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This paper analyzes a two-player game in which each player has to choose an
automaton (machine) which plays an infinitely repeated extensive game. We assume
that the preferences of the player depend both on repeated game payoffs and the
number of states of their machine. In contrast to repeated normal form games, it
is shown that if the stage-game is an extensive game with perfect information, any
Nash equilibrium of the machine game will induce a path consisting of a constant
play of a Nash equilibrium of the stage-game. Journal of Economic Literature
Classification number: C72. €} 1993 Academic Press, Inc.

1. INTRODUCTION

This paper continues a line of research investigating the notion of
bounded rationality within the theory of infinitely repeated games. We will
study a model, called the machine game, in which two players play an
infinitely repeated game by choosing automata (machines) which imple-
ment their strategies. We assume that the preferences of each player over
machines depend both on the discounted sum of stage-game utilities and
on the complexity of the machine which the player chooses.

This line of research was initiated by Rubinstein [9] and Abreu and
Rubinstein [2]." Abreu and Rubinstein [2] study the structure of Nash
equilibria in the machine game. They show that in any equilibrium for the

! In these papers the limit of the means case is considered as well.
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machine game there is a one-to-one correspondence between the stage-
game actions played by each of the two players. This implies substantial
restrictions on the set of equilibrium payoffs for a wide class of games. For
example, in the infinitely repeated Prisoner’s Dilemma any Nash equi-
librium path of outcomes can consist only of outcomes from the set
{(C, C), (D, D)}, or the set {{(C, D), (D, C)}. The proof of Abreu and
Rubinstein [2] was improved in Piccione [8]; this improved version is
applied in the proof of the main proposition of this paper.”

In the above literature, the stage-game is always assumed to be a two-
person normal form game. In each period players move simultaneously
and, at the end of each round, they obtain full information about their
opponent’s choice of stage-game strategies. In the current paper, we extend
the analysis to the case where the stage-game is a two-person extensive
Jform game. We assume that at the end of each play, a player obtains infor-
mation only about the actual rerminal node which has been reached. Note
that in such a framework, a terminal node does not convey information
about the choice of actions at information sets off the path which leads
to it. This restriction causes the set of equilibria of the machine game
consisting of the infinite repetition of an extensive game [I” to differ
substantially from the set of equilibria of the machine game consisting of
the infinite repetition of the reduced normal form of I".*

For example, consider the following two-player normal form game G-

A B

A 31 1,3

B 2,0 2,0

For sufficiently large discount factors, the set of Nash (or Subgame Perfect)
equilibrium paths includes all those which yield an average payoff vector
above (2, 0). It contains, for example, paths that consist of combinations of

! Banks and Sundaram [3], Lipman and Srivastava [5], Neme and Quintas [6, 7], also
analyze the machine game under the assumption that players not only want to increase their
repeated game payolff but also reduce the complexity of their machines.

3 The sets of perfect equilibria for the infinite repetition I and for the infinite repetition of
its reduced normal form G are different. The difference emerges from the fact that in the
repeated game of I~ the perfection requirement applies to more nodes of decision than in the
repeated game of G. Rubinstein and Wolinksy [10] provide several examples of extensive
games for which the set of subgame perfect equilibrium payoff vectors of the repeated game
with discounting is very different from that of the corresponding repeated reduced normal
form game even when the discount factor is close to [. Nevertheless, it is true that with a
“dimensionality” condition (such as in Fudenberg and Maskin [4], or, Abreu and Dutta [1])
all feasible and strictly individually rational payoff vectors are subgame perfect equilibrium
payofl vectors when the discount rate approaches one.
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(A, A) and (A4, B) which assign a sufficiently large weight to (A4, 4). This
conclusion no longer holds for Nash equilibria if we assume that players
play the machine game defined in Abreu and Rubinstein [2]. Any equi-
librium play of the machine game results in an introductory phase and a
cyclical phase which are composed only of combinations of (4, 4) and
(B, B). If the discount factor is sufficiently close to one and complexity
costs are sufficiently small, any combination of (4, 4) and (B, B) in the
cyclical phase can be generated on an equilibrium path.

We can construct an equilibrium of the machine game in which the cycli-
cal phase consists of a constant play of (A4, A) by assuming that players
choose two identical machines such as the following (¢, is the initial state):

Transition after

State Output A B
9 B 9 4>
q: B G 4
o3 B 41 44
' A 44 q

In this equilibrium, each machine starts with a show of power in which it
plays B for three periods, after which it switches to a constant play of A.
This is supported as an equilibrium by player I's threat to punish any
deviation made by player 2 with a three period play of B and by an
analogous threat of player 2. Note that it is essential that player 1 monitors
player 2 during the first three periods of the game despite the fact that
player 2 does not gain by deviating. If in any of these periods player 1 does
not deter a deviation by player 2, the latter can use the same state as in
period 4 during the initial phase and thus reduce the complexity of his
machine.

The game G is the reduced normal form game of the extensive game /™

—2 0
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Consider the machine game in which I', rather than G, is repeated over
time and suppose that at the end of each period players are informed only
of the terminal node which they have reached. It can be shown that the
only equilibrium outcome path consists of a constant play of the stage-
game Nash equilibrium (B, B). Part of the intuition behind this result lies
in the reason why the above equilibrium for the machine game with G is
not an equilibrium for the machine game with 7. If player 1 chooses B, he
cannot verify whether player 2 would play B in the event that player 2’s
decision node were reached. Thus, player ! cannot monitor player 2
through the “introductory phase,” and since player 2 does not have the
ability to punish, the equilibrium collapses.

This paper provides a generalization of this result. It is shown that if I”
i1s an extensive game with perfect information, any equilibrium outcome
path for the machine game consists of an infinite repetition of a Nash
equilibrium of /™ irrespective of the discount factors.

We believe that this result is of interest in and of itself. However, the
model also serves two additional purposes. First, it examines the notion of
“strategic complexity” in extensive games. Second, it demonstrates that
when bounded rationality considerations are introduced, a significant
difference between an extensive game and its reduced normal form may
arise.

2. THE MODEL

We now give a formal presentation of the model. Let " be a two-player
extensive-form game with perfect recall. Let S; denote the set of pure
strategies for player i/ and let § denote S| x.5,. The set of terminal nodes
of the game tree is denoted by E. Let h,(¢) be the payoff obtained by player
i upon reaching the end-node ¢ and let E(s) be the end-node which is
reached when the strategy profile s is played. U, denotes the set of informa-
tion sets of player i and A(u;) is the set of actions available to player /i at
u,e U,. Given s;€ §;, let s;(u;) denote the action induced by s, at u,.

The machine game is constructed as follows. We assume that players
play the infinite repetition of I by choosing machines and that player /
evaluates his stream of payoffs by using a discount factor 0 < §, < 1. Several
options are available to extend the definition of a machine used in a
repeated normal form game to the model under consideration. Recall that
if the stage game is a normal game G, a machine is defined as a four-tuple
M, =<Q,,q!, 4, u;>, where @, is a finite set of states ; ¢, is the initial
state; 4;: Q,— A, is the output function, where A, is the set of actions of
player i in G; and u,:Q,x E— Q, is the transition function, where
E= A, x A,. Note that each state is assigned one action and state transitions
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can occur at the end of a period after the outcome of that period has been
realized.

We interpret an extensive game [ as a representation of a strategic situa-
tion in which a player does not have to calculate himself the information
set which he is at. This information is given to a player by an external
source (the “master of the game”). We therefore require that each state be
assigned an action for each information set of I" and we define the output
function to be 4,;: @, x U, —> A(U,), where 2,(q,, u;) € A(u,).

With regard to state transitions, a natural extension is to allow a change
in the state each time new information arrives, i.e., when a player is told
either that a particular information set has been reached or that he is at the
end of a period and is informed about the terminal node that the play of
game [ has led to. We can then define the transition function
U Q. x(U;u E)— Q, with the convention that the transition of a state
occurs at the time an information set is reached and before an action is
taken. Thus, in contrast to the case of the infinite repetition of G, a change
in the state can occur during the play of the one-shot game as well as at
the end of a play. This contrast is, however, redundant in this framework.
Without loss of generality, we can restrict our attention to simple machines
where the transition function is such that a change in the state occurs only
upon reaching an end-node of /. This is due to the following. Consider a
state ¢g,€ Q; and recall that we limit our discussion to games with perfect
recall. If the machine M, is at ¢, at the beginning of a play of I then, for
every information set u;, the machine M, associates with ¢, a unique arrival
state ¢g(¢,;, ;) and an action 2,(q(q;, u;), u;). Also, for every end-node e,
there is a unique state g(g;, ¢) which the machine associates with g,. The
state ¢(g,, e) will initiate the play of player i for the following period given
that the terminal node obtained by the previous play of I is e. Thus,
defining output at state ¢, to be the /™-strategy (4,(q(q,, u;), u;)}, .., and
defining the transition after ¢, and the terminal node e to be ¢(q;, ¢), we
obtain a simple machine which does not switch states along the play of I
and is equivalent to M, in the sense that after every history it plays the
same actions as M.

In what follows, we then define a machine for player i as a four-tuple
M.={0Q;,q), A >, where Q, is a finite set of states, ¢! is the initial state
A::Q,— S; 1s the output function, and u;: Q,x E— Q, 1s the transition
function. A transition in a state occurs at the end of each period after the
terminal node is announced.

A pair of automata (M, M,) induces a sequence of stage-game strategy
pairs (s'). Let m;(M,, M,)=37 8! 'h;(E(s')) be s repeated game payoff
resulting from the pair (M,, M,). The complexity of M, is assumed to be
the number of states in M, and is denoted by comp(M,). We assume that
the preferences of the players depend only on the repeated game payoff
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and the complexity of their own machine and that player i strictly prefers
(M,, M,) to (L,, L,), which is denoted by (M,, M,)>,(L,, L,), whenever

() =mn(M, M;)>n(L,,L,)and comp(M,)=comp(L;) or
(i) m,(M, M,)=n(L,, L,) and comp(M,) <comp(L,;).

No additional assumptions concerning the tradeoff between “utility payoff”
and “complexity” are required to derive the results in this paper.

A pair of automata (M, M,) is a Nash equilibrium of the machine game
if there is no player / and machine M/ such that (M, M,)>, (M, M,).

Remark. An alternative view of an extensive game is that of a situation
in which players do not know their position unless they “calculate” it. We
felt, however, that the cost of obtaining information about past moves in
the one-shot game is significantly smaller than the cost of holding informa-
tion about previous plays of the game. For example, if I" is a “take it or
leave it” game where player 1 is the offerer, it is reasonable to assume that
player 2 knows what the offer is that he has to respond to at the time
he has to say “Y” or “N”, even though he may “immetiately” forget this
information.

3. Tue NasH EQUILIBRIUM OF THE MACHINE GAME

Our first result is identical to one obtained in Abreu and Rubinstein [2]
for the case of repeated normal form games:

LemMma. If (M,, M,) is an equilibrium for the machine game then
comp(M,)=comp(M,).

Proof. Consider the equilibrium machine M; for player j and a policy
function b;: @, — S, which maximizes the discounted flow of player i’s
stage-game utilities given M,. Consider the machine M/ = {Q;, qj‘, Al ul)
for player i defined by 4/(q,)=b.q;) and ui(g;, -)=u;(q,, E(b:(q;), Ag,))).
The machine M| implements the optimal policy function b; and is such
that comp(M;)=comp(M;). It follows that the equilibrium machine M,
has to satisfy comp(M;)<comp(M;). Equality follows by a symmetric
argument. f

PrOPOSITION 1. Suppose (s') is a sequence of profiles of I-strategies
induced by an equilibrium of the machine game. If there exist 5,€ S, and
r#k such that

E(s,,sy)=E(s’,s}) and  E(s,,s%)=E(s%, s%), (x)

then E(s}, s5) = E(s*, s%).
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Discussion. Proposition 1 claims that if there is a /-strategy s, such
that, when played with s}, and s%, it induces the terminal nodes which are
realized in periods r and k, then those terminal nodes must be identical.
Intuitively, if they were not identical, player 1 could save at least one state
by choosing a machine which replaces two distinct states with a single
one, the output of which is s5,, and which uses the different terminal nodes
to perform the “correct” transition to the subsequent states. Of course, an
analogous claim holds for player 2.

Proof. Suppose that (M, M,) is an equilibrium for the machine game
and that there are two periods r and & and a [-strategy s, such that
E(s,, s7) = E(s%, s5) and E(s,, s%) = E(s%, s%). It is easy to show that, given
player 2’'s machine M,, there exist an optimal policy for player I,
by:Q,— S, such that b,(g5)=b,(¢%)=5,. We now show that E(s], s5)
E(s*,s%) leads to a contradiction. We construct a -machine M=

(0. g} 41, i} in which the state set is 0} = {Qs— {45 ¢%}} U {¢}. the
initial state is g5 if ¢3¢ {g5, g5} and ¢ otherwise, the output function is

such that A\(q,)=~5,(g,) for g.#4 and A{(§)=s,, and the transition
function is such that

for g,¢ {q5% 45}

/‘,1(‘12, )

:{uz(qz,E(bl(qz),iz(qz))) if  y(q,, E(by(q2), 22(q2))) ¢ {5, 45}
g if (g, E(bi(g,5), A2(q,)) )E{q% I:f}

for g,e{q%, 45}
w14, E(sy, A2(q,)))

={uz(qz,E(s1,/iz(q2))) il 12(qas Esy. 45(92))) € {45, 45}
q it pa(q2s E(s1: 22(92))) € {95, 43}

M, keeps track of the states of M, except for states ¢5 and g% in which case
it uses the same state §. Since E(s,, s5)# (E(s,, s5), M| can switch from
state § to states ¢5*' and ¢5%*' Thus, M, implements 5,. By Lemma 1,
comp(M7})=comp(M;)— 1 which is a contradiction. |}

We are now prepared to present the main proposition:
PrOPOSITION 2. If I is a game of perfect information then any

equilibrium of the machine game consists of an infinite repetition of a Nash
equilibrium of I
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Proof. Let (s}, s5) and (s7, s5) be two pairs of /-strategies and suppose
that both are observed along the path induced by an equilibrium of the
machine game. We first show that £(s], s5) = E(s{, s7). Suppose not and let
u* e U, be the first information set in which the two pairs of strategies
induce different actions. By the perfect information assumption, we can
decompose player j's set of information sets, j# i, into mutually exclusive
sets A,, k=1, .., 4 such that

A, contains all of j’s information sets which precede u*
A, contains all of j’s information sets which succeed s;(u*)
A, contains all of j’s information sets which succeed s/ (1*)

A, contains all other information sets of .

Let s, be a strategy for player j which agrees with s/ and s/ on A4,

with s/ on A, and with s/ on A; and which is defined arbitrarily

/
on A,. Obviously, E(s;,s/)=E(s],s;) and E(s;,s/)=E(s/,s]). Then, by
Proposition 1, E(s}, s5) = E(s{, s5). Since any equilibrium induces a con-
stant play of a /-strategy pair, any equilibrium machine’s set of states is a
singleton set. It follows that the pair of [strategies played by the machines
must be a Nash equilibrium of 7 since, otherwise, one of the players could

deviate profitably with a one-state machine. §

Discussion. The main difference between the repetition of an extensive
game with perfect information and the repetition of its reduced normal
form is that while in the latter a player observes his opponent’s entire
strategy, in the former a player observes only that part of the strategy
which is realized. Once complexity considerations are included in the
model, it is the lack of monitoring of behavior off the equilibrium path
which causes the collapse of non-degenerate equilibria. The intuition
behind the result is the following: if there is an equilibrium path with two
different F-outcomes, there is a player who plays different I-strategies to
implement the two outcomes and a player who can fulfill his role in the
implementation of the outcomes with one [I-strategy. Therefore, rather
than holding extra states, the latter player can rely on the former player's
actions, as revealed in the play of I, to obtain the information which is
needed to conform to the anticipated routine. However, when using a
smaller machine, a player loses the potential for “controlling” the opponent
and the equilibrium collapses.
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