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Static equilibria can be viewed as steady states of recurring play of a game.
Such steady states in which players do not perfectly observe the actions of others
need not be Nash equilibria. This paper suggests a static solution concept, rationali-
zable conjectural equilibrium, that corresponds 1o such steady states. To present
it, the basic model of a normal form game is enriched by specifying the signals
that players get about others’ actions. The solution is a profile of actions such
that each player’s action is optimal given that it is common knowledge that all
players maximize utility given their signals. Journal of Economic Literature Classi-
fication Number C72. © 1994 Academic Press, Inc.

1. INTRODUCTION

Games are used as models of two very different scenarios. Sometimes
they model behavior in isolated situations in which players’ expectations
of what others might do are not based on any information beyond the
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basic description of the game. At other times, games are used to model
behavior in recurring situations, where the game in question or similar
ones repeat often enough and expectations about others’ actions can be
related to past experience.

The solution that we propose in this paper is motivated by scenarios
of the second type. Although this solution is purely “‘static,”” what we
have in mind is a game which is played repeatedly with no strategic links
among the repetitions. That is, in each repetition the players are interested
only in maximizing their instantaneous payoff—neither are they concerned
about the effect their actions might have on future beliefs of others, nor
are they interested in sacrificing current payoffs for learning more about
their current opponents. To fix ideas, one may think that the same game
is being played by a sequence of distinct players. Although each player
plays the game only once, he has some information on how the game was
played in the past and on this he bases his expectations about others’
actions. A steady state of this repeated interaction is such that, in all
repetitions, the players who occupy any position play the same strategy
which is best response, given the available information about the past
actions of others. We view such a steady state as an equilibrium of the
stage game. If players perfectly observe the past actions of all players,
such a steady state will be a Nash equilibrium of the stage game. If,
however, players have only an imperfect knowledge of past actions, the
steady state will not necessarily be a Nash equilibrium, since their informa-
tion may be insufficient to figure out a profitable deviation. This may be
the case, for example, if each player knows the actions and payoffs of
the players who occupied his position in the past but not the actions or
payoffs of others.

To formalize these ideas we enrich the model by specifying the signal
that each player has about the actions taken by the others. The solution we
present in this paper, which we call rationalizable conjectural equilibrium
(RCE), is a profile of actions such that each player’s action is optimal,
given that it is common knowledge that all players maximize their expected
utility relative to their information. In other words each player chooses
an action which maximizes his payoff given a conjecture regarding the
actions of the others; each agent’s conjectures are consistent with his
signal and his own choice; the conjectures are also consistent with the
understanding that everybody rationalizes his action in this manner. If
players do not get any information, the RCE coincides with rationalizabil-
ity, and if they get exact information about their opponents’ actions, it
coincides with Nash equilibrium. Thus, the RCE occupies an intermediary
position between Nash equilibrium on the one hand and rationalizability
style (Bernheim, 1984; Pearce, 1984) on the other hand.

There are two reasons why modelers may be interested in RCE. First,
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as a solution concept in its own right which refines the rationalizability
concept in a nontrivial way and still is not equivalent to Nash equilibrium.
Second, in games in which, given some natural signal, the RCE coincides
with Nash equilibrium, the Nash equilibrium concept is more compelling
because the equilibrium requires less information on the part of the
players.

Some related concepts are suggested in the literature. First, Battigalli
and Guaitoli (1988) present the notion of conjectural equilibrium. This
concept requires a player’s action to be a best response to some conjecture
which is consistent with the signal he gets but does not impose any rational-
ity conditions on the conjecture assignment about the other players’ ac-
tions. Fudenberg and Kreps (1988) present a particular example of conjec-
tural equilibrium. They point out that, if a player just observes the outcome
of an extensive form game, then the RCE does not have to be a Nash
equilibrium. Fudenberg and Levine (1990) present the notion of self-con-
firming equilibrium. This is an RCE in which each player’s signal is the
others’ strategy in all information sets that are reached with positive
probability.

Before we proceed to the more formal parts of the discussion, it is
useful to clarify the methodological position of this work. As emphasized
above, we are proposing a purely ‘‘static’’ solution concept. While we
do not analyze nor even pose any dynamic model, we allude informally
to a dynamic scenario in order to motivate our interest in this concept.
Thus, from a methodological point of view alone, this work resembles
the work on the ESS concept, which is also the static concept motivated
by reference to population dynamics. While it is easy to construct stylized
dynamic scenarios that support these solutions, complementary research
which looks at rich learning models might be very useful in assessing the
robustness of these solutions.

2. NOTATION AND DEFINITIONS

We consider games in normal form. The set of players is N = {1, 2,

., n}; the set of player i's actions is A;; the set of outcomes is A =
A X A, X --- X A,; and {i’s payoff function is u;: A — R. The new
ingredients that we add to the description of the game are the signal
functions g;: A — §;. The element s; = g,(a) is the signal that player {
privately observes when all players choose the actions that make up the
profile a. It is assumed that the functions g; (as well as the other compo-
nents of the model) are common knowledge (but the actual signals are
not). In what follows we refer to (N, (A)cn, (U)icn, (8)cn) @S a game.

The solution concept that we are about to present is such that each
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player’s action is optimal, given a player’s conjecture about what the
other players” actions will be. The player’s conjecture has to be consistent
with the signal that he has on the actions the others intend to take, with
the knowledge of his own action and with the knowledge that the other
players follow similar reasoning.

DefrINITION 1. The action-signal pair (a;, s;) is g-rationalized by a

probability measure w on A_; = X, ,A; if
(i) forall a_; = (ay, ..., a;_y, a;4y, ..., a,) in the support of w,
gla;, a_) = s;

(ii) a; is best response, given u.

DEefFINITION 2. The sets of signal-action pairs B, B,, ... , B, are g-
rationalizableif, for all i, every (a;, 5;) in B;is g-rationalized by a probability
measure p on A_; such that for all a_, in the support of u and for all j,
(a;, gila;, a_))) € B;.

DEFINITION 3. A rationalizable conjectural equilibrium (RCE) is an
n-tuple of actions a* = (af, ..., a}) such that for some g-rationalizable
sets By, B,, ..., B, and for all {, (af, g;(a*)) € B,.

Note that, when g,(a) = a for all i, the concept of RCE coincides with
a pure strategy Nash equilibrium. When g(a) is independent of a_,, this
concept coincides with the correlated-conjectures version of Bernheim
and Pearce’s rationalizability.

Definition 2 requires that, for each pair (q;, s;) € B,, the action q; is best
response against a belief on vectors a_; which are consistent with player
i’s action a; and the signal s;, and for each pair (g;, g/(a_;, a;)) the action
a; is j's best response against a belief on vectors b_; which are consistent
with player j’s action g; and the signal g{a_;, a;) and so on.

A concept related to the RCE is Battigalli and Guaitoli’s (1988) conjec-
tural equilibrium (CE). The CE requires that a player behave rationally
in the sense that his action is a best response given the knowledge of the
player about his action, the signal, and the game, but it does not require
common knowledge of rationality. Every RCE is a CE.

DEFINITION 4. A conjectural equilibrium (CE) is an n-tuple of actions
a* = (af, ..., a¥ such that for all i the pair (a}, g,(a*)) is g-rationalized
by some probability measure A_,.

Note that the existence of an RCE is not an issue of independent interest:
since every Nash equilibrium is an RCE, existence is implied by existence
of Nash equilibrium.

The rest of the paper is devoted mainly to examples of games which
clarify the RCE concept and compare its predictions with those of other
solution concepts.
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3. EXAMPLES

The case of public signals is such that each player can infer from his
own signal what signals are held by the other players (i.e., g/(a) = g(a’)
if and only if g;(a) = g;(a’)). In the next three examples the signals are
public.

(a) The Distance Game

Two players choose locations in the unit interval. Their payoffs are
decreasing in the distance between their locations, so there is no conflict
of interest and both want to coordinate their location at the same point.
Thus, N = {1, 2}, A, = [0, 1], and ufa,, a,}) = L(d(a,, a,)), where L is
any decreasing function and d(a,, a,) = |a; — a,|. It is immediately verifi-
able that the set of Nash equilibria includes all pairs (a,, a,) such that
a, = a, and that all possible pairs of locations are consistent with rationali-
zability.

If the signal is the distance, i.e., g;(a,, a,) = d(a,, a,), then the set of
conjectural equilibria includes all (a,, a,) such that neither of the locations
is a distance of less than d(a,, a,) from the edges of the interval.

CrLaiM. The RCE are all pairs (a,, a,) such that a; = a,.

Proof. Suppose there is an RCE (a,, a,) such that d(a,, a,) = d > 0.
This means that there are g-rationalizable signal-action sets B, and B,,
as described in the definition, such that (a;, d) belongs to B;. The pair
(a;, d) can be g-rationalized only by a conjecture which puts positive
probabilities on both a; — d and a; + d. This is because the action g, is
not a best response against a conjecture which puts probability zero on
one of the actions a, — d or a; + d. Thus, since (a;, d) € B;, both (a; —
d, d) and (a; + d, d) must be in B;. Define m; = max{a,: (a;, d) € B}}. (f
there is no maximum, follow the argument with sup.) From the above,
(m; + d, d) must belong to B; and therefore (m; + 2d, d) must belong to
B;, in contradiction to the maximality of m;. =

Thus, the RCE coincide here with the Nash equilibria, although players
have less information than is required by the Nash equilibrium.

(b) Two-Characteristic Quality Competition Game

Two firms compete on the business of a fixed population of buyers by
selecting for their products two characteristics (x;, x,) in {1, 2, 3} x {1,
2, 3}. The action of firm i is denoted by (x{, xi). The total measure of the
buyer population is 1. The population is evenly split so that half of it
attributes lexicographic priority to the first characteristic and the other
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to the second characteristic. Thus, if for example x{ < x{ and x} < x4 then
firm j gets the whole market, while if x{ < x{and x{ > x{ then both firms
split the market equally. When choosing (x,, x,), a firm incurs a fixed cost
of x; + x,. A firm’s gross profit (before subtracting the fixed cost) as a
function of its market share is as follows:

Market share Gross profit Marginal profit
1 5.5 1.5
0.5 4 4
0 0

This pattern of profit will obtain, for example, if the prices of the prod-
ucts are fixed and the marginal cost is increasing in quantity.

The only Nash equilibrium of this game is (x}, x}) = (xi, x}) = 3.
3). To see this, note first that in Nash equilibrium there may not be a
characteristic & such that x; — x} = 2 or such that x{ — x/ = 1 and x{ — xJ
= 1 where k # [. This is because in either case player i can profit by
reducing k& by 1. Next, observe that firm i’s equilibrium market share
cannot be 1, since then, by the previous observation, it has to be that for
some k, x; — x} = 1 and xj — x} = 0. But then j can gain 3 (= 4 — 1) by
deviating to i’s position. Thus, in equilibrium the firms split the market
so that either (x{, x§) = (xi, x§) or x, — x}, = 1 and x} — x{ = 1. Therefore,
unless both players choose (3, 3), player j can gain 1.5 by increasing k by
one.

Every action (x,, x,) is rationalizable. To verify this, note that (1, 1) is
best response to (3, 3) and any other (x,, x,) is best response to either
(x; — 1, x)) or (x;, x, — 1).

Assume that each firm’s signal, g; is its own market share. Then, the
RCE outcome must be an equal split of the market.

CrLAIM. All RCE are the action-signal pairs ([x], x}), 3], [(x3, x3), §])
such that (x}, x}) and (x3, x3)
(i) split the market equally

(i) belong 1o {2, 1), (1, 2), (3, 1), (2, 2), (1, 3), (3, 3)}.

Proof. There is no RCE in which one of the firms has market share
0. If there is an RCE in which firm i’s share is 0, then the only action-share
pair in B, in which the share is 0 must be [(1, 1), 0]. Otherwise, firm i can
profit by deviating to (1, 1). Therefore, the only action-share pairs in B;
in which firm j’s share is 1 are [(1, 2), 1] and [(2, 1), 1]. But then [(1, 1),
0] is not g-rationalizable by any belief on B, since a deviation to (2, 2) is
profitable.

Consider next an RCE with equal split of the market. There is no such



RATIONALIZABLE CONJECTURED EQUILIBRIUM 305

RCE in which firm i chooses (1, 1), since equal shares imply that player
i believes that j’s action is (1, 1) and then i can profitably deviate by
increasing any coordinate by 1. Also, there is no such RCE in which firm
i chooses (3, 2) or (2, 3), since then the equal share implies that i believes
with probability 1 that j’s action is not (3, 3); by deviating to (3, 3) firm
i increases its share from 3 to 1 and profit. Finally, B, = B, = {[2, 1), 1],
(1, 2), 41, (3, 1), 21, (2, 2), 8], 11, 3), 4], [(3, 3), 4]} are g-rationalized:
[(3, 3), 31 is g-rationalized by the belief concentrated on (3, 3). [(2, 1), 3]
is g-rationalized by (1, 3), and [(1, 3), ] is g-rationalized by an equal
mixture of (1, 3) and (3, 1) which also g-rationalizes {(2, 2), i]. Analogously,
[(1, 2), 4] and [(3, 1), §] are also g-rationalized. =

Note that this is a Bertrand-like game in which the incentives for ‘‘under-
cutting’” Jead to a unique Nash equilibrium in which the joint profit is
minimized. The RCE relaxes the “*Bertrand Paradox’ by not insisting
that each player know perfectly his opponent’s action, yet it rules out
some of the rationalizable outcomes by allowing a player to have the
information that can be derived from observing its own payoff.

Note that the set of CE is quite large and includes the configuration
where one firm chooses (1, 1) and the other chooses any (x;, x;) # (1, ).
The additional requirement of the RCE concept, that the signal-action
pairs which g-rationalize an action should be g-rationalizable themselves,
is used in the first part of the proof to rule out configurations in which
one of the firms dominates the market.

(c) Fudenberg and Kreps’ Example

Fudenberg and Kreps (1988) bring the following example of an extensive
form game:

| 11 1
a a--—-- 1
| |
d d 1
..... IrL......

I r I r
[N\
30 30
0 3 0 3
0 0 0 0
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The pure strategy Nash equilibria are (d, a, ), (d, d, 1), (d, d, r), and
(a, d, r). That is, in all Nash equilibria at least one of the players I or Il
chooses d, and so there is no Nash equilibrium in which both I and Il
play a. Also, every configuration is rationalizable.

When the signal g; is the actual terminal node reached, there is an RCE
in which both I and II play a. Let aa denote that terminal node. Observe
that the sets B, = {(a, aa)}, B, = {(a, aa)}, and B; = {(r, aa), (I, aa)} are
g-rationalizable: player I g-rationalizes 4 by the belief that player 111 plays
r, and player II g-rationalizes a by the belief that player III plays 1.

The reason that aa is not reached in a Nash equilibrium is that I and
II must have the same belief on III's strategy, but any such belief that
will induce I to prefer aa to playing d will induce 11 to prefer d. Now,
since the signal aa does not reveal I1I's strategy, the RCE does not impose
any such restriction on I and II's beliefs regarding III.

As this example establishes, an RCE outcome might not be Nash even
when the signal reveals the actual path being played. Note, however, that
there is no such distinction between CE and RCE: when the signal is the
actual path being played, in any game any CE outcome is also RCE
outcome (To see this, for any CE, define B, as the set of strategy—signal
pairs whose signal coordinate is this CE’s path and whose strategy coordi-
nate goes over all of i’s strategies which agree with this CE’s strategy on
the path, and observe that this particular signal implies that these B,’s are
g-rationalizable). The reason again is that RCE does not impose any
restrictions off the equilibrium path and so there is nothing to distinguish
it from a CE when the path is known.

In the next examples the signals are not public and each player forms
conjectures regarding the other’s signal as well as the other’s action.

(d) A Discrete Nash’s Demand Game

The players simultaneously announce numbers between 1 and K. If the
sum is less than or equal to K + 1, they get their respective demands.
Otherwise, they get zero. All (a;, a,) such that a, + a, = K + 1 are Nash
equilibria and all entries are consistent with rationalizability. Taking the
signal function g, to be i’s payoff, any pair (a,, a,) witha; + a, = K + 1
is an RCE since g, is best response to a; = K + 1 — a;. Thus, unlike the
Nash equilibrium outcomes, the RCE outcomes include inefficient ones
such as (1, 1). But the RCE (and even the CE) rules out the no-trade
outcome of both players submitting incompatible demands, since then
player i can profitably deviate to demand 1.

(e) Location Choice Game

Each of N players chooses a location k = 1, ... , K from among K
locations (suppose that K divides N). Let n, be the number of players in
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location k. Each player’s payoff is a decreasing and convex function of
the number of players in his location. For example, suppose that the
players are firms and in each location there is a unit of profit potential to
be split equally among those locating there. The payoff to a firm locating
at £ is in this case 1/n;.

The Nash equilibria are such that there are exactly N/K players in each
location. All possible configurations of players in locations are rationali-
zable.

Let playeri’s signal, g, be the number of players in his location. Observe
that all RCE as well as all CE are such that there are exactly N/K players
in each location. This is because a player who is at a location with more
than N/K knows that the expected number of players at any other location
is less than N/K. Since the payoff is convex in the number of neighbors,
such a player profits by deviating. Thus, the RCE and the CE coincide
with Nash equilibrium, but they require less demanding assumptions on
what the players know.

(f) The Aggression Game

Player 0 assigns a distinct natural number £; to each of the players 1,
., n and each of these players chooses one of two possible actions from
A, = {attack, defend}. Their payoffs are

wldefend: k\, ... . k) =0

and

| itk =mindk:j=1,..., n}
u(attack; &, ... k) = . '
-1 otherwise.

Player 0 is indifferent among all outcomes. He is just a device to model
deterministic but unknown information, without giving the players com-
mon beliefs about it.

An interpretation of this model is that the player with the lowest number
is the strongest party. He can take advantage of this strength only if he
attacks. However, if he attacks when he is not the strongest party, he is
beaten. In any (pure strategy) Nash equilibrium only the player with the
lowest number chooses to attack. The set of rationalizable outcomes
includes all possible configurations since a player can believe that player
0 assigns to him the lowest number or he can believe that player 0 assigns
it to somebody else.
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1 if there isan i s.t. g; = attack
Define Fla) = .
0 otherwise.
Let gla. k,, ..., k,) = (k;, ufa, k,, ..., k), F(a)). Thatis, each player

knows his number, his payoff, and if there is any player who chooses to
attack.

The set of CE includes the outcome that all players get numbers of at
least 2 and choose to defend.

CLaM. In all RCE the player with the smallest number is the only
player who chooses to attack.

Proof. There is no CE in which a player other than the lowest numbered
one chooses to attack. This is because each player’s signal includes his
payoff, which would be negative if he attacked when his number was not
the lowest. To see that there is no RCE in which no player attacks, note
first that there is no such RCE in which one of the players is assigned the
number I, since that player always benefits from attacking. Therefore,
there is no RCE in which the lowest number is 2 and nobody attacks,
since a player numbered 2 cannot g-rationalize his decision to defend by
a belief that puts positive probability on the existence of a player numbered
1 who does not attack. By induction, for any #, there is no such RCE in
which the lowest number is #n and hence there is no RCE in which nobody
attacks. =

4. COMMENTS

(a) Many Players

Recall definitions 1 and 2. The fact that the measure u which g-rational-
izes a pair («;, s,) is defined over Xx,,,A; means that we allow for correlated
conjectures. That is, for example, in a three person game, player 3 may
hold a belief which assigns probability § to each of two pairs of actions
(a;, a,) and (b,, b,). The following two reasons may give rise to correlated
beliefs, even where there is no external correlating device:

(i) Player 3 learns from his signal that players 1 and 2 definitely do
not play (a,, b,) or (b,, a,).

(ii) Player 3 excludes (a,, b,) from the support of his belief because
one of the action—signal pairs (a,, g,(ay, &, d3)) ot (by, g,(a;, b,
a,)) does not belong to B, or B, accordingly.
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If we are interested in a situation without external correlating devices
so that the only possible correlation is due to these reasons, then the
proper modification of definitions 1 and 2 is that player i g-rationalizes a
pair (qa;, 5;) € B; by a conjecture u satisfying the following condition: If
there are sets (C));.; such that for all ¢_; € x,,,C}, g(a,, c_;) = 5, and for
all j, (¢;, glc_;, a)) € B;, then the belief p conditional on X,.,C; is a
product measure.

(b) Random Signal and Mixed Strategies

So far we have considered only pure strategies and deterministic signals.
The extension to random signals, g, is straightforward: after identifying
S; with the set of probability measures on the original space of signals,
the basic definitions are valid without modification.

Note however that, in this case, thinking of the RCE as a steady state
in which the information is accumulated through repetition is less straight-
forward than it was with deterministic signals. This is because it requires
one to envision a more complicated learning process—players have to
learn a whole distribution by observing its realizations. An explicit model-
ing of such a process, which we do not peruse, would be a more delicate
task than the modeling of the deterministic case. For example, players
can obtain long strings of atypical observations, and so such a learning
process should not place too much weight on recent observations; how-
ever, this would slow down the pace at which deviations from the right
beliefs can be corrected. As we are not modeling in this paper the underly-
ing learning processes, there is no point in discussing such issues at length
beyond noting that, in terms of the interpretation, the extension to random
signals involves an extra leap.

Next, consider the possibility of mixed strategies. Let g,(rn,, ... . m,)
be the distribution of signals arising when the players use the mixed
strategies (m,, ..., m,). Distinguish two scenarios: (i) a player does not
observe the realization of his own mixed strategy (i.e., he chooses the
roulette but somebody else spins it and plays the realized action); (ii) a
player observes the action realized by his own mixed strategy. Note that
in scenario (i) what the player can presumably learn through repetition is
gm,, ..., m,). Therefore, the appropriate model in this case is the
random-signal model discussed above with random signal g.(m, ... . ).
In scenario (ii) a player can presumably learn g,(a;, m_;), for each g; in
the support of m,. For this case the appropriate definitions are as follows:

Let M, denote the set of mixed strategies of player i and let K; be the
set of probability measures on §,. The random signal g/(a;, m_)) is an
element of K, interpreted as the distribution of signals when player 7
chooses a; while the rest choose m_;. Denote by L, the set of all pairs
(m;, (k{a),esuppim))) Where m; € M; and ki(a) € K.
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DeriNITION . The pair (m;, (ki{a)qesuppmy)) 10 L; I8 g-rationalized by
a conjecture (probability measure) p on M_; if

(i) for all @; in the support of m; and m_; in the support of u,
kia) = gla;, m_})
(ii) m, is i’s best response, given wu.

Condition (i) requires that, for any action «, that i takes, {’s conjecture
be consistent with the distribution of signals, £{«,). that he receives. The
fact that this requirement is made for any m_, in the support of u means
that the signal distribution that / receives does not allow him to distinguish
between the alternative patterns of behavior that he conjectures as possible
for the others.

DEerFINITION 2. The sets B,, B,, ... . B,, where B, is a subset of L, are
g-rationalizable if, for all i, every (m;, (k{a;), esuppimy)) 10 B; is g-rationalized
by a probability measure w on M_; such that for all m; in the support of
u the pair (m;, (g;(a;, m_yesuppimy)) € B;.

DefFINITION 3. A RCE is a profile of mixed strategies m* = (m¥},
m¥, ..., m}) satisfying that there are g-rationalizable sets B,, ... , B,,
such that (m*, (k(a),esuppnp)) € B, for all i.

Note that, under the last definitions, it follows from the existence of
Nash equilibrium that in finite games, for any signal functions g,, there
exists an RCE.

(c) Experimentation

Since we motivate the RCE by referring to a steady-state scenario in
which the information is accumulated through repetition, this concept can
be criticized on the grounds that steady states which are not Nash equilib-
ria are ‘‘unstable.”” This is in the sense that, if players unconsciously
tremble or consciously experiment, they may learn information that wiil
induce them to change their behavior. Let us point out, however, that
this criticism is somewhat sweeping. First, in order to fully expose the
strategy profile being played, the unconscious trembles have to be of
a rather special form (see Fudenberg and Kreps, 1988). Second, since
conscious experimentation is costly, players will engage in it only if they
are sufficiently long lived and patient to realize the benefits (see Fudenberg
and Levine, 1990). Thus, while the possibility of trembles and experimen-
tation may suggest some restrictions on the form of the signal function
g;, it does not empty, by any means, the RCE concept.
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(d) Equivalence to Nash Equilibrium

In three of the examples considered above (the distance, location, and
aggression games) the RCE coincided with Nash equilibrium. In games
with this property the Nash equilibrium concept is more compelling. be-
cause in a sense the equilibrium requires less information on the part of
the players. It may therefore be of interest to identify conditions under
which, for some natural signal function such as one’s own payoff, RCE and
Nash equilibria are equivalent. Bernheim (1984) analyzes the analogous
question for rationalizability—he presents necessary and sufficient condi-
tions for such equivalence between rationalizable and Nash equilibrium.
As a corollary of his analysis he shows that, in a two-player Cournot
game, the unique pair of rationalizable strategies is the unique Nash equi-
librium. This equivalence fails for # = 3, where any outputs between zero
and the monopoly output are rationalizable. In contrast, the RCE lends
some support to the Cournot equilibrium for n = 3 as well: when each
firm’s signal is its own profit, the unique RCE coincides with the Nash
equilibrium for any n. Note that in this example the CE aiready coincides
with the Nash equilibrium so that the power of RCE is not used. In
the distance and aggression games the RCE coincides with the Nash
equilibrium while the CE does not. This research direction provides well-
defined analytic questions.
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