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Abstract

This paper studies a decision maker who for each choice set selects a subset
of (at most) two alternatives. We axiomatize three types of procedures: (i)
The top two: the decision maker has in mind an ordering and chooses the two
maximal alternatives. (ii) The two extremes: the decision maker has in mind
an ordering and chooses the maximal and the minimal alternatives. (iii) The
top and the top: the decision maker has in mind two orderings and he chooses
the maximal element from each.
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1 Introduction

Choice theory aims to provide a framework in which observations about a decision

maker�s behavior may be organized conceptually. A decision maker is described

by the possible choices he would make in all feasible situations that the decision

maker might confront within a certain context. These choices are represented by

a choice function or a choice correspondence. The typical interpretation of both is

that the decision-maker will ultimately "consume" only a single alternative from the

available set. Thus, if the choice correspondence selects more than one alternative,

we interpret that to mean that the single element, which the decision-make will

ultimately consume, may be any of the selected elements (not that the selected

elements form a bundle, which the decision-maker will consume all at once). We

have in mind a situation where a decision maker is observed choosing small sets,

out of any possible subset of alternatives. Here, we focus on the case that the

subsets consist of at most two elements. We will comment on how our analysis

would change if we were to assume that the decision maker cannot choose more

than some arbitrary �xed number of elements. We o¤er two interpretations for the

decision-maker�s choice of more than one element:

(i) Consideration sets: When the decision maker chooses a set in our frame-
work he actually selects a consideration set. That is, the decision maker employs a

decision process in which he �rst selects a small number of alternatives that draw

his attention, or that he �nds deserving a closer look at the second and �nal stage

(see (Eliaz and Spiegler 2009)). When the decision maker is an individual, this may

re�ect an attempt to minimize the number of considered elements as deliberating

on all of them is too "costly". When the decision maker is an organization, the

choice procedure may involve two distinct agents, one who narrows down the list

of possible options to a small set of contenders, and a top manager who decides on

the �nal choice (see (García-Sanz 2008)).

(ii) A Team: The chosen set is not an input for another decision problem, but
is itself the �nal decision. This interpretation �ts situations in which the decision

maker must choose a team with two members. Examples of such situations include

the choice of candidates for the position of president and vice president in an elec-

tion, selecting a two-pilot crew for an airplane, selecting a pair of tennis players for

a doubles match, or choosing a pair of instructors for teaching the microeconomics

and macroeconomics courses in a graduate program.

Formally, let X be a (�nite) set of alternatives. A choice correspondence D is

taken in this paper to be a function which assigns to every non-empty A � X a

non-empty subset of A of size at most two.
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With regards to our �rst interpretation, the framework we study here is in the

spirit of most of the decision-theoretic literature on preferences over menus (e.g.

(Kreps 1979)) which visualizes the decision process as a two stage process and

axiomatizes only the �rst stage which contains the selection of the second-stage

choice problem, ignoring the actual choice in the second stage. An alternative

framework, would describe a decision maker by a function that assigns to every

choice set A, a subset B � A and an element a 2 B with the interpretations that

B is the set of the �nalists and a is the �nal chosen element.

Our objective is to axiomatize the following three types of choice correspon-

dences (note that we use the term �ordering�to denote a strict total order):

I. The top two. The decision maker has in mind an ordering and he chooses
the two best elements according to this ordering. Under the consideration set in-

terpretation, this procedure �ts situations in which the decision maker proceeds in

two steps. He �rst narrows the set of options to only a few contenders by using

some initial criterion represented by an ordering, which does not necessarily coni-

cide with his true preferences (for example, the simplest two alternatives). The

elements chosen in the initial stage (which constitute the decision-maker�s consider-

ation set) are examined more closely at a later stage, where the decision-maker then

applies his true preferences. Under the team selection interpretation, this procedure

means that the two individuals are chosen independently using the same preference

criterion.

II. The two extremes. The decision maker orders the alternatives along one
dimension and chooses the two most extreme options. Under the consideration set

interpretation, this procedure �ts situations where a decision maker thinks that his

choice is actually between two di¤erent �directions�. He therefore selects a consid-

eration set consisting of the two extremes with the aim of choosing the direction

in the second stage. We may also interpret the choice of the two extremes as the

choice of two "attention-grabbers". Under this interpretation, the options are or-

dered along some dimension (small to big, cheap to expensive, ugly to handsome),

and the consideration set consists of the two extremes, the two elements that draw

the most attention. Under the team selection interpretation, the choice of the two

extremes �ts a desire for the most extreme variety.

III. The top-and-the-top. The decision maker has in mind two considerations.
He selects the (one or two) alternatives that are deemed the best by at least one

of the considerations. Of course, any two-extremes procedure may be thought of

as a top-and-the-top procedure where the two rationales are the ordering of the

two-extremes and its inverse. Note that if a top-and-the-top procedure assigns a

couple to every set, then each of its rationales must be the inverse of the other, and
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hence, it may be described as a two-extremes procedure.

One may also interpret the di¤erent considerations in the top-and-the-top pro-

cedure as the orderings of two distinct individuals (e.g., a married couple) who

need to choose from a set of options. The top-and-the-top selects the (at most) two

extreme Pareto e¢ cient alternatives. Of course, the set of Pareto e¢ cient alterna-

tives may be bigger (for a characterization of the Pareto e¢ cient correspondence

see (Sprumont 2000)).

Under the team interpretation, this procedure may be viewed as a way of prepar-

ing for two possible scenarios that the decision maker may face: for each scenario,

he picks the best alternative to handle that contingency (if there is one alternative

that is best in both contingencies, he picks it).

Note that our paper di¤ers from some recent papers, which have analyzed choice

functions that are consistent with two-stage choice procedures, in which the decision

maker �rst selects a subset of options to consider, and then chooses from that subset.

See, (Manzini and Mariotti 2006), (Manzini and Mariotti 2007), and (Masatlioglu,

Nakajima, and Ozbay 2008). Contrary to us, in these papers, the �nal choice is

observed and the decision-maker�s �shortlist�or �attention-grabbers�are inferred

from the �nal choice. For a work on rationalization of a choice correspondence by

any number of multiple rationales, see (Aizerman and Malishevski 1981). For work

on empirical tests of new decision theory work, see (Manzini and Mariotti 2009).

In the rest of this short paper we provide axiomatizations of the three choice

correspondences discussed above.

2 Three axiomatizations

2.1 The Top Two

We will use three axioms in order to characterize the �top two�choice correspon-

dence:

A0: 8A � X such that jAj � 2, jD(A)j = 2.

A1: If a 2 D(A) and a 2 B � A then a 2 D(B).
A1 is commonly referred to in the literature as Sen�s � Axiom. If an element is

chosen from a set, and it is also a member of a subset, then it is chosen from that

subset as well.
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A2: For every set A and a =2 D(A) = fx; yg; if a 2 D(Anfxg) then a 2
D(Anfyg):
A2 states that if an alternative is added to the set of selected alternatives when

one of the chosen elements is removed, then it is also selected when the other chosen

element is removed.

Proposition (The Top Two). A choice correspondence D satis�es A0; A1

and A2 i¤ there exists an ordering � on X such that D(A) consists of the two top

elements in A according to �.

Proof. It is trivial to verify that a top two choice correspondence satis�es the
axioms A0, A1, and A2.

Let D be a choice correspondence satisfying the three axioms. We will prove the

proposition by inducion on the size of X. For the inductive step, let D(X) = fx; yg
(well de�ned by A0).

By the inductive hypothesis, there exists an ordering �0 on X � fyg such that
D(A) consists of the �0-top two elements for any A � X � fyg. By A1, x 2
D(X � fyg) and thus, must be one of the two �0-top elements. Without loss of

generality we can assume x is at the top of �0. Extend �0 on X � fyg to � on X
by putting y on top of � and letting � be equal to �0 otherwise.
We need to show that for every A that contains y, D(A) consists of the �-top

two elements in A. By A1, y 2 D(A) and indeed it is one of the �-top elements in
A. Let z be the other element in D(A). If x 2 A then by A1, z = x is the second
top element in A. If not, then by A2, z 2 D(A� fyg [ fxg) (z was selected after
x was removed from A [ fxg, hence, it should also be selected when y is removed
instead of x). By the inductive step, z is the second �0-top element in A�fyg[fxg
and thus, also the second �-top element in this set. It follows that z is also the

second �-top element in A (where y is replaced by x). �
Note that the three axioms are independent.

The choice correspondence that selects only the top element clearly satis�es A1

and vacuously A2.

The choice correspondence that selects the second and third elements from the

top according to some �xed ordering � satis�es A0 and A2 but not A1.
The two extremes procedure satis�es A0 and A1 but not A2.

Comment: The above proposition could be extended as follows. Let D

satisfy A1 and A2 and a modi�ed version of A0, where D(A) is required to contain
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M elements (unless A contains less thanM elements, a case where D(A) is required

to be equal to A). Then there is an ordering � on X such that whenever A contains

more than M elements, D(A) contains the top M elements in A. The proof (by

inducion on the size of X) is similar to the one of the above proposition and we

provide it here for the sake of completeness.

For the inductive step, let y 2 D(X). By the inductive hypothesis, there exists
an ordering �0 on X � fyg such that D(A) consists of the �0-top M elements for

any A � X � fyg. By A1, the other M � 1 elements of D(X) are in D(X � fyg)
and thus, must be one of the M �0-top elements in X. Without loss of generality
we can assume that they consist of the top M � 1 elements in �0. Extend �0 on
X�fyg to � on X by putting y on top of � and letting � be equal to �0 otherwise.
We need to show that for every A that contains y, D(A) consists of the �-top

M elements in A. Let z 2 D(A). If z 2 D(X) then by A1, z is one of the M �-top
elements in A. If not, then by A1, it must be that there is an element x 2 D(X)
which is not in A. By A2, z 2 D(A�fyg[fxg) (z was selected after x was removed
from A[fxg, hence, it should also be selected when y is removed instead of x). By
the inductive step, z is one of the �0-M top elements in A�fyg[fxg and thus, one
of the �-M top elements in this set. It follows that z is also one of the M �-top
element in A (where y is replaced by x). �

2.2 The Two Extremes

To axiomatize the �two extremes� choice correspondence we use A0 and a new

axiom that states that if a is selected when the alternative x is added to a set A

and also when the alternative y is added to A; then a is selected after both x and

y are added.

A3: 8A � X such that jAj � 2 and x; y 62 A, if a 2 D(A [ fxgg and a 2
D(A [ fyg), then a 2 D(A [ fx; ygg.

Lemma A choice correspondence D that satis�es A0 and A3 also satis�es A1:

Proof. Let D be a choice correspondence that satis�es A0 and A3 but not A1:

Take A to be a minimal subset of the ground set X such that D violates A1 on A.

Denote D(A) = fa; zg. The minimality of A means that there is some x 6= a such
that a =2 D(A � x) (or similarly with z) and that A1 holds for all smaller subsets
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of A. Notice that if for some b 2 X, b 2 D(A� x) and b 2 D(A� y), then by A3,
b 2 D(A) and hence, b 2 fa; zg.
Case (i): a =2 D(A� z). Let D(A� z) = fc; dg and D(A� a) = fe; fg. One of

the elements in fe; fg, say e, is not z. Now e cannot be c or d because otherwise,
it would be a member of D(A) though it is neither a nor z. By the fact that A1

holds for A � a and A � z the three distinct elements c; d; e are all members of
D(A� a� z), violating A0.
Case (ii): a 2 D(A � z) and a =2 D(A � c) for some c =2 fa; zg. As before,

c 62 D(A � a) or c 62 D(A � z). If c 62 D(A � a), then since A1 holds for A � a
and A � c, we have D(A � c) = D(A � a � c) = D(A � a). But by A3 and A0,
D(A � a) = D(A), a contradiction. Suppose c 62 D(A � z) = fa; dg. As before,
at least one of the elements of D(A � c), say e, is not z. Hence, the three distinct
elements, a; d and e, are all members of D(A� z � c), violating A0. �

Proposition (The Two Extremes): A choice correspondence D satis�es A0

and A3 i¤ there exists an ordering � on X such that D(A) consists of the �-
maximal and �-minimal alternatives in A.

Proof. Any two-extremes choice correspondence satis�es A0. To see that it

satis�es A3, let A be a set such that jAj � 2 and let a be a member of both

D(A[fxg) and D(A[fyg). WLOG let a = max(A[fxg;�). Then a = max(A;�
). It follows that a 6= min(A [ fyg;�), hence a = max(A [ fyg;�). Therefore,
a = max(A [ fx; yg;�) and thus, a 2 D(A [ fx; yg).
Let D be a choice correspondence that satis�es A0 and A3. By the lemma, D

also satis�es A1. Let D(X) = fL;Rg.
For any two distinct elements a and b, we say that a �is to the left of� b, and

denote a! b, if D(fa; b; Rg) = fa;Rg and D(fL; a; bg) = fL; bg. By de�nition, !
is an asymmetric relation.

We �rst verify that the relation �to the left of" is total. Notice that by A1,

L ! a for any a 6= L and a ! R for any a 6= R. Consider a; b distinct from

L;R. By A1, R 2 D(fa; b; Rg) and L 2 D(fL; a; bg). If D(fa; b; Rg) = fa;Rg, then
D(fL; a; bg) = fb; Lg (and a ! b), because if D(fL; a; bg) = fL; ag, then by A3,
a 2 D(fL; a; b; Rg) but by A1, D(fL; a; b; Rg) = fL;Rg.
We now show that the relation �to the left of�is also transitive. Assume a! b

and b ! c. That is, D(fa; b; Rg) = fa;Rg, D(fL; a; bg) = fL; bg, D(fb; c; Rg) =
fb; Rg andD(fL; b; cg) = fL; cg. By A0 and A1, D(fa; b; c; Rg) = fa;Rg and by A1,
D(fa; c;Rg) = fa;Rg. Similarly, D(fL; a; b; cg) = fL; cg and D(fL; a; cg) = fL; cg.
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Hence, a! c.

Finally, let A � X and denote by l and r the maximal and the minimal element

of the �to the left of" relation. We will show that D(A) = fl; rg. Assume D(A)
does not contain l. The set D(A [ fRg) contains R (by A1 and D(X) = fL;Rg)
but not l (since if it were, then by A1; it would also be included in D(A)). Thus,

D(A [ fRg) = fa;Rg for some a 6= l. By A1, D(fl; a; Rg) = fa;Rg contradicting
the de�nition of l as being to the left of a. Similarly, D(A) contains r. �

The two axioms used above are independent.

The choice correspondence that chooses the single top element satis�es A3 and

A1 but not A0.

The top-two choice correspondence satis�es A0 and A1 but not A3 (if the third

best element in X is the top in A, then it is selected when either the best or second

best element in X is added, but not when both are added).

2.3 The Top and the Top

In order to characterize the top-and-the-top procedure, we use A1, a variation of

A0 and two additional axioms.

A0�: 8A � X; jD(A)j � 2.

A0�modi�es A0 to allow for the possibility that the two rationales agree on the

maximal element on some choice set.

A4: If D(A) = fag and a 2 B � A, then D(B) = D(A).

A4 requires that if D(A) is a singleton, which is also a member of a subset B,

then D(B) is this singleton. It is a weakening of the traditional Independence of

Irrelevant Alternatives, D(A) � B � A ) D(B) = D(A). Note that A1 would

guarantee that a is a member of D(B) but not that D(B) = fag. A1 and A4 imply
the traditional Independence of Irrelevant Alternatives in the presence of A0�(or

A0).

A5: If a is a member of each of the sets, D(A1); D(A2) and D(A1 \ A2), and
also D(A1 \A2) contains two elements, then a 2 D(A1 [A2).
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A5 captures situations where the decision maker is choosing at most two alter-

natives from every set using two "reasons" R1 and R2. Interpret aRib to mean

that Ri is a reason for choosing a and not b. An element a is chosen from a set A

if there is a reason i for which aRix for all x in A. A decision maker who follows

this procedure satis�es the following: if both a and b are chosen from A1 \A2; then
it must be that for one of the two reasons, say R2, bR2a. Thus, it must be that a

is chosen from A1 and A2 by applying the same reason R1. Thus, aR1x for any x

in either A1 or in A2, and thus, it is chosen also from A1 [A2.

Proposition (The Top and the Top): A choice correspondence D satis�es

Axioms A0�,A1 ,A4 , and A5 i¤ there are orderings �1;�2 (possibly identical) such
that D(A) = fmax(A;�1);max(A;�2)g.

Proof: The top and the top procedure clearly satis�es A0�, A1 and A4. As to
A5, assume x 2 D(A1); D(A2) and D(A1\A2) = fx; yg, where y 6= x. The element
y maximizes one of the orderings, say �1, in A1 \A2 so that y �1 x. Thus, x must
be the �2-maximal element in both A1 and A2 and therefore in A1 [ A2, which
implies x 2 D(A1 [A2).
Let n be the number of elements in X and let D be a choice correspondence,

satisfying the four axioms. We construct inductively two rankings a1 �1 : : : �1 an,
and, b1 �2 : : : �2 bn and then show that D(A) = fmax(A;�1);max(A;�2)g. For
ease of notation, for i � j let us denote Ai;j � fai; : : : ; ajg and Bi;j � fbi; : : : ; bjg.
For convenience, denote A1;0 � B1;0 � ;.
Assume that we have deduced the �rst m � 0 elements of both orderings, then

the algorithm �nds them+1st element of each ordering by considering the following

three cases:

Case 1: jD(XnA1;m)j = 1. Then we assign am+1 to be the element chosen by D
from XnA1;m.
Case 2: jD(XnA1;m)j = 2 and B1;m = A1;m. Then we set am+1; bm+1 to be the

two members of D(XnA1;m).
Case 3: jD(XnA1;m)j = 2 and B1;m 6= A1;m. Then there is an element bi 2

XnA1;m where i � m. Let bi� be the element of XnA1;m with the minimal index.

By construction, bi� 2 D(XnB1;i��1) and XnA1;m � XnB1;i��1. By A1, bi� 2
D(XnA1;m). De�ne am+1 to be the other element in D(XnA1;m).
To determine bm+1, apply the above algorithm to D(XnB1;m). Note that when

jD(XnA1;m)j = 2 and B1;m = A1;m; then D(XnB1;m) = D(XnA1;m); and applying
the above algorithm to either D(XnA1;m) or D(XnB1;m) yields the same pair,
(am+1; bm+1).
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Consider an arbitrary set A. We have constructed �1;�2 and need to show that
D(A) = fmax(A;�1);max(A;�2)g. Let ai = max(A;�1) and bj = max(A;�2).
Note that A � Ai;n and A � Bj;n; and hence, ai; bj 2 D(A) by A1. If ai 6= bj , then
by A00 we have D(A) = fai; bjg.
It remains to verify that D(A) = fxg whenever ai = bj = x. If jD(Ai;n)j = 1 (or

if jD(Bj;n)j = 1), then by A4 and the fact that A � Ai;n (respectively, A � Bj;n),
we have that D(A) = D(Ai;n) = fxg. Suppose jD(Ai;n)j = jD(Bj;n)j = 2. Denote
C\ � Ai;n \ Bj;n and C[ � Ai;n [ Bj;n. Since A � C\, then by A4 all we need

to verify is that D(C\) = fxg. By construction, x = ai 2 D(Ai;n) and x = bj 2
D(Bj;n), thus by A5, it is su¢ cient to show that x =2 D(C[). We achieve this by
proving that D(C[) contains two elements that are distinct from x. This would

imply that one of the conditions of A5 is violated, and since x 2 D(Ai;n); D(Bj;n);
it must be that D(C\) = fxg.
From our construction of the two orderings, �1and �2, and from our assumption

that jD(Ai;n)j = 2, it follows that ai 6= max(Ai;n;�2) � bl and similarly, bj 6=
max(Bj;n;�1) � ak. Moreover, x; ak, and bl are all distinct because ak �1 bj = x =
ai �1 bl: In addition, note that by the de�nition of ak; and by the observation that
ak �1 ai, it follows that Ai;n � Ak;n and also Bj;n � Ak;n. Similarly, Bj;n � Bl;n
and also Ai;n � Bl;n. Therefore, C[ is contained in both Ak;n and Bl;n. By

construction, ak 2 D(Ak;n) and bl 2 D(Bl;n). Hence, by A1 and A00, D(C[) must
contain both ak and bl, which are distinct from x. �

The four axioms used for the proposition above are independent:

(i). The correspondence D(A) � A satis�es all axioms except A00.
(ii).Consider the following variant of the top-and-the-top procedure. Let �1;�2

be a pair of linear orderings on X. For all A � X with jAj � 3, let

D(A) = fmax(A;�1);max(A;�2)g

and for all pairs fa; bg � X; let

D(fa; bg) = fmax(fa; bg;�1)g

This satis�es all axioms except A1.

(iii). Let � be a linear ordering on X: For all A with three or more elements, let
D(A) = fmax(A;�)g; while for all pairs A, let D(A) = A. This satis�es all axioms
except A4. To verify that A5 is satis�ed, note that D(A\B) contains two elements
only if A \ B is a pair. If A � B (or B � A), then A5 is vacuous. Otherwise, we
have that jAj; jBj � 3 and A5 is again vacuously satis�ed because fag 2 D(A); D(B)
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implies a = max(A;�) = max(B;�) and then a = max(A [ B;�) which implies
D(A [B) = fag.
(iv). Let D be the top-two procedure. This procedure satis�es A00, A1, and A4

(vacuously). To see that A5 is violated when jXj � 4, denote the top four elements
of X by a1; a2; a3; a4. Then, a3 2 D(Xna2)\D(Xna1) and fa3; a4g = D(Xna1; a2).
Therefore, we should have that a3 2 D(Xna1 [Xna2) = D(X), but this is false.

Comment: It is an open question how to generalize the above result to M

rationales. Consider the top two rationales procedures with jXj = N . As it turns
out, this procedure can be represented by N � 1 rationales where each rationale
�j say xi �j xk if k = j or i � k and i; k 6= j. Moreover, this is the best that

can be done because xN 2 C(xi; xN ) and not from any larger set implies that for

each i, there must be a rationale �i where xN �i xi and for all other j, xj �i xN .
Clearly, for distinct i, these rationales must be di¤erent, hence N � 1 rationales are
necessary.

So, we see for M > 2 the relationship between the number of elements chosen

and the number of rationales needed becomes disentangled. Finally, one may check

that the procedure which selects the top N=2 elements from any choice set requires

approximately
�
N

N=2

�
rationales. However, any representation of a procedure that

requires an exponential number of rationales is not a convincing representation.

We �nd the most compelling representations to be those for small M especially the

cases where M = 1 (standard choice) or when M = 2 (as solved above).
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