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Ariel Rubinstein

A subjective perspective on the interpretation
of economic theory

In keeping with the general framework of this book, I will confine myself to a
short summary of my own subjective perspective on economic theory. It is a
perspective that began to take shape in my undergraduate days at the Hebrew
University of Jerusalem, where I started my academic life as a student of
mathematics. The university had a programme called ‘Mathematics and
combinations’ which allowed us, besides concentrating on mathematics, to take
courses in economics or any other academic field of our choosing. The
combination of mathematics and economics was quite rare. As a group of
students enrolled in this programme, we found ourselves fascinated by the sharp
intellect and brightness of our mathematics teachers. The economics courses
were easy and boring in comparison. We felt economics was intellectually inferior
to the ‘queen of sciences’. We were not, however, mathematics fanatics. In the
cafeteria, where we spent many happy afternoons engaged in discussion, we
found ourselves departing from the mathematical symbols in the search for
metaphors for the highly abstract topological and measure-theoretical concepts.
We would attempt to give these notions a real-life verbal interpretation. At the
time we did not know of any mathematical model in the social sciences, and
economics was still a combination of boring verbal material and unbearable
calculations of derivatives. We felt intuitively, however, that something lay
beyond the symbols.

On graduating to more advanced courses we were fortunate to meet two
great economists, Bob Aumann and Menachem Yaari. Both these scholars
proved to be thorough thinkers and firmly believed in the value of interpreting
models. They provided us with standards for using mathematical tools in
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economics, and used mathematics rigorously. They insisted that definitions be
well defined and proofs properly proved. By changing words for mathematical
symbols we basically distance ourselves from the layman. Such a move can be
justified if we insist that mathematics be used to ensure accuracy. Aumann and
Yaari taught us that in the absence of a proper set-up for the model, these
objectives cannot be achieved. Many economists still reject this view and regard
such requirements as a mathematical conspiracy. The use of mathematics,
however, is not necessarily beneficial. As a former student of mathematics 1
myself was guilty, being infatuated with mathematical thoroughness as a
criterion for good economic theory. Occasionally a theorem is responsible for
a surprising discovery but often it helps cover up a deficient ‘economic content’.

The power of elementary mathematics first struck me in a second-year
undergraduate course in mathematical logic. I enjoyed the course more than
any other I have ever taken and owe much of my perspective on economic
theory to it. The teacher, Saaron Shelach, made the course so difficult and
intensive that it was all I could do to copy notes from the blackboard during
class. However, the long days and nights I spent trying to decipher the symbols
and poring over the challenging homework remain among the happiest moments
of my academic life. I was fascinated by the simplicity and ingenuity of the
definitions and the strength of the conclusions. There was a sense of ‘touching
the heart’ of human reasoning.

Today, 12 years after finishing my PhD, I am still puzzled by the question of
how mathematical theorems are relevant to real-life reasoning. This topic is
probably the most interesting in economic theory. Notwithstanding certain
doubts, I am still fascinated by the same question that occupied and enlightened
me during my happy undergraduate days. This question concerns the almost
magical connection between the formal definitions and theorems on the one hand
and statements of natural language on the other hand. I find both the search for
the interpretations and that for the correct language of economic theory very
exciting. Indeed, these issues constitute the main drive of my personal research.

The key word in human behaviour is in my opinion the word ‘language’ and
this chapter is built around this word. The chapter is a collection of independent
comments organized as follows:

1. Language and decision theory. In the first part (based on Rubinstein, 1978)
itis argued that decision-making language should be a part of decision theory.

2. Language for stating theorems about theorems. Mathematical logic deals with
language in which theorems are stated, and this part (based on Rubinstein,
1984) is a demonstration of the possibilities of using mathematical logic
methods to prove theorems about theorems.

3. The language of bargaining theory: preferences versus utilities. In this part
(based on Rubinstein, Safra and Thomson, 1990) bargaining theory is used
to demonstrate the importance of the right choice of language when stating
a theory.
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4. The choice of names for concepts: what is a ‘strategy’? In this part (based on
Rubinstein, 1991) it is argued through discussion of the concept of ‘strategy’
in an extensive game, that the choice of name applied to a concept can lead
to serious difficulties.

5. The interpretation of equilibrium Strategies in sequential games. Finally, it is
argued that the interest in game-theoretic results lies in the possibility of
interpreting the strategies and that ‘automata’ are a useful tool in the rigorous
interpretation of a strategy in sequential games. This part uses ideas from
Rubinstein (1986) and Rubinstein and Wolinsky (1990).

1. Language and decision theory

Decision theory is the most primitive theory in which the word ‘language’ can
be expected to appear. In most economic models, a decision-maker is described
simply by a preference relation (or equivalently a utility function). We permit
preferences to be quite unrestricted, and in particular we allow them to be
non-verbal. Rubinstein (1978, p. 2) tries ‘to exemplify the importance of including
the element of language in discussions within the theories of social choice, utility
and measurement’. My argument was that: ‘We instinctively justify to ourselves
any decision and try to rationalize it. We are inclined to formulate judgments
in words and to justify them in words’ (p- 16). The need to define a preference
in words is natural in cases where the decision-maker is a group of agents and
decision-making involves communication among members of the group. Even
when the decision-maker is an individual, he tends to justify his behaviour by
giving reasons so that the preferences must be expressible in some kind of
language. We must therefore look.at the implications of the restrictions imposed
by language on the set of relevant preferences. Whether something is ‘definable’
depends on the decision-maker’s language and therefore the study of the
connection between language and the admissible preferences should be at the
heart of decision theory.

The following is one of the three examples which were presented in Rubinstein
(1978). A youth arrives in a strange town. He is about to receive two offers of
friendship. The information he receives about each of the girls consists of a list
of boys she has dated over the last n days. Given that he is a stranger in town,
let us assume that all he can glean from any two given names on the list is
whether they are identical. This language is called the ‘pure language with
equality’. The atomic formulae in this language are formulae of the type z, =z,,
where z, and z, are symbols from among {X,, ..., X,, ¥, ..., y,}. A formula
iseither an atomic formula or a string of symbols which is constructed inductively
by the rules: if ¢ and y are formulae then * —¢’, ‘¢ and ¥, ‘¢ or Y, ‘Vé(x)’,
and ‘3¢(x)’ are all formulae as well.

What preferences can be stated in this simple language? That is, which
formulae can induce a preference suitable for all possible ‘worlds’ in which our
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stranger is likely to find himself? Or formally, what are the definable preferences
where definability of the preference is taken as the existence of a formula
&(X15.+» XusY15 - -, ¥u) SO that the stranger prefers the girl with the list (ay,..., a,)
over the girl with the list (b;, ..., b,) iff the formula ¢ is true where each variable
x; is replaced by a; and each variable y; is replaced by b;. To answer this question,
define E(ay,...,a,) to be the partition of {1,...,n} in which i and j are in the
same partition iff ¢;=a;. Thus, if the girl is unstable in her relationships and all
a; are distinct E(ay,. .., a,) is the finest partition {{a},..., {a.}} and if she is very
stable and all a; are identical then E(ai,...,a,) is the coarsest partition
{{a1,...,a,}}. It is not difficult to verify that the only definable preferences are
those which are induced by orderings of partitions of {1,...,n}, so that

(@i, ..., @) > (br,.... by

if E(ay, ..., a,) is preferred to E(b, ..., by,). In other words, any information
about the equality of some a; to b; is ignored and only the patterns of stability
matter.

The above was included in a paper which was one of my very first. The paper
has never been accepted for publication, probably because the specific results
were not striking and the linguistic constraints which I studied were remote
from the constraints imposed by the natural language. Nevertheless, the general
idea that language plays an important role in determining the decision-makers’
patterns of behaviour is of interest. This idea is completely missing in current
economic theory.

Notice that the decision-maker uses the ‘pure language with equality’ which
has the remarkable property (see Robinson, 1963) that definability is equivalent
to ‘definability without quantifiers’, i.e. every formula has an equivalent formula
without quantifiers. This means that the definability in that example is equivalent
to the requirement that given four vectors (ai,..., as), (br,..., by, (ci,...,cn) and
(di,...,d,), we require that if for all i and j, a;=gq; iff ¢;=c;, b;=b; iff di=d, and
a;=b; iff ¢;=d; then the vector (ai,...,a,) is preferred to (bi,..., by iff (c1,...,¢€n)
is preferred to (di,...,d,). This requirement is close in spirit to the neutrality
assumption so common in social choice literature.

This connection is useful for reinterpreting some of the results of social choice
theory. In Arrow’s framework the social ordering has to be based on: the
preferences of the n individuals who make up the society. Let P be the symbol
for the social ordering and P; be the symbol for individual i’s preference. The
social choice (strong) neutrality requirement made in social choice theory (and
implied by Arrow’s independence of irrelevant alternatives) states that for any
two pairs of social alternatives a, b and c, d, if for all i, aP;b iff cP,d, then aPb
iff cPd. The linguistic way of expressing the axiom is that the social relation
has to be ‘definable without quantifiers’, i.e. P should be defined by a formula
without quantifiers, ¢(x;, x»), in the language in which the atomic formulae are
of the type z, P;z, where the z; are variable names. (For a formal proof of this
fact see Rubinstein, 1984.) Thus, an alternative formulation of Arrow’s impossi-
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bility theorem is that given a world with at least three individuals and three
social alternatives, any social welfare function which satisfies definability without
quantifiers and the Pareto-optimality requirements is dictatorial.

I find the linguistic interpretation of the neutrality type of axiom appealing.
An even more attractive axiom is definability; a social ordering must be defined
by a formula (not necessarily without quantifiers). Definability cannot replace
definability without quantifiers in Arrow’s theorem. Consider, for example, the
social welfare function which chooses the majority rule ordering in the case
where it induces an ordering or coincides with individual 1’s preference
otherwise. This function is not dictatorial and is defined in a language which
includes the names of the individualistic preferences only. However, in the
definition we must use quantifiers (in order to state the sentence “if the majority
rule induces an ordering’). To my knowledge the characterization of the definable
preferences is still an open question.

2. Language for stating theorems about theorems

Economic theory may be viewed as the study of models which are used by
economists: as such, it is not about economics but about models. In order to
demonstrate this point let us continue the discussion of social choice theory
begun in Rubinstein (1984). T view that paper as one of my better efforts and
thus was frustrated by the rejection letters I received.

Social choice can be divided into multi-profile and single-profile theorems.
A multi-profile theorem is about functions which assign a social ordering to
every profile of preferences within a large set (all possible societies, not only the
existing one). Such a theorem relies on a ‘glue axiom’, i.e. an axiom which
requires dependency (or consistency) between the way that the social ordering
treats a pair of alternatives in two différent profiles where the two profiles treat
the alternatives similarly. The most famous axiom of this sort is the independence
of irrelevant alternatives. On the other hand, a single profile theorem refers to
a single profile (the existing society). The aim is to attach an ordering to the
society which will be sensitive to individuals® preferences. A typical axiom here
is the neutrality axiom which requires that if each individual’s preference over
the alternatives a and b is ‘the same’ as his preferences between ¢ and d, then
the social ordering treats a and b like it treats ¢ and d.

Social choice theory includes many ‘single-profile analogues’ to theorems
which were proved first in the multi-profile framework. This motivated the
following statement from Sen (1977, p. 1564): ‘As a result of these important
contributions it is now clear that the standard inter-profile collective choice
results have exact intra-profile counterparts...’. Sen’s conclusion is an assertion
about propositions. Its formal statement requires a definition of the term
‘analogue theorem’. That is where mathematical logic comes in.
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Let M be the class of all possible profiles. A social function (SF) is one which
assigns a binary relation to any profile in M. Let p and J be two formulae
without quantifiers in a language which includes only the symbols P, Py,..., Pi.
Let T* be the following theorem: if an SF satisfies strong neutrality and the
proposition a=Vv,...,0f®1;- .-, 04 then it satisfies the proposition
{=Vvi,...,00 (1,...,0s). To identify that Arrow’s impossibility theorem can
be written in the scheme of T* with k=3, take a to be the sentence

Vl)1 UzU3|:< m UzP,‘U] - UzPlh)]
i=1,...,n

(which expresses Pareto-optimality) in conjunction with the requirement that
P is an ordering and have

B= U Vun(vi Py = v1 Pvy)

which expresses the statement that there is a dictator.

Apparently the number k plays a critical role in the formulation of a theorem
about the single-profile analogues. The single-profile analogue holds only if the
single profile satisfies a ‘richness property’, Ri, which states: every formula
without quantifiers with k variables which is satisfied by some k alternatives in
some profile in M is satisfied by some assignment of k elements in the single
profile.

Now we can state a theorem about theorems: if the theorem T* is valid for
M and if the single profile satisfies R, (where k is the same k which appears in
the statement of T*!), then the theorem T* is true in the single profile as well.

Rubinstein (1984) includes an example of a proposition in which « does not
have the structure as it exists in T* and for which the single-profile analogue
does not exist. Thus, we conclude that the logical structure of the multi-profile
proposition is a key for the existence of a single-profile analogue.

The above points to a potentially interesting line of research: searching for
a formal expression of the often discussed intuitions about the connections
between different models on the basis of the logical structures of the theorems
in which we are interested. At the moment I am not familiar with any work in
this direction.

3. The language of bargaining thebry: preferences versus utilities

The language of a model affects its possible interpretations. Nash bargaining
theory provides an interesting example of the effect of an unsuitable choice of
primitives. The discussion in this section follows Rubinstein, Safra and Thomson
(1990).
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The primitives of Nash’s (two-person) bargaining theory are the ‘feasible set )
S, and a ‘disagreement point’, d. Each element of S gives the utility levels reached
by the two agents at one (or more) of the possible agreements. The utilities are
understood to be von Neumann—Morgenstern utilities in that they are derived
from preferences over lotteries which satisfy the expected utility assumptions.
A bargaining solution is a function which assigns a unique pair of utility levels
to each problem (S, d) taken from some domain. Nash showed that there is a
unique solution satisfying the following four axioms: invariance to positive affine
transformations (INV), symmetry (SYM), Pareto-optimality (PAR) and indepen-
dence of irrelevant alternatives (ITA). The unique solution is the Nash solution,
ie. the function N defined by

N(S, d) = arg max{u, —d )(u, — dy)|(uy, u,)e S and u, > d, for both i}

The very simplicity of this formula is in itself an attractive feature and is
responsible for the widespread application of the solution. However, my problem
with the above formula is that I simply do not understand its meaning. What
is a product of two von Neumann-Morgenstern utility numbers and what is
the meaning of the maximization of that product?

A good bargaining solution should have an attractive verbal definition. The
search for a more meaningful definition of the Nash solution leads to a switch
from utility language to alternatives-preferences language. A Nash problem,
<8, d>, is replaced by (X, D, >,, =) where X is a set of feasible (deterministic)
alternatives described in physical terms, D is the disagreement alternative and
21 and >, are preferences defined on the space of lotteries in which the prizes
are D and the elements of X.

Recall that we are looking for an alternative definition of the Nash solution,
one which only uses the terms ‘alternative’, ‘disagreement’ and ‘preference’ and
which avoids the term ‘utility’. We look for an explicit definition which specifies
the outcome of a particular problem directly in terms of the problem without
referring to consistency with the outcomes suggested by the solution of other
problems.

For the alternative definition, denote by px the lottery which gives x with
probability p and D with probability 1 — p.

DEFINITION An (ordinal)-Nash solution outcome for the problem
{X,D, >, 2,) is an alternative y* such that for all pe[0,1] and for all xe X
and i, if px > ;y* then py* > ;x.

Thus we interpret the solution as a convention which assigns to every
bargaining problem an outcome with the following property: assume that the
players perceive that whenever they raise an objection to an alternative, they
face a risk that the negotiations will end in disagreement. If it is worth while
for one of the players to make a demand for an improvement upon the
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convention, which may cause a breakdown of the negotiations, then it is optimal
for the other player to reject the demand and to insist on following the convention
even when taking into account the possibility of negotiations breaking down.

It is interesting to note that the above definition is close in spirit to an idea
suggested by Zeuthen (1930) who was the first to build a theory in which
negotiators bear in mind the risk of a breakdown in negotiations.

The first thing to notice about the ordinal definition is that for the expected
utility case it coincides with the definition of the (utility)-Nash solution. Basically,
it follows from the fact that the alternative y* satisfies

w(y*ux(y*) = ui(x)uyx) for all x for both i
if and only if

for both i, for all x > ;y* for all p < 1, if p > u{y*)/uf(x) then p = u(x)/u(y*)
if and only if ‘

for all i and x, px > ;y* implies py* >;x

The switch to the alternatives-preferences language allows a restatement of
the entire Nash theory. In particular, it is possible to translate the axioms into
more natural language and to derive the Nash characterization theorem. As
long as we fix the set of alternatives (and only allow a variation of the preferences)
the Invariance of Affine Transformations (IAT) axiom is equivalent to the
requirement that rescaling of the utilities should not affect the alternative
predicted by the solution. Once we switch to the alternatives-preferences
language, IAT becomes redundant. Nash’s axioms PAR and SYM can easily
be translated. The main difficulty is to restate ITA: if a* is the solution outcome
of the problem {T,d) and is a member of a set S which is a subset of T, then
a* is also the solution outcome of {8, d>. As has often been emphasized, this
justification of ITA fits in with a normative theory, where the solution concept
is intended to reflect the social desirability of an alternative. When bargaining
is viewed as a strategic interaction of self-interested bargainers the ITA axiom
is questionable. The following is an alternative statement of IIA which does not
require a comparison between problems with different sets of alternatives (we
use the letter F to denote a solution):

IIA: Let F(>,, =, =y* and let =] be a preference which agrees with >; on
the set of deterministic agreements, X, such that:

1. For all x such that x >, y*, if px ~; y* then px < [y*.
2. For all x such that x < ;y*, if x ~ ;qy* then x ~gy*.

Then F(>;, >)=F(>;, >))
The switch of agent i’s preference from >; to >; reflects his increased
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apprehension towards the risk of demanding alternatives which are better than
the outcome y*. Though player i still prefers x to y* he is less willing to rigk
demanding-x. The axiom captures an intuition that the bargaining solutiop
outcome y* should be defendable against possible objections. The change ip
player i’s preference, which is described in the axiom, makes player i ‘less eager’
to object and does not change the intensity of player j’s objections. Thus, the
change in the preference ‘should not’ change the bargaining outcome.

The ordinal definition allows us to extend Nash theory to preferences beyond
those which satisfy the expected utility theory. In recent years there has been
a growing interest in non-expected utility theories of decision-making under
uncertainty since they explain a wide range of behaviour patterns and eXperi-
mental results that are inconsistent with expected utility theory (see Machina,
1987). Extending Nash (1950) we could show that for a certain class of preferences
(which includes all expected utility preferences) the Nash solution is the unique
solution which satisfies the axioms PAR, SYM and IIA. A by-product of the
definition is a better understanding of classical results such as the propositien
that the more risk-averse the player, the worse his outcome in the bargaining.

Another by-product of the definition is a better understanding of the
connection between Nash’s theory and the strategic alternating offers model
(see Rubinstein, 1982). The existence of a connection between these two models
was first cited by Binmore (1987). When Binmore presented his result it was
like a puzzle. Whereas the Nash bargaining theory reflects the attitude of the
players towards risk, Rubinstein (1982) dealt with time preferences. However,
" in Binmore, Rubinstein and Wolinsky (1986) we equalized the primitives by
looking at a version of the infinite alternating offers model where the players
do not have time preferences but at the end of each period there is a probability

— p > 0 of breakdown. For the expected utility case the model has a unique
subgame perfect equilibrium characterized by two alternatives x*(p) and y*(p)
satisfying px*(p)~y*(p) and py*(p)~ 2X*(p). Player 1 always offers x*(p) and
accepts any alternative y such that y>, y*(p), while player 2 always offers y*(p)
and accepts any alternative x such that X2, x*(p).

Given the ordinal Nash bargaining solution, the connection between the
alternating offers equilibrium outcomes, x*(p) and y*(p), and N(=,, =,) is clear:
where p — 1, both x*(p) and y*(p) converge to N(=1, 2)).

To summarize, the utility language allows the use of geometrical presentations
and facilitates analysis; however, the parametric presentation results in an
unnatural statement of the solution and axioms and the judgement and
interpretation of the axioms and bargaining solutions are made more difficult.
The difficulties are even more severe when ‘technical’ assumptions (such as
continuity and differentiability) are made. The switch to the alternatives-
preferences language allows a more natural statement of the Nash solution. Tt
enables us to extend the definition to non-expected utility preferences and helps
us to understand better certain well-known results. Making this switch in other
areas of economics and game theory may also prove beneficial.
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4. The choice of names for concepts: what is a ‘strategy’?

Choosing a name for a technical term satisfies our desire to link economic
theory with the real world. However, it also creates the risk that a particular
interpretation which is correct in one context will be incorrectly applied in
another. An example of such a case is the use of the word ‘strategy’ in game
theory. Rubinstein (1991) discusses the issue more generally; here I make do
with a summary of the argument for extensive games.

A strategy in game theory is usually interpreted as ‘a plan of action’, ‘a
complete description of how a player intends to play a game, from beginning
to end’ or ‘a set of instructions’. This interpretation is consistent with the use
of the term ‘pure strategy’ in a normal form game. However, is it appropriate
in the context of extensive games? In an extensive game, a player’s strategy is
required to specify an action for each node in the game tree at which the player
has to move. Accordingly, a player has to specify an action for every sequence
of events which is consistent with the rules of the game. In games which require
a player to make at least two consecutive moves (and most of the games which
have been analysed recently in economic theory fall into this category), a strategy
must have its actions specified even after histories which are inconsistent with
the player’s own strategy. For illustration, consider the following two-player
game form:

According to the natural definition of ‘strategy’ as a complete ‘plan of action’,
player 1 is required to specify his behaviour, ‘Continue’ or ‘Stop’, at the initial
node and, if he plans to ‘Continue’, to make provisional plans for his second
decision node in the event that player 2 chooses C. However, the game-theoretic
definition of strategy requires player 1 to specify his action at the second decision
node, even if he plans to ‘Stop’ the game at the first node.

Why does the notion of strategy as used by game theorists differ from a ‘plan
of action? If we were only investigating Nash equilibria of extensive games,
then the game-theoretic definition would indeed be unnecessarily broad. The
broad definition is, however, necessary for testing the rationality of a player’s
plan, both at the beginning of the game and at the point where he must consider
the possibility of response to an opponent’s potential deviation (the subgame
perfect idea). Returning to the example above, assume that each player plans
to choose ‘Stop’ at his first decision node. Testing the optimality of player 2’s
plan following player 1’s deviation, requires player 2 to specify his expectations
regarding player 1’s plan at his second decision node. The specification of player
1’s action after both players have chosen C provides these expectations and
has to be interpreted as what would be player 2’s (as opposed to player 1’s)
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belief regarding player 1’s planned future play, should player 1 decide to deviate
from what was believed to be his original plan of action. Thus, a strategy
encompasses not only the player’s plan but also his opponent’s expectations
in the event that he does not follow that plan. Thus, an equilibrium strategy
describes a player’s plan of action, as well as those considerations which support
the optimality of his plan (i.e. preconceived ideas concerning the other player’s
plans) rather than being merely a description of a ‘plan of action’.
Interpreting a player’s strategy after a deviation as the expectations of the
other players about his future behaviour, makes it problematic to speak of a
‘choice of strategy’. Player 1 does not choose player 2’s belief. This observation
has a serious impact on many of the game-theoretic assumptions. Consider, for
example, the sequential bargaining literature in which the authors assume that
strategies are stationary in the sense that a player’s offer and response (to offers
made by the other player) must be independent of the history of the game. This
literature presents stationarity as an assumption of simplicity of behaviour.
Consider, for example, player 1’s strategy: ‘Demand 50 per cent of the surplus
and reject any offer which gives you less than 50 per cent, independent of what
has happened in the past.” This strategy is simple in the sense that player 1
plans to make the same offer and make the same responses independently of
how player 2 has reacted in the past. However, this strategy also implies that
player 2 believes that player 1 would demand 50 per cent of the surplus even
if player 1 demanded 60 per cent of the surplus in the first, let us say, 17 periods
of bargaining. Thus, stationarity, as stated in sequential bargaining theory,
means not only simplicity but also passivity of beliefs. This is strange, especially
if we assume simplicity of behaviour. If player 2 believes that player 1 is
constrained to choose a stationary plan of action, then player 2 should believe
(after 17 repetitions of the demand of 60 per cent) that player 1 will continue
to demand 60 percent. Thus, assuming passivity of beliefs eliminates a great
deal of what sequential games are intended to model, namely, the changing
pattern in players’ behaviour and beliefs, as they accumulate experience.

5. The interpretation of equilibrium strategies in sequential games

Many of the major contributions to economics and game theory are concerned
with types of games which have similar structures to repeated games. Much of
the research in this area aims to prove what is called ‘folk theorems’. This
(inappropriate) name is given to theorems which state that under certain
conditions, neatly all reasonable pay-off vectors can be sustained as equilibrium
pay-off vectors. Thus, according to these theorems, pay-off vectors which are
socially desirable can be maintained in equilibrium if the players have in mind
long-term considerations; however, the model lacks predictive power.

In my opinion, the main achievement of these models is in clarifying the logic
behind social institutions associated with interactions over the long term.
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Characterizing the exact set of equilibrium pay-off vectors is less exciting than
discussing the equilibrium strategies, since the verbal content of the equilibrium
lies in the strategies and not in the pay-off vectors. Most literature on repeated
games deals with characterizing the set of equilibrium pay-off vectors while the
plausibility of the strategies is largely ignored. Existence theorems demonstrate
unintuitive strategies. For example, the folk theorem concerning the limit of
the means is sometimes proved using equilibrium in which a deviation at the
nth period is met with punishment for n? periods. This is done for the convenience
of proving the folk theorem in its maximal range. Or, in other examples, folk
theorems often use equilibria which carry the element of ‘punishing the punisher
for not punishing’, i.e. if player i ‘deserves punishment’ and player j does not
punish player i, then player i is supposed to punish player j for not punishing
him. Though I suppose there are some bizarre scenarios in which a criminal
sues a policeman for not punishing him as severely as he should have, I doubt
that this is a common mode of behaviour.

I myself am not blameless when it comes to proving folk theorems and
ignoring the plausibility of the strategies. In my early papers on repeated games
with the limit of the means (Rubinstein, 1977) and on the overtaking criterion
(Rubinstein, 1979b) I did not pay enough attention to this issue. In retrospect,
I believe that in order to clarify the nature of long-term interactions, we must
deal with the equilibrium strategies’ schemata. When discussing a scheme of
strategy I am referring to its structure, stripped of the details which arise from
a particular pay-off matrix. Accordingly, the value of the folk theorems is their
usefulness in clarifying the rationale and credibility of codes of behaviour in
which a deviator is punished for a finite number of periods before the world
returns to routine behaviour.

Let me expand the discussion using two of my papers which are concerned
more with the structure of strategies than with the outcome in terms of ‘ pay-offs™:
Rubinstein (1979a) is a study of the following problem: player 1 monitors player
2’s behaviour. At every period player 2 can choose one of two actions, ‘G’ or
‘B’. The B-action results (with probability 1) in a harmful accident while the
G-action causes an accident only with probability 1 > p > 0. In any particular
period, player 1 has the means to punish player 2 severely enough to deter him
from behaving ‘badly’. However, the punishment is ‘costly’ for both players
and player 1 looks for schemes of behaviour in which he will be able to deter
player 2 effectively and cheaply. The problem can be viewed as a leader—follower
situation in which player 1 leads by making a binding announcement which
specifies the histories, following which player 1 punishes player 2, and player
2 responds optimally by choosing a strategy which specifies, for all sequences
of events, whether he will choose ‘G’ or ‘B’. Both players are assumed to
maximize their expected ‘limit of the averages’ pay-offs.

The leader’s dilemma is quite clear. On the one hand he wants to avoid
punishing player 2 too often even if he sticks to the good behaviour mode. On
the other hand, he wants to avoid player 2 taking advantage of his leniency.
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The main idea of Rubinstein (1979a) (independently proposed by Radner, 1981,
as well) is that player 1 can achieve his first best result by employing a strategy
in which he behaves as a statistician, i.e. he keeps track of the frequency of
accidents and punishes player 2 whenever the frequency exceeds p+a, where
(o)=1,2,..., is a sequence of positive numbers which is selected carefully to satisfy
two conditions: (1) it converges to zero so that the follower cannot achieve a
positive frequency of being ‘Bad’ without being punished, and (2) the conver-
gence to zero is slow enough to allow player 1 to tolerate some of player 2’s
‘bad luck’ accidents. The law of iterated logarithm guarantees that such a
sequence exists.

In the meantime, many other strategies have been suggested in the literature
to solve the leader’s problem. In some, the mathematics which is required to
prove their effectiveness calls for theorems which are more elementary than the
law of iterated logarithm. Others rely on ‘dynamic programming’ techniques
(see Abreu, Pearce and Staccheti, 1986, and for a survey see Pearce, 1991). The
basic idea of these equilibria is the following: the equilibrium is built around
two ‘phases’, ‘A’ and ‘B’; in phase A the leader ignores the accidents and in
phase B he does not. The switch from one phase to another is stochastic and
its probabilities depend on the outcome of the one-shot situation so that the
follower is motivated always to choose ‘G’ when he solves the ‘short-term’
problem in which the probabilities of continuation are determined by the
transition probabilities. Personally, I find the first mechanism more plausible
since it captures a type of reasoning which we observe and use in real life.

A second example is taken from Rubinstein and Wolinsky (1990). Consider
a market with an indivisible good, one seller and B > 1 potential buyers. All
buyers have an identical reservation value of 1, while the seller’s reservation
value is zero. The competitive equilibrium price is 1. Asher Wolinsky and my
aim was to examine whether we get the competitive outcome in models with
pairwise matching and bargaining. To do this, we add details about the matching
and bargaining processes to the basic situation. In each period the seller is
matched randomly with one buyer, and one of the two (picked with equal
probability) has to make a price offer which the other either accepts or rejects.
The process repeats itself until an acceptance is made. The natural competitive
forces are supposed to kick in here since the buyer is under the risk of losing
the potential partner while the seller is not. Indeed, the model has an equilibrium
with the competitive price in which the good is sold to the first buyer which
the seller meets. In that equilibrium the seller always makes the request for
price 1 and rejects any lower offer. However, the model has other equilibria in
which non-competitive prices prevail. Let p* be an arbitrary price, let us say
the ‘fair’ price uccording to some ethical evaluation. To defend this price we
introduce the institution of the ‘right’ to purchase at p*: at the beginning of
the game the right is granted to one of the players i*. The right to purchase
the good for p* is kept by the right holder until either: (1) the seller approaches
buyer j with an offer above p*, in which case the right is transferred to j (in
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order to neutralize the competitive forces); or (2) buyer j approaches the seller
with an offer above p* in which case the players move to the competitive regime
and behave as in the equilibrium which supports price 1. In the jargon of
repeated games theory, the change in the regime means that the seller punishes
the buyer who deviates from the equilibrium, although he offers the seller a
price higher than he would otherwise get. This is an unacceptable interpretation.
We should interpret the switch as a change in the market state from a mode
in which a right is given to one of the buyers to a mode which gives the
competitive state. The attempt of a buyer to pay a price above p* is taken by
the agents to mean that there are two serious buyers in the market who are
ready to compete and this pushes the price up to the competitive level.

In reality we do observe ‘privileges’ in trade. However, I am not aware of
any case in which the rules of transferring a right include a provision that the
right is transferred when the seller approaches another buyer. Still, I find the
above. equilibrium attractive as it is easily described verbally and includes
components of familiar institutions.

The effort to interpret sequential games equilibrium strategies leads to the
search for a formal model in which we can refer to the interpretation of the
strategies more rigorously. This was part of my motivation in Rubinstein (1986)
where I replaced the strategies in repeated games with a machine called a finite
automaton. This structure is widely used in linguistics for analysing the structure
of sentences and is a standard tool in computer sciences; sometimes it is used
as a metaphor to describe the way that the human brain functions. In the
context of sequential games, a player, instead of choosing a strategy, chooses
a machine which implements his strategy. A machine includes four elements:

1. A set of abstract elements, each of which is a ‘state of mind’.

2. An indicator of one of the states to be the ‘initial state’ from which the
machine starts to operate.

3. An output function which assigns the action taken by the machine at each
state.

4. A transition function which determines what state the machine is moving to
after it receives an input, which is a piece of information about other players’
actions.

Thus, an automaton is a device which organizes a player’s behaviour in the
game. It helps us to formulate a verbal statement of the strategy by attaching
a name to each of the states. For example, let us return to the seller—buyers
model discussed in the previous section. In that model the equilibrium strategies
can be described as a B + 1 state machine. The set of states includes one state,
Right(i), for each buyer i, and an extra state COMP. The state Right(i) has the
interpretation of ‘i has the right to purchase the good’. The state COMP is the
‘competitive state’. The content of a state is determined by its output and by
the rule of transition at that state. The initial state is Right(i*). At Right(i) the
seller offers p* and accepts p* from buyer i only; when meeting other buyers
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he offers a non-serious price (above the competitive price) and rejects all offers
which come from anyone other than i. COMP is a terminal state, in the sense
that once the machine gets to COMP it never leaves that state. In this state
the seller demands the price 1 and accepts no less than 1. The B buyers’ strategies
are similar in their structure, having the same transition rules. (See Ben-Porath
and Peleg, 1987, for presentation of results related to repeated games in the
language of automata. See Osborne and Rubinstein, 1990, for presentation of
results from sequential bargaining theory using this language.)

Though the automaton is used to facilitate a clear interpretation of the
sequential game strategies, its main importance to economic theory is as a
convenient analytical tool for introducing considerations of complexity into our
models. When players choose a strategy they take into account not only their
game’s pay-off but also the complexity of the strategy. To do this we first need
to formalize the notion of complexity of a strategy; the language of automata
is a convenient vehicle for accomplishing this. First steps in this direction were
taken in Rubinstein (1986) and in Abreu and Rubinstein (1988). (See also
Rubinstein, 1987.) Players were required to find the trade-off between two
objectives: reducing the complexity of their strategies as measured by the number
of states in their machine and maximizing the repeated game pay-off. Adding
the complexity consideration led to a dramatic change in the folk theorem results.

6. Concluding remarks

Let me conclude with the following remarks.

The goal of economic theory

The issue of interpreting economic theory is, in my opinion, the most serious
problem facing economic theorists at the moment. Economic theory has gained
a prominent place in the study of economics and achieved a remarkable influence
on other social sciences as well. None the less, I find many of my colleagues
somewhat apologetic about the goals and achievements of economic theory and
even speak of a crisis situation. Their concern can be summarized as follows:
economic theory is the part of economics which attempts to deal with the real
world. It is not a branch of abstract mathematics even though it utilizes
mathematical tools. Since it is about the real world we expect the theory to
prove useful in achieving practical goals. But economic theory does not deliver
the goods. It cannot make predictions anything like those offered by the natural
sciences, and the link between economic theory and practical problems, such
as how to fight inflation, is tenuous at best. Economic theory lacks a consensus
as to its purpose and interpretation. Again and again, we find ourselves asking
the question, ‘Where is it leading?’ (See Aumann, 1987; Binmore, 1983.) My
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belief as outlined in this chapter is that, notwithstanding its remoteness from
the real world, economic theory is about the language which is used in our
reasoning about social interactions.

The choice of the model’s language

In economics, as in any other field of science, we look for regularities: regularity,
however, depends on the language we use to describe a particular situation.
Behaviour may be regular or irregular, depending on the language used. If you
put blue, red and green objects in front of a subject you may find irregularity
in the sense that the subject picks a different colour each time: however, his
behaviour may be quite regular if we describe his problem as a choice from
among left, centre and right if he always chooses left. If our vocabulary did not
include the words for position, we would not be able to describe this regularity.
Thus, the correct language for explaining regularities must coincide with the
way in which participants perceive a situation and not the way in which analysts
perceive it.

Future goals

There are two major fields of research in which language and economic theory
can interact. First, tools from economic theory can be used to explain the
classification systems individuals use. The function of these systems is connected
to human interaction and is therefore likely to be closely linked with equilibrium
analysis. Second, language is part of the reasoning process used by decision-
makers. Economic models with these processes embedded in them are usually
classified under the title ‘bounded rationality’, a field which has recently attracted
wide attention. Is a new economic theory emerging which will abandon the full
rationality assumption and instead focus on decision-makers’ individualistic
procedures? In my opinion the answer is yes, but it will remain for future
research in economic theory to determine the answer.
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