
by a finite list (c;, k;, ,);-,..;, where ¢, is a feasible holding and v, is the
measure of agents of type k; holding c,.

A market equilibrium is defined to be a K-tuple o* of strategies, one for
each type, that satisfies the following conditions:

(1) Semi-stationarity. The bargaining tactics prescribed by the strategy de-
pend only on time, the agent’s current bundle and the opponent’s type and
current bundle.

(2) Sequential rationality. Whenever an agent makes a decision, his strategy
calls for an optimal decision, given the strategies of the other types and given
that the agent believes that the state of the market is that which occurs when
all agents use o*.

A K-tuple of bundles (x,,...,x,) is an allocation if LX_ n.x, =
TX_, n,w,. If there exists a price vector p such that, for all k, the bundle X,
maximizes u, subject to the budget constraint px < pw,, then the allocation is
Walrasian. Gale’s concern is with the circumstances under which the equilib-
rium outcome is Walrasian.



Ch. 7: Nencooperative Models of Bargaining 209

For technical reasons, Gale restricts the utility functions to be considered.
Here [as in the presentation in Osborne and Rubinstein (1990)] we require the
existence of an increasing and continuous function ¢,: R7 — R that is zero on
the boundary of R and strictly concave in its interior. For a given ¢ >0, it is
then required that

w,(x) = {¢k(x) if g (x)=¢,

—0 otherwise,

In addition, a regularity condition has to be imposed on the indifference
curves: their curvature has to be uniformly bounded.

Result 9 [Gale 1986a, 1986b]. For every market equilibrium, there is a
Walrasian allocation (x,, ..., x,) such that each agent of type k leaves the
market holding bundle x, with probability one.

The constraint that the strategies be semi-stationary may reflect an assump-
tion about the information available to the agents. The role of the information-
al structure in such models is explored in Rubinstein and Wolinsky (1990). In
particular, it is shown that, in a model with § =1 and a finite number of
traders, any price can be supported as a sequential equilibrium, provided that
agents are permitted perfect knowledge of the events in the market, or even if
the agents are able to recall only their personal histories.

7.4. Related work

Wolinsky (1987) studies a model in which each agent chooses the intensity with
which to search for an alternative partner. Wolinsky (1988) analyzes the case in
which transactions are made by auction, rather than by matching and bargain-
ing. A model in which some agents are middlemen who buy from sellers and
resell to buyers (and do not themselves consume the good) is studied by
Rubinstein and Wolinsky (1987).

Wolinsky (1990) initiates an investigation of the extension of the models to
include asymmetric information. In Wolinsky’s model the equilibrium outcome
of a decentralized trading process may not approximate the rational expecta-
tions equilibrium of the corresponding trading process, even when the market
is “approximately frictionless”. For related models see Rosenthal and Landau
(1981), Green (1991) and Samuelson (1992).

Models of decentralized trade that explicitly specify the trading procedure
provide a vehicle by which to analyze the role and value of money in a market.
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Gale (1986d) and Kiyotaki and Wright (1989) initiate an investigation of the
issues that arise.

8. Bargaining with incomplete information

This section presents some attempts to build theories of bargaining when the
information available to the bargainers about their opponents is incomplete.
The proposals and responses in an alternating-offers model then do more than
register a player’s willingness to settle on a particular deal: they also serve as
signals by means of which the players may communicate information to each
other about their private characteristics. Such signals need not be “truthful”. A
player in a weak bargaining position may find it worthwhile to imitate the
bargaining behavior that he would use if he were strong with a view to getting
the same deal as a strong player would get. A strong player must therefore
consider whether or not to choose a bargaining strategy that it would be too
costly for a weak player to imitate lest the opponent fail to recognize that he is
strong. Such issues are studied in the literature on signaling games (see the
chapter on ‘signalling’ in a forthcoming volume of this Handbook) which is
therefore central to what follows.

A central goal in studying bargaining with incomplete information is to
explain the delays in reaching agreement that we observe in real-life bargain-
ing. (Recall that the alternating-offers model of Result 1, in which information
is complete, predicts no delay at all.) Much has been learned in pursuing this
goal, but its attainment remains elusive. In this section we propose to do no
more than indicate the scope of the difficulties as currently seen.

The literature uses the Kreps and Wilson (1982) notion of a sequential
equilibrium after reducing the bargaining situation with incomplete information
to a game with imperfect information in accordance with Harsanyi’s (1967/68)
theory, within which each player is seen as being chosen by a chance move
from a set of “types” of player that he might have been. Although subgame-
perfection is a satisfactory concept for some complete information bargaining
games, the set of sequential equilibria for bargaining games with incomplete
information is typically enormously large. It is therefore necessary, if informa-
tive results are to emerge, to refine the notion of sequential equilibrium.
Progress in the study of bargaining games of incomplete information, as with
signaling games in general, is therefore closely tied to developments in the
literature on refinements of sequential equilibrium. It should be noted, how-
ever, that advances in refinement theory have only a tentative character.
Although one idea or another may seem intuitively plausible in a particular
context, the theory lacks any firmly grounded guiding principles. Until these
problems in the foundations of game theory are better understood, it therefore
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seems premature to advocate any of the proposed resolutions of the problem of
bargaining under incomplete information for general use in economic theory.

8.1. An alternating-offers model with incomplete information [Rubinstein
(1985a, 1985b)]

We return to the problem of “dividing the dollar” in which the set of feasible
agreements is identified with A = [0, 1]. For simplicity, we confine attention to
the case of fixed costs per unit time of delay. Recall that the players’
preferences over the possible deals (a, t), in which 1 gets @ and 2 gets 1 — a at
time ¢, may then be represented by a — ¢, and 1—a— c,t, where ¢;>0
(i =1,2). Player 1’s cost ¢, = ¢ per unit time of delay is taken to be common
knowledge, but 2’s cost c, is known for certain only by 2. It is common
knowledge only that player 1 initially believes that ¢, must take one of the two
values ¢y, or ¢ and that the probability of the former is . It is assumed that
¢s < c<cy and the costs are small enough that ¢ + ¢, + ¢y <1. The interval
between successive proposals is fixed at 7 =1 except where otherwise noted.

Having a high cost rate is a source of weakness in one’s bargaining position.
For example, if m, = 1, so that it is certain that 2 has a higher cost rate than 1,
then we have seen that 1 gets the entire surplus in equilibrium. On the other
hand, if @, = 0, so that it is certain that 2 has a lower cost rate than 1, then 1
gets only cg. For this reason, a high cost type of 2 is said to be weak and a low
cost type to be strong.

In the context of this model, a sequential equilibrium is a strategy triple, one
for player 1 and one each for the two possible types of player 2, combined with
a belief function that assigns, to every possible history after which player 1 has
to move, the probability that player 1 attaches to the event that player 2 is
weak. The beliefs have to be updated using Bayes’ Rule whenever this is
possible, and the initial belief has to be 7. The strategy of each player must be
optimal after every history (sequential rationality). We impose two auxiliary
requirements, First, if the probability that player 1 attaches to the event that
player 2 is weak is zero (one) for some history, it remains zero (one)
subsequently. Thus, once player 1 is convinced of the identity of his opponent,
he is never dissuaded of this view. Second, when he makes an offer, player 1’s
belief is the same as it was when he rejected the previous offer of player 2.

As is shown in Rubinstein (1985a, 1985b), many sequential equilibria may
exist:

(1) If my >2c¢/(c + cy), then in all sequential equilibria player 1’s expected
payoff is at least @, + (1 — =, )(1 — ¢y — ©).

(2) If my, <2c/(c+ cy), then, for any a* between ¢ and 1— ¢ + ¢, there
exists a (“‘pooling’) sequential equilibrium in which player 1’s opening demand
is a*, which both a weak and a strong player 2 accept.
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(3) If (c+ cg)/(c+ cy)<my<2c/(c+cy), then for any a*=cy there
exists a (“separating”) sequential equilibrium in which player 1’s opening
demand is a*. A weak player 2 accepts this demand, while a strong player 2
rejects it and makes the counteroffer a* — c,,, which player 1 accepts.

The multiplicity of equilibria arises because of the freedom permitted by the
concept of sequential equilibrium in attributing beliefs to players after they
have observed a deviation from equilibrium. Such deviations are zero prob-
ability events and so cannot be dealt with by Bayesian updating.

We illustrate the ideas underlying these results by considering case (2). Let
c=a*<1-c+c;. We construct a sequential equilibrium in terms of three
commonly held states-of-mind labeled / (for initial), O (for optimistic), and §
(for strong). In state I it is common knowledge that 1 believes that 2 is weak
with probability . In state W it is common knowledge that 1 believes that 2 is
weak for sure, while in state S it is common knowledge that 1 believes that 2 is
strong for sure. In state W player 1 and the weak type of player 2 behave
precisely as in the complete information case when it is certain that 2 has the
high cost rate c,,; the strong type of player 2 uses a best response against
player 1’s strategy. In state S player 1 and the strong type of player 2 behave
precisely as in the complete information case when it is certain that 2 has the
low cost rate cg; the weak type of player 2 uses a best response against player
1’s strategy. In state I:

(1) Player 1 demands a* and accepts an offer of a if and only if a = a* —c.

(2) A strong player 2 offers a* — ¢ and accepts only a demand of a <a*.

(3) A weak player 2 offers a* — ¢ and accepts only a demand of a=<
a*—c+cy.

The players continue in state / until either (i) player 2 rejects a demand a
with a* <a<a*+ ¢, — ¢ and counteroffers a* — ¢, in which case there is a
transition to state S, or (ii) player 2 takes an action inconsistent with the
strategies of both the weak and the strong player 2, in which case they switch
to state W. The second transition occurs immediately after the inconsistent
action. Once in state W or state S they remain there no matter what. (The
conjectures that lead the players to move to state W after a deviation are called
“optimistic”’. They are useful in rendering deviations unattractive and hence in
constructing multiple equilibria.)

Some comments on why the parameters need to be restricted in order to
sustain the equilibrium may be helpful. Notice that if 1 demands more than a*
and less than a* — ¢ + ¢, at time 0, then a weak 2 accepts this demand, while a
strong 2 rejects it and proposes a* — ¢, the state changes to S, and 1 accepts
this counteroffer. Thus by deviating in this way 1 obtains at most 7y (a* — ¢ +
cw) + (1 — my)(a* — 2¢). The condition that this quantity not exceed a* is that
my <2c¢/(c + c,,). The requirement that a* = c is simply to ensure that the
offer a* — ¢ be feasible. Finally, observe that if a strong 2 rejects an opening
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demand of a*, then the state changes to W, in which a strong 2 obtains ¢ - c,.
The condition a* <1 — ¢ + ¢ ensures that this payoff is no more than 1 — g*.

8.2. Prolonged disagreement

We now use case (2) from the preceding subsection to construct a sequential
equilibrium in which the bargaining may be prolonged for many periods before
agreement is achieved.

Choose three numbers, x*, y*, and z*, that satisfy csx*<y*<z*s
1—c + cs. The time that elapses in equilibrium before agreement is reached is
denoted by N, where N is chosen to be the largest even integer smaller than

min{(y* — x*)/c, (z* = y* + ¢, — ) /ey, (25 — y* + ¢ — c)leg}.

Until period N, player 1 and both types of player 2 hold out for the entire
surplus, and player 1 retains his initial belief that player 2 is weak with
probability my, so long as no deviation occurs. If period N is reached without a
deviation then the players switch to a sequential equilibrium with a* = y*. If
there is a deviation in period t < N — 1 then immediately after the deviation
(i.e. before a response if the deviation is in the offer made) the players switch
to a sequential equilibrium as described in case 2 of the previous subsection as
follows: a* = x* if player 1 deviates and a* = z* if player 2 deviates.

The bound on N ensures that 1 does not deviate at time 0. The prescribed
play yields him a payoff of y* — Nc as opposed to his best alternative, which is
to demand x*. The bound also ensures that neither type of player 2 deviates in
the second period: the prescribed play yields type I a payoff of 1 — y* — Nc, as
opposed to his best alternative, which is to offer z* — ¢, whose acceptance
yields a payoff of 1 - 2*+c—¢,, I=W, S.

When the length of a period is 7, the parameters c, cg, and cy, in the above
must be multiplied by 7 and the delay time to agreement becomes TN(7). The
limit of the latter as 7— 0+ is positive. Thus, there may be significant delay in
reaching agreement, even when 7 is small, although no information is revealed
along the equilibrium path after a deviation occurs. Any deviation is inter-
preted as signaling weakness and leads to an equilibrium that favors the
nondeviant.

Gul and Sonnenschein (1988) do not accept that such nonstationary equilib-
ria are reasonable. In this context, stationarity refers to the assumption that
players do not change their behavior so long as 1 does not change his belief
about 2’s type. A version of their result for the fixed costs model that we have
been using as an example is that any sequential equilibrium in which 2’s
strategies are stationary must lead to an agreement no later than the second
period.
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In their paper, Gul and Sonnenschein analyze a more complex bargaining
mode} between a seller and a buyer in which the seller’s reservation value is 0
and the buyer’s reservation value has a continuous distribution F with support
[/, h]. They impose two properties in addition to stationarity on sequential
equilibrium. The monotonicity property requires that, for histories after which
the seller’s posterior distribution for the buyer’s reservation value is the
conditional distribution of F given [/, x], the seller’s offer must be increasing in
x. The no free screening property requires that the buyer’s offer can influence
the seller’s beliefs only after histories in which at least one of the buyer’s
equilibrium offers is supposed to be accepted by the seller.

Result 10 [Gul and Sonnenschein (1988)]. For all € >0 there is 7* >0 such
that for all positive 7<r7*, in every sequential equilibrium that satisfies
stationarity, monotonicity and no free screening, the probability that bargain-
ing continues after time € is at most e.

Gul and Sonnenschein conclude from Result 10 that bargaining with one-
sided uncertainty leads to vanishingly small delays when the interval between
successive proposals becomes sufficiently small. We are not convinced that such
a sweeping conclusion is legitimate, although we do not deny that actual delays
in real-life bargaining must often be caused by factors that are more complex
than the uncertainties about the tastes or beliefs of a player as we have
modeled them. Uncertainties about how rational or irrational an opponent is
are probably at least as important. The reason for our skepticism lies in the fact
that, as is shown by Ausubel and Deneckere (1989) and others, the result relies
heavily on the stationarity assumption. As explained in Section 2, stationarity
assumptions do more than attribute simplicity of behavior to the players: they
also make players’ beliefs insensitive to past events,

Note that Result 10 and that of Gul, Sonnenschein and Wilson (1986) have
an importance beyond bargaining theory because of their significance for the
“Coase conjecture”. Note also that Vincent (1989) demonstrates that, if the
seller and the buyer have correlated valuations for the traded item, then delay
is possible when the time between offers goes to zero even under stationarity
assumptions.

8.3. Refinements of sequential equilibrium in bargaining models [Rubinstein
(1985a, 1985b)]

Our study of the fixed costs model shows that the concept of sequential
equilibrium needs to be refined if unique equilibrium outcomes are to be
obtained. To motivate the refinement that we propose, consider the following
situation. Player 1 makes a demand of a, which is rejected by 2 who makes a
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counteroffer of b, where a — ¢, < b <a — c,. If the rejection and the coun-
teroffer are out of equilibrium, then the sequential equilibrium concept does
not preclude 1 from assigning probability one to the event that 2 is weak. Is
this reasonable? Observe that 2 rejects the demand a in favor of an offer of b
which, if accepted, leads to a payoff of 1 — b — c¢; > 1 — a for the strong 2, but
only 1—-b— ¢y <1-a for the weak 2. One can therefore “rationalize” the
offer of b on the part of the strong player but not on the part of the weak
player. Should not this offer therefore convince 1 that his opponent is strong?

The next result, which is a version of that of Rubinstein (1985a, 1985b),
explores the hypothesis that players’ beliefs incorporate such “‘rationalizations”
about their opponents. The precise requirements for rationalizing conjectures
are that, in any history after which player 1 is not certain that he faces the
weak type of player 2:

(1) If 2 rejects the offer a and makes a counteroffer b satistying a — ¢, <
b<a—cg, then 1 assigns probability one to the event that his opponent is
strong.

(2) If 2 rejects the offer a and makes a counteroffer b satisfying ¢ — ¢, > b,
then 1 does not increase the probability he attaches to 2’s being strong.

Result 11 [Rubinstein (1985a, 1985b)]. For any sequential equilibrium with
rationalizing conjectures:

(1) If 2¢/(c + cy) < my <1, then if 2 is weak there is an immediate agree-
ment in which 1 gets the entire surplus, while if 2 is strong the agreement is
delayed by one period, at which time 1 gets 1 — c,,.

(2) If (c+c5)/(c+ cy)<my <2c/(c+cy), then if 2 is weak there is an
immediate agreement in which 1 gets c,,, while if 2 is strong the agreement is
delayed by one period, at which time 1 gets nothing at all.

(3) If 0< =y, <(c+ c5)/(c + cy), then there is an immediate agreement in
which 1 gets c; whatever 2’s type.

Rubinstein (1985a} provides a more general result applied to the family of
time preferences explored in Section 2. Various refinements of a similar nature
have been proposed by numerous authors. In particular, Grossman and Perry
(1986) propose a refinement they call “perfect sequential equilibrium”, which
seems to lead to plausible outcomes in bargaining models for which it exists.

8.4. Strategic delay [Admati and Perry (1987)]

One may modify the previous model by allowing a responding player to choose
how much time may pass before he makes his counteroffer. He may either
immediately accept the proposal with which he is currently faced or he may
reject the demand and choose a pair (a, 4), where a € A is his counterproposal
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and 4 = 7 is the length of the delay during which no player may make a new
offer. (Without incomplete information, this modification has no bite. In
equilibrium, each player minimizes the delay and chooses 4 = 7.)

The refinement of sequential equilibrium described here [which is somewhat
stronger than that offered by Admati and Perry (1987)] is similar to that of the
preceding section:

(1) After any history that does not convince 1 that 2 is weak for sure,
suppose that 1 demands & and that this demand is rejected by 2 who then
counters with an offer of b after a delay of A=z7. f 1-b—-c,pd<l-a=
1— b —cg44, then 1 concludes that 2 is strong for sure.

(2) Suppose that 1 is planning to accept an offer a if this is delayed by A but
that 2 delays a further d > 0 before making an offer b satisfying 1 — b — ¢, d <
1—a=<1-b—c¢d. Then, whatever the previous history, 1 concludes that 2 is
strong for sure.

For 2¢/(c + ¢y) < m, Admati and Perry (1987) show that any sequential
equilibrium satisfying these additional assumptions has player 1 demanding the
entire surplus at time 0. A weak player 2 accepts, but a strong player 2 rejects
and makes a counteroffer of 0 after a delay of 1/c,,, which player 1 accepts.

The result is to be compared with case (1) of Result 11 in which agreement is
delayed by a vanishingly small amount when T—0+. Here, the delay in
reaching agreement when 2 is strong does not depend on 7, and hence the
delay persists in the limiting case as r—0+. [The constraint on m, is
necessary. See Admati and Perry (1987) for details.]

8.5. Related work

Strategic sequential bargaining models with incomplete information are sur-
veyed by Wilson (1987b) and by several contributors to Roth (1985). We have
dealt only with one-sided uncertainty. Cramton (1992) constructs a sequential
equilibrium for the alternating offers model with two-sided uncertainty; see
also Ausubel and Deneckere (1992), Chatterjee and Samuelson (1988), and
Cho (1989).

Bikhchandani (1992) points out that the sensitivity of the results on pro-
longed disagreement to certain changes in the bargaining procedure and in the
solution concept employed. Grossman and Perry (1986) propose a refinement
of sequential equilibrium in the case that there are many types (not just two) of
player 2. Perry (1986) seeks to endogenize the choice of the initial proposer.

The complexity of the analysis is reduced substantially if only two possible
agreements are available; sharp results can then be obtained. See Chatterjee
and Samuelson (1987). Notice that this case is strongly related to games of
attrition as studied in other game-theoretic contexts.
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Many of the issues in bargaining with incomplete information that we have
studied arise also in models in which only the uninformed party is allowed to
make offers. Fudenberg and Tirole (1983) and Sobel and Takahashi (1983)
study such models; see also, for example, Fudenberg, Levine and Tirole
(1985).

9. Bargaining and mechanism design

The mechanism design literature regards a theory of bargaining as providing a
mapping from the space of problem parameters to a solution to the bargaining
problem. Attention is focused on the mappings or mechanisms that satisfy
certain interesting properties, the aim being to study simultaneously the Nash
equilibria for a large class of bargaining games of incomplete information
without the need to specify each of the bargaining games in detail.

The rest of the section follows ideas appearing in the path-breaking paper by
Myerson and Satterthwaite (1983). The idea is explained in the context of a
particularly simple case analyzed by Matsuo (1989).

A seller and a buyer of a single indivisible good have to negotiate a price.
Both buyer and seller may be strong or weak, it being common knowledge that
the prior probability of each possible pairing of types is the same. A player’s
strength or weakness depends on his reservation value, which may be s,, s,, b,,
or b,, where 0=s,<b,<s,<b,. We let 5,=0b, +7 and assume that b, =
s;+a,and b,=5,+ a.

A mechanism M in this context is a mapping that assigns an outcome to each
realization of (s, b). An outcome is a pair consisting of a price and a
probability. Thus a mechanism is a pair of functions ( p, 7). The interpretation
is that when the realization is (s, b), then with probability =(s, b) agreement is
reached on the price p(s, b), and with probability 1 — (s, b) there is disagree-
ment. The expected utility gain to a seller with reservation value s from the use
of the mechanism M is U(s) = E, #(s, b){ p(s, b) — 5). The expected utility gain
to a buyer with reservation utility b is V(b) = E # (s, b)(b — p(s, b)).

Suppose that the buyer and the seller negotiate by choosing strategies in a
noncooperative bargaining game. A mechanism M can then be constructed by
making a selection from the Nash equilibria of this game. It should be noted
that the restriction of the set of outcomes to consist of a price and a probability
significantly limits the scope of bargaining games to which the current investi-
gation is applicable.

If the bargaining game has the properties that each player’s security level is
at least as large as his reservation value and that the action spaces are
independent of the type of a buyer or a seller, then the mechanism must satisfy
the following constraints:
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Individual rationality. For all s and b we have U(s) =0 and V(b)=0.

Incentive compatibility. For all s, s, b, and b’ we have U(s)=
E,w(s’, b)( p(s’, b) — s) and V(b)=E =(s, b')(b — p(s, b’)).

If the mechanism represents the outcome of a game, the second condition
asserts that no player prefers to use the strategy employed by another player.
[Note that we are not necessarily discussing a direct mechanism and so the
strategies need not consist simply of an announcement of a player’s type.
however, one could, of course, apply the “revelation principle” (see the
chapter on ‘correlated and communication equilibria’ in a forthcoming volume
of this Handbook) and thereby study only direct mechanisms without loss of
generality. |

An efficient mechanism is a mechanism that induces an agreement whenever
a surplus exists (i.e. b > s). In our example, a surplus exists except when a low
reservation value buyer confronts a high reservation value seller (i.e. s = s, and
b=b)).

We now explain why an efficient mechanism satisfying individual rationality
and incentive compatibility exists if and only if 2a =7.

Assume first that 2a < 7. Let o(s) denote the probability with which a seller
with reservation value s reaches agreement. Let B(b) be similarly defined for
buyers. The incentive compatibility constraints can then be rewritten as
(52 = 8)o(s,) < U(s)) — U(s;) < (s, = s.)a(s;) and (b, — b,)B(b,)<V(b,) -
V(b,)<(b, - b,)B(b,).

If an efficient mechanism exists, then o(s,)= B(b,) =1/2. It follows that
U(s)) = U(s)) — U(s,) = (s, — 5,)/2 and V(b,)=V(b,) —V(b,)=(b, — b))/2.

The sum of the expected gains to a strong buyer and a strong seller is then
U(s,)/12+V(by)/2=(s,— s, + b,— b,)/4=(a +7)/2, but the total expected
surplus is only [(b, —5,) + (b, —5,) + (b, —5,) +0]/d=a + n/d<(a +n)/2.
No efficient mechanism can therefore exist.

Next, assume that n < 2a. We now construct a game in which there is a Nash
equilibrium that induces an efficient mechanism. In the game, the seller
announces either s, or s, and the buyer announces either b, or b,. Table 1
indicates the prices (not payoffs) that are then enforced (D means dis-
agreement).

This game has a Nash equilibrium in which all types tell the truth and in
which an efficient outcome is achieved. Notice in particular that if a weak seller

Table 1
bl b“)

5, b, (s, +b,)/2
S, D S,
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is honest and reports s,, he obtains a price of (s, + b, + 2b,)/4, while if he
is dishonest and reports s5,, he gets (s, +s5,)/2. But (s, + b, +2b,)/4~
(5, +5,)/2=2a ~n)/4=0.

The above example illustrates some of the ideas of Myerson and Satter-
thwaite (1983). They offer some elegant characterization results for incentive-
compatible mechanisms from which they are able to deduce a number of
interesting conclusions. In particular:

Result 12 [Myerson and Satterthwaite (1983)]. Let § shb<s=b If s is
distributed with positive density over the interval [s, §] and b is independently
distributed with positive density over the interval [b, ], then no incentive-
compatible, individually rational mechanism is efficient.

Given this result, it is natural to ask what can be said about the mechanisms
that maximize expected total gains from trade. The conclusion of Myerson and
Satterthwaite in the case when both s and b are uniformly distributed on [0, 1]
is a neat one: the expected gains from trade are maximized by a mechanism
that transfers the object if and only if b= s + 1/4. Chatterjee and Samuelson
(1983) had previously shown that the sealed-bid double auction, in which the
object is sold to the buyer at the average of the two bid prices whenever the
buyer’s bid exceeds the seller’s, admits an equilibrium in which this maximal
gain from trade is achieved. (The seller proposes the price 25/3+1/4 and the
buyer proposes 2b/3 + 1/12.)

The mechanism design approach is more general than that of noncooperative
bargaining theory with which this chapter has been mostly concerned. How-
ever, the above mechanism design results, although wide in the scope of the
situations to which they apply, do no more than to classify scenarios in which
efficient outcomes are or are not achievable in equilibrium. Even when an
efficient outcome is achievable, it need not be the realized outcome in the class
of noncooperative games that is actually relevant in a particular applied
context. This trade-off between generality and immediate applicability is one
that we noted before in comparing cooperative and noncooperative game
theory. As in that case, the two approaches should be seen as complementary,
each providing insights where the other is silent.

10. Final comments

In the past decade Nash’s (1950, 1953) pioneering work on noncooperative
bargaining theory has been taken up again and developed by numerous
authors. We see three directions in which progress has been particularly
fruitful:
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(1) sequential models have been introduced in studying specific bargaining
procedures;

(2) refinements of Nash equilibrium have been applied; and

(3) bargaining models have been embedded in market situations to provide
insights into markets with decentralized trading.

In spite of this progress, important challenges are still ahead. The most
pressing is that of establishing a properly founded theory of bargaining under
incomplete information. A resolution of this difficulty must presumably await a
major breakthrough in the general theory of games of incomplete information.
From the perspective of economic theory in general, the main challenge
remains the modeling of trading institutions (with the nature of “money” the
most obvious target).

Because many of the results of noncooperative bargaining theory are rela-
tively recent, there are few sources of a general nature that can be recom-
mended for further reading. Harsanyi (1977) provides an interesting early
analysis of some of the topics covered in the chapter. Roth (1985) and Binmore
and Dasgupta (1987) are collections of papers the scope of which coincides
with that of this chapter. Sutton (1986), Rubinstein (1987), and Bester (1989b)
are survey papers. Osborne and Rubinstein (1990) contains a more detailed
presentation of much of the material in this chapter.
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