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Abstract

One problem caused by cycles of choice functions is indecisiveness—decision makers will be paralyzed
when they face choice sets with more than two options. We investigate the procedure of “random sampling”
where the alternatives are random variables. When comparing any two alternatives, the decision maker sam-
ples each of the alternatives once and ranks them according to the comparison between the two realizations.
We show that while this procedure may lead to violations of transitivity, the probability of such cycles is
bounded from above by 8

27 . Even lower bounds are obtained for some other related procedures.
© 2012 Elsevier Inc. All rights reserved.
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1. Introduction

The indecisiveness argument is used to justify the transitivity assumption in decision theory.
Suppose that A � B , B � C, and C � A. If the decision maker has to choose from the set
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{A,B,C} he will be frozen: for each alternative he may choose he will find a better one. This
may bring him to re-evaluate his preferences and probably to change them so that the cycles will
be eliminated.

This argument might be applied to procedures of choice where the decision maker is using a
random procedure to determine his attitude to each pair of alternatives. Such a procedure may
yield indecisiveness. The higher is the probability that a random procedure of choice yields
indecisiveness, the more likely it is that the decision maker will conclude that he should avoid
this procedure.

In this paper we focus on a nondeterministic procedure of preference formation which we call
random sampling procedure. When comparing two lotteries, the decision maker samples once
from each lottery and ranks them according to the two realizations. (This concept is related to
the S-1 procedure proposed in Osborne and Rubinstein [5].)

The main message of our paper is that when applied to random preferences, the scope of the
indecisiveness argument is limited. Whereas the argument is always applicable for deterministic
procedures which yield cycles, the random procedures which we study would be less vulnerable
to the indecisiveness argument. Our formal analysis provides a characterization of the upper
bound on the probability that the random procedure we study yields indecisiveness and shows
that this bound is quite low.

Our first result refers to the case where when choosing from three random variables the deci-
sion maker independently compares each pair of them. He starts by comparing some alternatives
A and B , continues into comparing B and C, and then finally compares A and C. In each of
the three stages he draws new samples from the relevant pair of random variables and does not
use the values he observed before. We find that the bound on the probability that this random
sampling procedure yields a cycle is 8/27 (Claim 1). This is somewhat lower than 1/3, which
we show in Claim 2 to be the bound for the Block and Marschak’s [1] random ordering proce-
dure. According to this alternative procedure the decision maker has in mind a set of orderings.
When comparing two alternatives, he randomly samples one of the orderings and ranks the two
alternatives according to that ordering.1

We then turn to the case where the decision maker activates the three comparisons in a pre-
determined order, starting by comparing the alternatives A and B and continues with comparing
B and C and then C and A, but unlike the random sampling procedure, he partially recalls past
observations. In the second comparison the decision maker remembers the value of the observed
sampling from B which he got in the first comparison, and in the last comparison he recalls
the value of C which was used in the second comparison. However, in the third comparison he
samples afresh from A. In other words, this decision maker remembers the outcomes of the last
comparisons, but not what he has seen two stages ago.

This procedure will reduce the bound on the probability of a cycle only slightly to 1/4. But
we then show that the probability of indecisiveness can be reduced significantly if someone else
(for example, an agent who wants the consumer to make a quick choice) can control the order
at which the decision maker compares the alternatives. We show that the upper bound on the
probability of a cycle is reduced to 1/16 (= 0.0625) for the case of binary lotteries (Claim 3)
and to 0.091 for lotteries with at most three outcomes. Moreover, if the external agent’s choice
of order could depend on the realizations in the first comparison, then he can eliminate cycles

1 For a recent discussion of how the random ordering procedure can explain data which exhibits intransitivity, see

Regenwetter, Dana, and Davis-Stober [6].
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altogether for binary lotteries (Claim 4) and he can reduce the bound on the probability of a cycle
for lotteries with three outcomes to 1/32.2

Thus, we show that nondeterministic procedures of choice, applied to three alternatives, yield
transitivity with a fairly high probability. Therefore, the mere fact that choice is “almost” well
behaved and only a small number of cycles is observed does not necessarily prove that decision
makers are using deterministic transitive preferences (while making occasional mistakes). Such
behavior can also emerge when choice is based on some variants of random sampling where
decision makers do not employ preference relations and certainly do not change them to avoid
indecisiveness.

2. Random sampling

The main procedure we discuss in this paper is random sampling: To compare two random
variables the decision maker draws a fresh sample from each and ranks them according to the
sampled values.

Throughout the paper, all triples of random variables have finite and disjoint supports. Denote
by s(A) the support of the lottery A and by Pr(A > B) the probability that the realization of A

is higher than the realization of B . By the disjoint supports assumption, Pr(A > B) + Pr(B >

A) = 1. Let Π(A,B,C) be the probability of a cycle being created by the decision maker’s
procedure. Applied to the random sampling procedure we have:

Π(A,B,C) = Pr(A > B)Pr(B > C)Pr(C > A) + Pr(A > C)Pr(C > B)Pr(B > A)

Claim 1. The maximal probability that the procedure of random sampling yields a cycle is 8
27 .

Proof. Consider the three random variables presented in Table 1.

Table 1
8
27 probability of a cycle.

Value A B C

4 1/3
3 2/3
2 1
1 2/3
0 1/3

In this case, Pr(A > B) = 5
9 , Pr(B > C) = 2

3 , Pr(C > A) = 2
3 and the probability of a cycle

Π(A,B,C) is 20
81 + 4

81 = 8
27 .

In order to prove that this is the upper bound, let x1 > x2 > · · · > xn be the values in the sup-
ports of the three random variables A, B and C. Denote by Xi ∈ {A,B,C} the random variable
that contains xi in its support. Let πi = Pr(Xi = xi) > 0.

First, we assume without loss of generality that for all i, Xi �= Xi+1; otherwise, if Xi =
Xi+1 = A, let A′ be the random variable which differs from A by Pr(A′ = xi) = πi + πi+1 and
Pr(A′ = xi+1) = 0. Then, Π(A′,B,C) = Π(A,B,C).

2 This manipulator is helping the decision maker avoiding cycles, unlike the Dutch bookie (discussed in Yaari [10])

who is using the cycle to pump out the decision maker’s resources.
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Next, assume that for some i, Xi = Xi+2 �= Xi+1 (without loss of generality Xi = A and
Xi+1 = B). Then we can (weakly) increase the probability of a cycle by replacing A with Aε ,
a random variable which differs from A by either moving a probability mass ε > 0 from xi to
xi+2 or from xi+2 to xi . Clearly, Pr(C > Aε) = Pr(C > A) and Pr(Aε > B) is linear in ε. Since

Π(Aε,B,C) = Pr(Aε > B)
[
Pr(B > C)Pr(C > A)

]
+ (

1 − Pr(Aε > B)
)

Pr(A > C)Pr(C > B)

shifting probability mass from xi+2 to xi or the other way around (according to the sign of
Pr(B > C)Pr(C > A)− Pr(A > C)Pr(C > B)) will (weakly) increase the probability of a cycle.

Thus, without loss of generality we can assume that the sequence {Xi} is of the form
. . .A,B,C,A,B,C, . . . ending with Xn−2 = A, Xn−1 = B and Xn = C.

Next we show that if the three random variables (A,B,C) maximize Π and if n > 6, then
there is a triple of random variables that maximizes Π with less than n values in their joint
supports. First note that:

Π(A,B,C) = Pr(C > A)
[
Pr(B > C)Pr(A > B)

− Pr(B > A)Pr(C > B)
] + Pr(B > A)Pr(C > B)

Changing C does not affect Pr(B > A). Consider the set of all C′ with a support that is a subset
of C such that Pr(B > C′) = Pr(B > C). For all such C′, denote by γi the probability that C′
yields the outcome xi . This is the set of all vectors (γi)xi∈s(C) such that γi � 0 for all i and the
following two linear equations hold:∑

xi∈s(C)

γi = 1

∑
xi∈s(C)

γi ×
∑

j<i and xj ∈s(B)

πj = Pr(B > C)

Since n > 6 and Xn = C, there are at least m � 3 points in the support of C. The set C′
is therefore non-empty and is given by the intersection of Rm++ and the above two (m − 1)-
dimensional hyperplanes. The two hyperplanes intersect at C, thus the set is the intersection of
Rm++ and a linear space of dimension m − 2 > 0.

Replacing C with C′ will increase the probability of a cycle if Pr(B > C)Pr(A > B)−Pr(B >

A)Pr(C > B) and Pr(C′ > A) − Pr(C > A) have the same sign. The expression

Pr
(
C′ > A

) =
∑

xi∈s(C)γi×∑
j>i and xj ∈s(A)

πj

is a linear function in (γi)xi∈s(C). Therefore, we can (weakly) increase Pr(C′ > A) by moving in
some direction until we reach the boundary where γi = 0 for some xi in the support of C.

We can therefore narrow down our attention to the sequence of variables (Xi)i=1...6 which is
of the form A,B,C,A,B,C. Denote by α, β , γ the probabilities that the variables A, B and C

obtain the highest prize in their supports. Then,

Π(A,B,C) = (1 − β + αβ)(1 − γ + βγ )(γ − αγ ) + (β − αβ)(γ − βγ )(1 − γ + αγ )

= γ 2(1 − α)(β − 1) + γ (1 − α)
(
αβ − β2 + 1

)
Assuming that both 1 > α and β > 0, the last expression is strictly increasing in γ within the

interval [0,1]. Thus, it attains its maximum at γ = 1. We conclude that in the optimum, one of
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the three variables must be degenerate and without loss of generality the sequence (Xi)i=1...5 =
(B,C,A,B,C). Then,

Π = γ 2(β − 1) + γ
(−β2 + 1

) = γ 2β − γ 2 − γβ2 + γ

This expression has a unique maximum point at β = 1
3 and γ = 2

3 and a maximization value of
Π = 8

27 . �
Comments.

(a) In Claim 1 we obtained the upper bound on the probability that the procedure of random
realizations yields one of the two possible cycles A � C � B � A or A � B � C � A. In
comparison, the highest probability that the procedure yields a particular cycle is 1

4 (see
Tenney and Foster [9]).

(b) The problem we dealt with in this section is related to the so-called “paradox of nontransitive
dice” (see Gardner [2] who credits it to the statistician Bradley Efrom). This “paradox” in-
volves three independent random variables: A, B , and C, where Pr(A > B), Pr(B > C), and
Pr(C > A) all exceed 0.5.3 Savage [7] further proved that maxA,B,C min{Pr(A > B),Pr(B >

C),Pr(C > A)} = (
√

5 − 1)/2.
(c) It follows from Claim 1 and comment (a) above that for every three distributions F , G, and

H with a bounded domain and which do not have an atom in the same point:∫
F dG

∫
GdH

∫
H dF +

∫
F dH

∫
H dG

∫
GdF � 8

27

and ∫
F dG

∫
GdH

∫
H dF � 1

4

(d) When a decision maker applies the ordering sample procedure to a set of size n, the max-
imum probability that his ranking is acyclic goes to zero as the number of alternatives
increases to infinity. To see it consider n random variables which are uniform on the interval
[0,1] (and obviously could be approximated by random variables with finite and disjoint
supports). For any two of these random variables, the probability that the realization of one
is higher than of the other is 1

2 . By Moon and Moser [4], the probability that the realized
tournament is irreducible (i.e., there are no two non-empty disjoint sets such that every node
in one set “beats” every node in the other) goes to 1 as n → ∞. By Moon [3], a tournament
with n nodes has a cycle of length n (and therefore is not acyclic) if and only if it is irre-
ducible. Thus, the probability that the decision maker’s comparisons of n uniform random
variables yields a cycle of size n goes to 1 as n → ∞.

3. The random ordering procedure

In the random ordering procedure (Block and Marschak [1]) the decision maker is character-
ized by π , a probability measure over the six orderings of the three alternatives A, B , and C.
When comparing any pair of alternatives, the decision maker draws an ordering that will deter-
mine his ranking of these alternatives. Thus, he might apply different orderings in ranking two
3 See http://singingbanana.com/dice/article.htm for an entertaining demonstration of this setup.
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different pairs of alternatives. In this section we show that the bounds we obtained in the previous
section are lower than the bounds on the probability of a cycle in the random ordering procedure.

Claim 2. The maximal probability that the random ordering procedure yields a cycle is 1
3 .

Proof. Consider π to be a probability measure on the orderings that assigns equal probabilities to
the three orderings A �1 B �1 C, B �2 C �2 A and C �3 A �3 B . Then, Pr(A � B) = Pr(B �
C) = Pr(C � A) = 2

3 and the probability of a cycle is 8
27 + 1

27 = 1
3 .

To see that 1
3 is indeed the bound, note that by the inequality of arithmetic and geometric

means:

Π(A,B,C) = Pr(A � B)Pr(B � C)Pr(C � A) + Pr(A � C)Pr(C � B)Pr(B � A)

�
[
Pr(A � B) + Pr(B � C) + Pr(C � A)

]3
/27

+ [
Pr(A � C) + Pr(C � B) + Pr(B � A)

]3
/27

Since every ordering must satisfy at least one and at most two of A � B , B � C and C � A,
we obtain: 1 � [Pr(A � B) + Pr(B � C) + Pr(C � A)] � 2. The function x3 + (3 − x)3 is
convex in the interval [1,2] and obtains its maximum at x = 1 and x = 2. Thus Π(A,B,C) �
1

27 + 8
27 = 1

3 . �
Comments.

(a) Note that the above example is the only one in which the probability of a cycle is 8
27 . To see

this, count the six orderings: A �1 B �1 C, B �2 C �2 A, C �3 A �3 B , A �4 C �4 B , and
B �5 A �5 C, C �6 B �6 A. Denote by πi the probability of �i . Then, Pr(A � B)Pr(B �
C)Pr(C � A) = (π1 + π3 + π4)(π1 + π2 + π5)(π2 + π3 + π6). The maximum is attained
only when π4 = π5 = π6 = 0 and π1 = π2 = π3 = 1

3 .
(b) Similarly to comment (a) to Claim 1, the maximal probability that the procedure of ran-

dom ordering yields a particular cycle is 8
27 . The example in the above proof attains the

bound. To prove that the bound is 8
27 , note that Pr(A � B)Pr(B � C)Pr(C � A) � [Pr(A �

B) + Pr(B � C) + Pr(C � A)]3/27 and that the function x3 in the interval [1,2] attains the
maximum at 2.

4. The random sampling procedure with partial recall

In the procedure discussed in Section 2 each comparison is done independently of the other
two comparisons. A decision maker who compares first A and B and moves to compare B and C

does not recall the previous value of B . Thus the existence of a cycle did not depend on the order
by which the comparisons were done. In contrast, in this section we assume that the decision
maker carries out the comparisons sequentially in three stages and at each stage he remembers
the realizations of the previous stage, but not those of two stages earlier. In other words, he
applies the procedure of random sampling with partial recall. It is applied to the sequence of
three lotteries (A,B,C) in the following way:

(i) Compare A and B by sampling each once.
(ii) Compare B and C by sampling C once and compare the outcome with that of the previous-
stage sampling of B .
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(iii) Compare C and A by sampling A again and compare the outcome with that of the previous-
stage sampling of C.

The probability that the procedure yields a cycle is

Π(A,B,C) = Pr(A1 > B > C > A2) + Pr(A2 > C > B > A1)

where A1 and A2 are copies of A, i.e., they are i.i.d. and distributed like A. Note that Π(A,B,C)

might differ from Π(B,A,C) but that Π(A,B,C) = Π(A,C,B). For example, let A be the ran-
dom variable that receives the values of 3 or 0 with equal probabilities. Let B ≡ 2 and let C ≡ 1.
Then Π(A,B,C) = 1

4 . In fact, the maximal probability that the random sampling procedure with
partial recall yields a cycle is 1

4 . To see why, denote by Πb the probability of a cycle given that
the value of B is b:

Πb = Pr(A1 > b > C > A2) + Pr(A2 > C > b > A1)

� Pr(A1 > b > C)Pr(b > A2) + Pr(A2 > b)Pr(C > b > A1)

= Pr(A > b)Pr(b > C)Pr(b > A) + Pr(A > b)Pr(C > b)Pr(b > A)

= Pr(b > A)Pr(A > b)
[
Pr(b > C) + Pr(C > b)

]
� 1

4

Since Πb � 1
4 for every possible realization of B , Π(A,B,C) � 1

4 as well.
Imagine now that the order in which the alternatives are presented to the decision maker is

determined by a “master of ceremonies” (MC) who wants the decision maker having a clear
ordering of the alternatives. Let V (A,B,C) = min{Π(A,B,C),Π(B,C,A),Π(C,A,B)} be
the probability of a cycle given that the MC chooses the order of the comparisons of the three
variables A, B and C in order to minimize the probability of the cycle. In the example used
above Π(A,B,C) = 1

4 but Π(B,C,A) = 0 and thus V (A,B,C) = 0. On the other hand, if A,
B , C are uniformly distributed over [0,1] then V (A,B,C) = Π(A,B,C) = 1

12 (each ordering of
four identical random variables has the same probability of 1

24 and therefore Pr(A1 > B > C >

A2) + Pr(A2 > C > B > A1) = 1
12 ). We succeeded to find the bound on V for only a limited

family of random variables.

Claim 3. The maximal V (A,B,C) for three binary random variables is 1
16 .

Proof. First note that for the following three variables V (A,B,C) = 1
16 (Table 2).

Table 2
Max V (A,B,C) with 2 outcomes at most.

Value A B C

5 1/2
4 1/2
3 1/2
2 1/2
1 1/2
0 1/2

If the three variables are such that between the two values of one of the lotteries, say A, there

are no values of another lottery, say C, then Π(A,B,C) = 0. Thus, we need to consider only
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the case in which the values of the three lotteries can be ordered as A,B,C,A,B,C. Denote by
α, β , γ the probabilities of the highest value of each of the three lotteries A, B , C respectively.
Then, Π(A,B,C) = αβγ (1 − α), Π(B,A,C) = βγ (1 − α)(1 − β) and Π(C,A,B) = γ (1 −
α)(1 − β)(1 − γ ).

Note that by the continuity of Π , at a maximum point of V (A,B,C) it must be that two of the
terms Π(A,B,C), Π(B,C,A), and Π(C,A,B) are equal and are weakly less than the third.
If Π(B,A,C) is minimal then Π(B,C,A) = βγ (1 − α)(1 − β) = min{αβγ (1 − α), γ (1 −
α)(1 − β)(1 − γ )}. It follows that 1 − β � α and β � 1 − γ and thus, Π(B,C,A) � β(1 −
β)(1 −α)α � 1

16 . If Π(B,C,A) is not minimal then at the maximum point of V , βγ (1 −α)(1 −
β) > αβγ (1 − α) = γ (1 − α)(1 − β)(1 − γ ), hence 1 − α > β and β > 1 − γ . The maximum
with respect to β of the function αβγ (1 − α) (which is linear in β) given the linear constraints
αβ = (1 − β)(1 − γ ) and (1 − α) � β � (1 − γ ) must be obtained where either β = 1 − α

or β = 1 − γ . In the former case αβγ (1 − α) = (1 − β)(1 − γ )γβ � 1
16 while in the latter

αβγ (1 − α) = α(1 − γ )γ (1 − α) � 1
16 . �

When the support of each of the random variables has at most three points, numerical meth-
ods prove that the maximum of V (A,B,C) is roughly 0.0910 and is attained near the triple of
random variables (Table 3):

Table 3
Max V (A,B,C) with 3 outcomes at most.

Value A B C

6 0.19
5 0.37
4 0.63
3 0.63
2 0.62
1 0.37
0 0.19

We do not know what are the upper bounds for the cases of at most n outcomes in each lottery
for n > 3. It is worthwhile mentioning, though, that almost all experiments in the literature utilize
lotteries with no more than three different outcomes each as lotteries with more prizes are often
difficult to absorb. (For a survey of this literature see Starmer [8].)

The probability of a cycle can be reduced even further if the MC can choose the first couple
of alternatives and only after he observes their realizations he determines which of the two al-
ternatives will be compared with the third one at the second stage. Using numerical methods we
conclude that for any triple of lotteries with no more than three outcomes the MC can present the
comparisons such that the probability of a cycle is not greater than 1

32 . Moreover, if each lottery
has at most two outcomes cycles can be eliminated:

Claim 4. Let A, B , and C be three binary random variables. If the decision maker follows the
random sampling procedure with partial recall then the MC who observes the realizations can
arrange the order of comparisons so that no cycles emerge.

Proof. Suppose that between the outcomes of one lottery, say A, there are no outcomes of an-

other lottery, say B . Then the MC will ask the decision maker to compare A and B and then B
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and C. Assume B � A. If B � C then there is no cycle. If C � B then the fresh realization of C

is higher than both values of A and at the third stage C � A. The case that A � B is similar.
Suppose that the outcomes are ordered a1 > b1 > c1 > a2 > b2 > c2. The MC’s instructions

could be the following: Start by comparing A and B . Then:

1. If the realization of A is a1 continue with comparing A and C. Whatever is the realization
of C, A � C and hence no cycle.

2. If the realizations are a2 and b1 (B � A) then continue by comparing B and C. Whatever is
the realization of C, B � C, hence no cycle.

3. If the realizations are a2 and b2 then A � B . Proceed to compare B and C. If the realization
is c1 then C � B , hence no cycle. If the realization is c2 then B � C and when A and C are
compared (using c2) then A � C and there is no cycle. �
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