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ABSTRACT: The paper provides an introduction to the growing literature in

Economics on models of Bounded Rationality, in which reasoning proce-

dures are the cornerstones of the model. Four models are presented, each

of which demonstrates a different type of Bounded Rationality:

(i) Limited ability to solve a set of propositions: A mechanism design

problem is investigated in an environment where agents try to cheat effec-

tively using a procedure which is anchored in the truth.

(ii) Reducing the complexity of strategies: Each player in a Repeated Pris-

oner’s Dilemma desires not only to increase his payoff but also to reduce the

complexity of his strategy.

(iii) Belief formation on the basis of a small sample: A model of manipu-

lative voting is presented in which a voter forms beliefs about his vote being

pivotal based on a small sample of observations of other voters’ intentions.

(iv) Diversified views of the world: A seller exploits differences in buy-

ers’ abilities to recognize time series patterns in order to increase his profits

beyond what they would be with a fixed price.
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1. Introduction

The terms Bounded Rationality and Economic Theory mean different things to different

people. For me (see Rubinstein (2012)), Economic Theory is a collection of stories, usu-

ally expressed in formal language, about human interactions that involve joint and con-

flicting interests. Economic Theory is not meant to provide predictions of the future. At

most, it can clarify concepts and provide non-exclusive explanations of economic phe-

nomena. In many respects, a model in Economic Theory is no different than a story.

Both a story and a model are linked to reality in an associative manner. Both the story

teller and the economic theorist have in mind a real-life situation but do not consider

the story or the model to be a full description of reality. Both leave it to the reader to

draw their own conclusions, if any.

Models of Bounded Rationality are for me (see Rubinstein (1998)) models that in-

clude explicit references to procedural aspects of decision making, which are crucial for

the derivation of the analytical results. A common critique of bounded rationality mod-

els is that they are more specific, less general and more arbitrary than models in the

mainstream areas of Economic Theory, such as general equilibrium or game theory in

which full rationality is assumed. In response, I would claim that every model makes

very (very) special assumptions. Without strong assumptions, there would be no con-

clusions. It is true that rationality is a special assumption since it is viewed by many

as being normative whereas models of bounded rationality are viewed as dealing with

deviations from normative behavior. Returning to the analogy of a story: What story is

more interesting - one about normative people who behave "according to the book" or

one about people who deviate from normative behavior?

Not every model that is inconsistent with some aspect of rationality is a model of

bounded rationality. A model in which rational agents ignore some aspect of rationality

is a bad model rather than a model of bounded rationality. A good model of bounded

rationality should include a procedure of reasoning that "makes sense" and is somewhat

related to what we observe in real life.

I am not a big fan of abstract methodological discussions. I prefer to demonstrate

an approach by discussing examples. Accordingly, the article discusses four models, in

which economic agents are assumed to reason in systematic ways using a well-defined
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procedure that is outside the standard scope of rational behavior. My choice of models

is totally subjective. I am partial to these models because I was involved in constructing

and analysing them over the last 35 years. Rubinstein (1998) surveyed the field at the

time, while Spiegler (2011) surveys more recent models in which aspects of bounded

rationality have been inserted into classic models of Industrial Economics.

2. Bounded Rationality and Mechanism Design

Story: The director of a prestigious MBA program has been persuaded by Choi, Kariv,

Müller, and Silverman (2014) that transitivity is strongly correlated with success in life

(as measured by wealth). Thus, he decides to accept only those candidates who hold

transitive preferences.

Accordingly, the director designs a simple test. He presents three alternatives a ,b

and c to each candidate and asks them to respond to a questionnaire consisting of three

questions Q(a ,b ), Q(b , c ) and Q(a , c )where Q(x , y ) is the quiz question:

Do you prefer x to y or y to x ?

© I prefer x to y .

© I prefer y to x .

For each of the three questions a candidate must respond by clicking on one and

only one of the two possible answers. Thus, the questionnaire has eight possible sets of

responses.

The director is obligated by law to inform candidates about the conditions that will

gain them admission to the program. The director has specified the following two con-

ditions:

R1: If you prefer a to b and b to c then you must prefer a to c .

R2: If you prefer c to b and b to a then you must prefer c to a .

The candidates are reminded that an "if" proposition is violated only if its antecedent

(the "if" part) is satisfied and its consequent (the "then" part) is not.

The director was hoping that the candidates would feel obliged to report the truth

and thus the simple questionnaire should separate perfectly between "good" candidates
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who hold transitive preferences and "bad" candidates who do not. In order to encour-

age instinctive responses, the director also sets a short time limit for completing the

questionnaire.

A disappointment: the director learns that all the candidates have been admitted

and concludes that the candidates with cyclical preferences had gamed the system. The

frustrated director opens an investigation. Researchers are rushed to the scene. They

interview candidates to reveal how they answered the questionnaire so "successfully".

Apparently, candidates treated the questionnaire as a puzzle to be solved in order to be

admitted to the program. The time limit made solving the "puzzle" a challenging task.

The following procedure was identified:

Step 1: Examine whether your honest set of answers satisfies all the conditions.

If it does, then happily submit those answers. If not, go to step 2.

Step 2: Find a condition that is violated by your honest answers (that is, your true

answers satisfy the antecedent but not the consequent of the condition). Try modifying

your answers with respect only to the consequent. If the modified set of answers satisfies

all conditions, then submit them. If not, iterate step 2 (starting with your honest set of

answers) until it is exhausted. Then, proceed to Step 3.

Step 3: Give up. Submit the honest answers (and be rejected).

Faced with the questionnaire and the admission conditions, a "good" candidate (who

has transitive preferences) reports the truth and is admitted. What about a "bad" can-

didate with cyclical preferences a � b � c � a (or c � b � a � c )? An honest response

satisfies R2 (the antecedent is false) but violates R1. The candidate remains with the true

answers to Q(a ,b ) and Q(b , c ) and modifies his answer to Q(a , c ). Thus, he responds as

if he holds the preferences a � b � c and is admitted. In this way, all the candidates are

admitted.

Realizing that people are prepared to cheat (when they have to) by using the proce-

dure to find a persuasive set of responses, the director tries to come up with a modified

set of admission conditions so that all the good candidates will pass the test while the

bad candidates will not. He adds two new admission conditions, so that the new set of

admission conditions is as follows:
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R1: If you prefer a to b and b to c , then you must prefer a to c .

R2: If you prefer c to b and b to a , then you must prefer c to a .

R3: If you prefer a to b and a to c , then you must prefer c to b .

R4: If you prefer c to a and c to b , then you must prefer a to b .

This set of conditions seems a bit odd. How would the candidates respond to it?

First consider a "good" candidate who holds the transitive relation b � a � c (or one

of the following three other preferences : b � c � a , a � c � b or c � a � b ). None of

the antecedents of the four conditions are satisfied and responding truthfully leads to

acceptance, as desired by both the candidates and the manager.

What about a "good" candidate who holds the preferences a � b � c (or c � b � a )?

If he responds truthfully then he violates R3 and is rejected. However, he is induced by

the violation of R3 to modify his answer to Q(b , c ) ; this leads him to respond as if he

holds the preferences a � c �b and thus he cheats successfully.

On the other hand, a "bad" candidate with cyclical preferences a � b � c � a , (or

their counterpart) violates only R1 and is led to try only the set of answers corresponding

to the preferences a � b � c which do not satisfy the set of conditions. Thus, such a

candidate fails the test, as desired by the program director.

A happy ending, at least for the program director. Interestingly, he does not mind

that some candidates cheat. The questionnaire "works" in the sense that it separates

between the good and bad candidates. Actually, the director also finds that there is no

alternative set of conditions which will separate between the two types of candidates

without some good candidates having to cheat. He concludes that "white lies" are some-

times necessary.

Discussion: This section is based on Glazer and Rubinstein (2012). The model comes

under the rubric of Bounded Rationality since it explicitly specifies a process of reason-

ing used by the individuals. The paper characterizes the circumstances under which

the designer of the mechanism is able to implement his target given that the individuals

use the discussed procedure. Conditions under which implementation does not require

that some "good" candidates need to cheat are established as well.

Noone claims that most people use this exact procedure. Nonetheless, Glazer and

Rubinstein (2012) provide experimental evidence that the two central ingredients of the
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procedure are present in many people’s minds: (i) The truth is the anchor for cheat-

ing. When one invents a false set of answers, he starts from the truth and modifies it

to look better. (ii) Given that an "if" sentence is violated, an individual who wishes to

cheat successfully will modify his true set of answers by reversing his answer to fit in the

consequent of the condition. Note that without (i) separation between the candidates

would be impossible.

In the current story, the bounded rationality of the candidates is an advantage for

the designer. If all candidates were fully rational, as is commonly assumed in the mech-

anism design literature, all of them would be able to game the system if necessary. It is

the cognitive imperfection of the individuals which opens a door to obtaining a desirable

outcome.

Bibliographic comments:

(i) Glazer and Rubinstein (2014) study a related model in which a candidate responds

to a questionnaire without being notified of the acceptance conditions though he has

access to the data about the set of responses that achieve admission and tries to make

sense of things. There is a bound on the complexity of the regularities that the candi-

dates can detect in the data. It is shown that whatever this bound is, the director can

construct a sufficiently complex questionnaire such that agents who respond honestly

to the questionnaire will be treated optimally and the probability that a dishonest agent

will cheat successfully is "very small".

(ii) de Clippel (2014) investigates Maskin’s classical implementation question in en-

vironments in which individuals follow systematic procedures of choice that are not

consistent with rational behavior.

(iii) Li (2017) is motivated by an observation that bidders in an ascending bid auction

tend to wait until the bid reaches their reservation value whereas a majority of bidders

don’t report the true value in the "equivalent" second-bid auction. An obviously domi-

nant strategy is one in which the decision at each decision node is "obvious" in the sense

that it does not depend on conjecture about the other players’ actions. Li identifies sev-

eral targets that are implementable using an extensive game in which the desirable out-

come is obtained through obviously dominant strategies. Glazer and Rubinstein (1996)

is an earlier paper that suggests a different criterion for simple implementation.

6



3. Elections and Sampling Equilibrium

Story: Three candidates are running for office. A large number of voters will participate

in the elections and each will cast one vote in favor of one of the candidates. The issues

on the agenda are "hot" and all of the voters are expected to cast their ballots. The win-

ner will be the candidate with the largest number of votes (even if he does not achieve

an absolute majority).

The candidates are labeled as Left, Center and Right. The population of voters is split

into three classes Leftist, Centrist and Rightist with the proportions λ, μ and ρ:

Leftist: Individuals with the preferences L �C � R .

Centrist: Individuals with the preferences C � L ∼ R .

Rightist: Individuals with the preferences R �C � L.

It is known that the Leftist and Rightist groups are more or less of equal size and that

the Centrist group is smaller but not negligible (11/3 < λ = ρ < 3/7). Some observers

predict that C will win since some of the leftists and rightists will vote for C in order to

prevent the election of the candidate on the other extreme. Some view such a result as

a desirable compromise. Others find it unacceptable that the least popular candidate

might win the election.

Voters by nature tend to vote sincerely, but they will nonetheless vote for another

candidate if they think that their candidate will certainly lose and the race between the

other two candidates is close. In such an event, they vote for their second choice.

Surveys are forbidden and voters base their prediction of the election results on

occasional discussions with casual acquaintances who express their voting intentions

(without specifying their first choice). As is often the case, people say that they "talked

with several people" but actually mean that they talked with just two. Thus, based on

a sample of size two, people decide who to vote for. Therefore, they may change their

mind during the campaign according to the sample results.

Some game theorists and political scientists analyse complicated models in which

voters think strategically, in the sense that they put themselves in the shoes of other

voters, calculate correctly the distribution over states conditional on the infinitesimal

probability event that their personal vote will be pivotal and vote optimally given that
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event. No traces of such behavior can be found in our story (nor in real life). No standard

game-theoretical considerations are used. At each moment in the campaign, each voter

constructs his prediction and decides who to vote for based on the small sample he has

drawn.

Accordingly, if a voter samples two people who intend to vote for the same candidate

the voter treats the election as already decided, concludes that his vote will not make

any difference and votes sincerely. If the two sampled individuals intend to vote for two

different candidates, he views himself as pivotal and votes for the candidate he prefers

out of these two (who is not necessarily his favorite). Thus, a C supporter intends to vote

sincerely regardless of the sample findings. An L supporter will vote sincerely unless he

draws a sample of "C and R" and then votes for C . An R supporter will vote for C if his

sample is "C and L" and sincerely otherwise.

Thus, although voters are stubborn in their political views and never change their

basic position, they may change their intention during the campaign on the basis of the

sample. The proportions of voters voting for each candidate will fluctuate until eventu-

ally stabilizing around a distribution of votes which we call equilibrium.

Given that all C followers vote C , L supporters will never vote R and R supporters

will never vote L, a distribution of votes is characterized by two numbers: a , the propor-

tion of the L camp that votes C , and b , the proportion of the R camp that votes C . In

equilibrium, those proportions are stable. Notice that even when equilibrium is reached

members of the L and R camps may still change their intentions; however, in equilib-

rium, the changes are "balanced" and the distribution of votes remains constant.

Election day arrives. The ballots are closed. Will C win? Let’s examine the equilib-

rium. Recall that the distribution of the L,C ,R groups is (λ,1−2λ,λ). If at some point in

time the proportions of manipulative voters are a and b , then the proportions of voters’

intentions (following the above procedure) is (λ(1−a ),λa +(1−2λ)+λb ,ρ(1−b )). The

proportion of L supporters who will sample "C and R" is 2[λa +(1−2λ)+λb ][λ(1−b )].

The distribution is stable if this proportion is equal to a (and analogously for R). Thus,

equilibrium is characterized by two equations:

a = 2[λa +(1−2λ)+λ b ][λ(1−b )] and b = 2[λa +(1−2λ)+ρb ][λ(1−a ))].

This set of two equations has a unique solution which can easily be calculated and ac-

cordingly the minority candidate C will win! Incidentally, when the size of C ’s base drops
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below 1/7, candidate C would lose, at least according to the story we have told.

Discussion: This section is based on Osborne and Rubinstein (2003). The bounded

rationality component of the model is the procedure used by each voter to estimate the

results. The paper analyses some variants of the model. An example of a result: R will

not be elected whenever his base is smaller than that of L, regardless of C’s base.

As mentioned before, the procedure of choice assumed here is in sharp contrast to

what is assumed in standard game-theoretical voting models, in which a voter is as-

sumed to fully calculate the conditions under which his vote will be pivotal given the

correct expectations about the votes of all other voters.

Bibliographic comments:

(i) The model was inspired by Osborne and Rubinstein (1998) who proposed the con-

cept of S-1 equilibrium and applied it to symmetric two-player games. A population of

players is pair-wise randomly matched to play a game. A newcomer to the population

samples each of the potential actions once by interviewing one person whose experi-

ence depends on the behavior of the randomky matched player he played against. Then,

the newcomer chooses the action which, according to the sample, yields the best out-

come. An equilibrium is a stable distribution of choices in a population, in the sense

that the probability that a player chooses a particular strategy is equal to the frequency

of the strategy in the distribution. This equilibrium concept differs fundamentally from

the standard game-theoretical analysis and has special properties. For example, a dom-

inated strategy (which is never the best response against any belief about the other

player’s behavior) might appear with positive probability in the support of the equilib-

rium when the symmetric game has at least three strategies.

(ii) Rani Spiegler constructed several economic models in which individuals follow

an S-1 type of procedure (see Spiegler (2011) (chapters 6 and 7)). Spiegler (2006a) presents

and analyses a model of a market for quacks. The market consists of several healers

whose success rates are identical to that of "non-treatment". The healers compete on

price. Patients rely on "anecdotal" evidence regarding the healers’ success and also

sample the free non-treatment. Spiegler (2006b) presents a model of competition be-

tween providers of a service in which each chooses a distribution of "price" in the range

(−∞,1) . Consumers sample each of the providers and choose the one with the lowest
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price (which might be negative). The uniqueness of the symmetric Nash equilibrium

with expected price of 1/2 is proven. Increasing the number of competitors leads to a

mean-preserving spread in the equilibrium price distribution.

4. Long Interactions and Finite Automata

Story: Two players are involved in a repeated Prisoner’s Dilemma interaction. Each of

the players chooses one of two modes of behavior each day: C (cooperative) or D (non-

cooperative). A player’s daily payoff if he chooses the action corresponding to a row

while his partner chooses the action associated with a column is given by the corre-

sponding entry in the following matrix:

C D

C 3 1

D 4 0

Each period ends with one of four outcomes (C ,C ), (C , D), (D,C ) or, (D, D) and the four

pairs of payoffs that can be obtained each day are (3,3), (1,4), (4,1) or, (1,1). The

infinitely long interaction yields an infinite sequence of outcomes and two streams of

payoffs, one for each player. A player cares only about his long-term average payoff.

In the long-term interaction (i.e. a repeated game), each player chooses a strategy,

i.e. a plan that specifies whether to play C or D after every possible sequence of his op-

ponent’s actions. A strategy can be complex since it specifies an action for an infinite

number of contingencies. A player’s "language" in formulating a strategy is a finite au-

tomaton (machine). This is not an actual machine used to play the strategy but rather

an abstract description of the mental process used by players to determine an action at

each point in time after any history he might encounter.

A finite automaton consists of :

(i) a finite set of states (of mind);

(ii) an initial state from which the machine starts operating;

(iii) an output function that indicates, for each state, one action (C or D) which the

player will play whenever his machine reaches that state.
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(iv) a transition function which determines the next state of the machine for each

state and each possible observation (C or D) of the action taken by the other player.

The two machines are operated in the expected way: The two initial states and the

two output functions determine the first-period pair of actions. Each player observes

the other player’s action and his transition function determines the next state of his ma-

chine. The process continues recursively as if each pair of states is the initial one.

Any weighted average of the four one-shot payoff pairs that equal at least 1 (a payoff

each player can guarantee by playing D) is a long-term average payoff vector of some

stable pair of strategies (stable in the Nash equilibrium sense). In other words, no player

can increase his average payoff by using a different strategy. To obtain such a pair of av-

erage payoffs (π1,π2), players can play in a cycle of length n D,D+n D,C+nC ,D+nC ,C so that

the outcome (i , j )will appear n i ,j times in the cycle such that n 1,1(1,1)+n 4,0(4,0)+n 0,4(0,4)+n 3,3(3,3)

n 1,1+n 4,0+n 0,4+n 3,3
=

(π1,π2). Players will support this path of play by threatening that any deviation will trig-

ger moving to the non-cooperative behavior forever.

However, in our story and unlike the standard repeated game model, a player cares

not only about his stream of payoffs but also about the complexity of the machine he

employs, which is measured by the number of states in the machine (without taking

into account the complexity of the transition function). Players view the complexity as

a secondary consideration after the desire to increase the average payoff. Thus, a pair of

machines will not be stable if one of the players can replace his machine with another

that either yields a higher average payoff or the same payoff but less complexity. In other

words, each player has lexicographic preferences with the first priority being to increase

average payoff and the second to reduce complexity.

Initially, the two players use a naive strategy - the one-state machine MC (see Figure

1) which plays C independently of what is observed. This situation is not stable. One

of the players modifies his machine to M D , which plays D independently of what it ob-

serves. Such a deviation improves his payoff each period without increasing complexity.
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The two players then adopt the machine M g r i m . This machine has two states : friendly

and punishment. The initial state is friendly. The output function assigns C to friendly

and D to punishment. In the case that D is observed when the machine is at friendly

it moves to punishment, which is a terminal state. A player who plays against M g r i m

cannot increase his long-term average payoff whatever machine he chooses. However,

eventually one of the players notices that he can reduce the complexity of his machine

without losing payoff by dropping the state punishment which does not lead to any loss

in terms of payoff.

The situation has some happier endings. Following are two examples:

Give and Take : Player 1 chooses the two-state machine M 1 (see Figure 2) with ini-

tial state Take, in which he plays D and moves to the second state Give after the other

player plays C . If M 1 reaches Give it plays C and moves to Take independently of what it

observes. Note that "giving" means playing C and tolerating the other player playing D .

"Taking" means playing D and expecting the other player to play C . Player 2 adopts the

machine M 2 which is identical to M 1 except that its initial state is Take.

Adopting this pair of machines results in stability. Players expect to alternate be-

tween giving and taking. A player’s threat against the other player "not giving" is to avoid

moving to Give, a state in which he is supposed to give until the other player gives. As

long as player 1 follows M 1 and player 2 follows M 2, the players will alternate turns be-

tween giving and taking and each player obtains an average payoff of 2.5. No player can
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save on states without losing on payoff and no player can increase his average payoff no

matter what he does.

The cooperative equilibrium: Each player uses the machine M ∗ (see Figure 3) which

has two states: Showoff and Cooperative. In Showoff, a player plays D and moves to

Cooperative only if the other player plays D . In Cooperative, the machine plays C and

moves to Showoff only if the other player played D . The machine’s initial state is Showoff.

Thus, players start by proving their ability to punish one another and then and only then

move to the cooperative mode.

Each player obtains an average payoff of 3. A player cannot increase his payoff what-

ever he does. Reducing the number of states would cause a payoff loss (the one-state

machines M D and MC achieve an average of only 1 or 0 against M ∗).

Discussion: This section is based on Rubinstein (1986) and Abreu and Rubinstein

(1988). The bounded rationality component of the model is the complexity of the strat-

egy and the desire of players to minimize it as long as the repeated game payoff is not

reduced.

The two equilibria described above demonstrate the logic of two different types of

social arrangements. In the first, players alternate between giving and taking; the threat

not to give tomorrow deters the other player from not giving today. The second arrange-

ment achieves ideal cooperation but on the way players must demonstrate their ability

to punish if necessary.

Abreu and Rubinstein (1988) characterize the Nash equilibria of the infinitely re-

peated game with finite automata for (i) general one-shot two-player games; (ii) dis-

counting evaluation criterion; and (iii) any preferences that are increasing in the payoffs

and decreasing in complexity. The payoff vectors that can be obtained are those on the

13



"cross" in figure 4:

A few structural results were proven, such as that the two machines must have the same

number of states in equilibrium and that there is a one-to-one correspondence between

the occurrence of states in the two machines (namely, in equilibrium a machine "knows"

the state of the other player’s machine). An improved presentation of the results, follow-

ing Piccione (1992), appears in Rubinstein (1998, chapter 8).

In a previous paper, Rubinstein (1986) showed that the only equilibria of the ma-

chine game with the additional constraint that all states are revisited infinitely often

(otherwise they would eventually be dropped) yield either the non-cooperative outcome

or cyclical combinations of (C , D) and (D,C ) only. Cooperation cannot be obtained in

such an equilibrium.

Bibliographic comments:

(i) Neyman (1985) and Ben Porath (1993) investigate a repeated game with finite au-

tomata in which the number of states a player can use in his machine is exogenously

bounded. Neyman (1985) shows that in the finite-horizon Prisoner’s Dilemma, coop-

eration can be achieved in equilibrium by applying the idea that the machines waste

their limited resources by following an initial string of actions ("a password to heaven")

that prevents them from identifying the point in time - towards the end of the game -

at which it is profitable for them to deviate to the non-cooperative mode of behavior

without being punished in the future. Ben Porath (1993) shows that in an infinitely re-

peated zero-sum game, if players use the "limit of the means" criterion and are limited

in the size of the automaton they can use, then as long as the number of states of one

machine is not much larger (in a well-defined sense explained there), the equilibrium

payoff vector will be close to the equilibrium payoff of the basic game.
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(ii) Examples of other models of repeated games with bounds on the strategies: Lehrer

(1988) studies the model of repeated games with bounded recall and Megiddo and Wigder-

son (1986) and Chen, Tang and Wang (2017) study the model of repeated games in which

players use Turing machines instead of finite automata.

(iii) Eliaz (2003) and Spiegler (2004) study models of repeated games and bargain-

ing where the simplicity considerations were applied to the player’s belief regarding the

opponent’s strategy, rather than his own.

5. Agents with different models in mind

Story: Each of two agents, 1 and 2, wish to purchase a particular service each day. The

service is provided by P (a provider) but can also be obtained from a local source at a

price of 6 by agent 1 and at the price of 4 by agent 2.

All involved parties interact daily for a "very long period of time". Every morning,

without knowing the price charged by P , each agent decides whether to purchase the

service from the local source or to go to P . A cost of 3 is associated with each daily trip

to P .

While the agents are making their daily decisions, P posts a price at which he com-

mits to sell the service to whoever asks for it. The provider P can supply the service at no

cost to one or both agents. An agent who comes to P is informed of the price offer and

decides whether to buy the service from P or return to the local price. At the end of the

period, the price becomes common knowledge to all individuals.

The provider cares only about his average long-run profits. He commits to a se-

quence of prices. An agent behaves myopically in every period. He makes the trip to

P only if his expected costs (given his beliefs) do not exceed the local charge. He bases

his belief on the regularities he detects in this sequence. The ability to detect a regu-

larity is given by a non-negative integer k (referred to as the order) which expresses a

player’s "cognitive depth": an agent of order k detects all regularities of the type "after

a particular string of k prices the price will be..." but cannot detect more complicated

regularities. Thus, an agent of order 0, for example, only learns the frequency at which

different prices appear in the price sequence. An agent of order 1 learns the frequency

of each price given the last price. If the real sequence is (0, 0,1,1,0, 0,1,1....) an agent of
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order 0 or 1 will always believe that the next element in the sequence is 0 or 1 with equal

probability. An agent of order 2 (or higher) will accurately predict the next element in

the sequence since the last two periods fully "encode" the next element.

Our two agents differ in their ability to recognize patterns. While agent 1 can detect

a pattern that determines the next price based on the last three periods (k1 = 3), agent

2 is more sophisticated (which aligns with the assumption that his outside option is

better than agent 1’s) and can detect patterns on the basis of the last 4 periods (k2 = 4).

Nothing essential would change in the story if we replace these bounds with any other

non-negative integers k1 and k2, as long as k1 < k2.

The provider understands that if he always charges a price higher than 3 then he will

not attract any customers; if he constantly charges a price between 1 and 3, then only

agent 1 will make the trip; and if he always charges a price of 1 or below, then both agents

will buy his service but his profits will be at most 2. Thus, by charging any constant price

P his daily profits cannot exceed 3.

Furthermore, the provider realizes that if both agents have the same cognitive limit,

then using random price sequences will not help him since both agents will eventually

compare their local price to the expected price plus 3 and he would not make more than

what he would have with a constant price.

Finally, it comes to the provider’s attention that he can obtain higher profits if he

wisely exploits the differences in the agents’ cognitive ability and the correlation be-

tween an agent’s order and the agent’s outside option, namely that the more sophisti-

cated agent has a better outside option.

He learns about the existence of "DeBruijn sequences of order k " (for every k ). To

understand this concept, consider the following infinite sequence of prices which has a

cycle of length 16 and is an example of a a DeBruijn sequence of order 4. :

(5,5,5,5,1,5,5,1,1,5,1,5,1,1,1,1, ....).

An agent with k = 16 would, of course, be able to detect a rule that creates this se-

quence and to correctly predict the next period’s price. In fact any agent with k ≥ 4

would also be able to. The sequence is built so that all 16 combinations of 4 prices (1

and 5) appear in the cycle exactly once and thus the last four prices predicts the next el-

ement in the sequence. On the other hand, the last three values in the sequence predict

that it is equally likely that the next price will be 1 or 5. Thus, an agent with k = 4 would
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be able to predict that a low price follows four high prices, that after a sequence of three

high prices and one low price always comes a high price, etc. An agent with k = 3 will

always maintain the belief that the next price will be either 1 or 5.

Thus, Agent 2 will know when the low price will be posted and will approach the

provider only on mornings when he expects the price to be 1. Agent 1 is not able to find

any useful regularity. After the appearance of any 3 numbers, he will believe that there

is an equal chance of observing a high or a low price. His expected price is 3, so he every

morning he approaches the provider and buys the service.

Thus, the provider has found a non-constant sequence, which is complicated enough

that agent 1 is left confused and regular enough so that agent 2 is able to predict fairly

well. The provider’s expected profit is 7/2 per period, which is more than he could obtain

using any constant price sequence.

Discussion: This section is based on Piccione and Rubinstein (2003). The bounded

rationality element in this model is the limited ability of agents to recognize patterns.

Once there is a correlation between this ability and other economic factors, sophisti-

cated manipulators can try to use the correlation as a way to sort out agents to their

benefit. Conditions for this manipulation are analysed in the paper.

From an economic perspective, this line of research is related to Spence (1973). How-

ever, whereas in Spence (1973) the correlation is between two materialistic factors (pro-

ductivity and ease of performing a worthless task), here the separation between agents is

based on the correlation between a materialistic factor (the willingness to pay) and cog-

nitive ability (to recognize patterns in a time series). Note that the separation can also

emerge in market equilibrium without the explicit interference of an interested party.

Bibiliographic comments:

(i) Rubinstein (1993) is an earlier paper demonstrating the ability of a monopolist to

use the correlation between cognitive differences and willingness to pay in order to in-

crease his profits. The modeling of agents’ limits in understanding a multi-part price

offer makes use of the formal concept of a perceptron.

(ii) Eyster and Piccione (2013) is a model of competitive markets, in which risk-

neutral traders trade a one-period bond against an infinitely lived asset in each period.

Traders lack structural knowledge of the situation and use various incomplete theories
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of the type discussed in this section in order to form statistically correct beliefs about

the long-term asset price in the next period. One of the results is that the price of the

long-term asset is affected by the diversity in the agents’ cognitive levels.

(iii) In a series of papers starting with Jehiel (2005), Philippe Jehiel developed the

concept of analogy-based equilibrium. The basic idea is related to the way we play

games like chess. When planning a move, we evaluate the board positions that it can

lead to. In analogy-based equilibrium, those evaluations are "correct on average". Play-

ers differ in their partition of the set of situations they bundle together, where finer par-

titions reflect a better understanding of the situation.

(iv) Spiegler (2011, ch 8.) includes a pedagogical exposition of the model and links it

to other concepts like Jehiel’s.

(v) Rani Spiegler suggests a general framework for studying economic agents who

have imperfect understanding of correlation structures and causal relations (Spiegler

(2016)). Spiegler (2018) identifies a condition under which the wrong model does not

allow an outsider to systematically fool the agent.
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