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Abstract.

We present two arguments suggesting that the principle of revealed preference fa-

cilitates the introduction of procedural and psychological aspects of choice to economic

models.

First, some choice procedures cannot be described as the outcome of maximizing a

preference relation. However, they can be characterized and differentiated based on a

simple revealed preference argument, i.e. based on simple properties of choice.

Second, even if a choice procedure corresponds to maximizing a preference relation,

there may still be a revealed preference justification to study the psychology of the pro-

cedure. The information concerning the available set of alternatives is often coupled with

other information pertinent to the psychology of choice. This latter information can shed

light on aspects of choice not fully captured by a preference relation, and hence should

be part of the revealed preference analysis.
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1. Introduction

The revealed preference approach states that economic analysis should be based only

on entities observed by the economist. Gul and Pesendorfer (2005) have recently reopened

the discussion on the role of revealed preference in economic analysis. Without entering

the essence of the discussion (see Rubinstein (2006)1), we argue in this short note that the

revealed preference approach facilitates the introduction of procedural and psychological

aspects of choice to economic models.2

We make two comments to support our argument.

Comment 1. Some choice procedures cannot be described as the outcome of maxi-

mizing a preference relation. However, they can be characterized and differentiated based

on a simple revealed preference argument, i.e. based on simple properties of choice.

For example, Manzini and Mariotti (2004) introduce a two stage procedure in which

the decision maker first selects the set of elements he will seriously consider and then

applies a standard preference relation in order to make a choice. This procedure has

simple properties of revealed preference which differ from the standard axioms of choice.

Comment 2. Some choice procedures are indistinguishable from standard choice

correspondences that can be described as the outcome of maximizing a preference relation.

One can therefore claim that the psychological considerations involved in these procedures

are not anchored in behavior. However, in many cases, additional information relevant to

the psychology of choice is available (in the same sense that the set of alternatives and the

chosen alternative are available). The revealed preference approach does not imply that

one should ignore this information, but rather that one should use a model of choice that

takes this information into account instead of using a standard choice correspondence.

For example, a choice problem is often presented in the form of a list. A decision maker

who uses a systematic method to choose from lists may choose differently from two lists

that induce the same set of alternatives. A standard choice correspondence would attach

to every choice problem the set of all elements chosen for some listing of the alternatives.

Under certain conditions on the method of choice from lists, this choice correspondence

can be explained as the result of maximizing a preference relation (see Rubinstein and

1Rubinstein (2006) argues that there is no escape from including unobserved components of choice in

welfare analysis. For example, if a decision maker maximizes the function −v, where v represents his own

perceived interests, it would be wrong to use the function −v as a component in welfare analysis.
2Our argument does not conflict with Gul and Pesendorfer (2005) but is a critique of some of its

possible interpretations.
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Salant (2006)). The possible conclusion that the analysis of choice from lists is not part

of the economist’s toolkit is false. The listing of the alternatives is often available and

can be used to describe how actual choices are made — something which a standard

correspondence may not accomplish.

2. Model

Let X be a finite set of alternatives. The standard model of choice assumes that a

choice problem is a non-empty subset of X. Let D be the collection of standard choice

problems. A choice function c attaches to every choice problem A ∈ D a single element

c(A) ∈ A. A choice correspondence C attaches to every A ∈ D a non-empty subset of A.

In real life situations, a choice problem often appears with a frame. A frame is ad-

ditional information associated with the choice problem that may serve as a component

of the choice procedure though it may not convey information relevant to the assessment

of the alternatives. A frame may be the outcome of exogenous manipulation such as the

order in which vacation packages are listed in a brochure. A frame can also be purely

internal, as in the case of a decision maker who mentally enumerates the elements of the

set.

Formally, an extended choice problem is a pair (A, f) where A ∈ D and f is an abstract

object called a frame. Let D∗ be the collection of extended choice problems. An extended

choice function c∗ assigns an element of A to every (A, f) ∈ D∗. An extended choice

function c∗ with domain D∗ induces a standard choice correspondence Cc∗ with domain

D, where Cc∗(A) is the set of elements chosen from the set A for some frame f . In other

words,

Cc∗(A) = {x | c∗(A, f) = x for some (A, f) ∈ D∗}.

When several frames are associated with a given choice problem A, the cardinality of

Cc∗(A) may reflect the tendency of the decision maker to be influenced by the frame. The

smaller Cc∗(A) the less the decision maker is influenced by manipulating the frame.

Following are several examples of extended choice problems that we discuss throughout

the paper.

1. Leading Considerations. The description or the content of the choice prob-

lem triggers the decision maker to think primarily about a particular consideration. An

extended choice problem is a pair (A,Â) where Â is an ordering that reflects the consid-

eration used by the decision maker to evaluate the elements of the set A.

2. Focus on Relevant Elements. The decision maker identifies a subset of elements
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in the choice problem as the relevant alternatives and chooses from among them. An

extended choice problem is a pair (A,B) where B ⊆ A is the set of relevant elements in

A.

3. List. The decision maker evaluates the elements of the set as a list. An extended

choice problem is a pair (A,>) where > is an ordering of the elements of A from first to

last.

4. Number of Appearances. An alternative may appear more than once in the

choice menu. An extended choice problem is a pair (A, i) where i is a function that assigns

to every a ∈ A the number i(a) of times a appears in the menu.

5. Default Alternative. One of the alternatives is designated as the default alter-

native. An extended choice problem is a pair (A, x) where x ∈ A is a default alternative.

The first two examples appear most often in contexts in which we do not observe

the frame associated with the choice problem. We usually do not observe the leading

consideration triggered by the content of the choice problem (example 1) or the set of

alternatives which are seriously considered (example 2). The rest of the examples are

often (though, of course, not always) observed with the frame. We often observe the

order of the elements in a set (example 3), the number of appearances of an alternative

within a menu (example 4) or the default alternative (example 5).

3. First Comment: Non-Standard Choice

In this section we examine two contexts in which certain assumptions on a frame-

sensitive choice procedure are equivalent to non-standard restrictions on choice corre-

spondences. These examples demonstrate how procedural aspects of choice can be differ-

entiated based on a standard revealed preference argument, i.e. based on actual choices

from standard choice problems.

3.1. Triggered Rationality

The choice procedure we have in mind in this subsection is one in which the most

salient element in the choice problem induces the decision maker to use a particular

rationale when making a choice. For example, when choosing among vacation packages,

one may either maximize the entertainment value or the historic significance of the trip

depending on whether Las Vegas appears among the available options.

Formally, an extended choice problem is a pair (A,Â) where Â is an ordering that

reflects the consideration the decision maker uses when choosing from A. We say that an
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extended choice function c∗ satisfies Triggered Rationality if there is an array of orderings

{Âa}a∈X (not necessarily distinct) and a saliency ordering R over X such that:

(i) the set D∗ contains all the pairs (A,Â) where Â=Âa∗ for a∗ which is the R-maximal

element in A.

(ii) c∗(A,Â) is the Â-maximal element in A.

Of course, there are natural choice procedures that use more general attributes of the

choice problem in order to determine which consideration to use. For example, a choice

procedure which uses a particular rationale when the set is symmetric3 and a different

one when the set is asymmetric does not fall within the category of Triggered Rationality.

From the point of view of standard choice, the above procedure is characterized by

the property that for every choice problem A, there exists a ∈ A such that the standard

Independence of Irrelevant Alternatives4 (IIA) property holds for subsets of A that contain

a.

Formally, a standard choice function c satisfies the Reference Point property if for

every set A, there exists a ∈ A such that if a ∈ A′′ ⊂ A′ ⊂ A and c(A′) ∈ A′′, then

c(A′′) = c(A′).

Proposition. A standard choice function c satisfies the Reference Point property if

and only if there is an extended choice function c∗ satisfying Triggered Rationality such

that c = Cc∗ .

Proof. Assume that c satisfies the Reference Point property. We construct the func-

tion c∗ which satisfies Triggered Rationality recursively. Consider the set X. By the

Reference Point property there exists an element a such that for all subsets of X that

contain a the standard IIA property holds. Thus, there exists a preference relation Âa

such that its maximization describes the choices of c whenever a is available. Let a be

the R-maximal element in X. Continue recursively with the set X \ {a}.
In the other direction, assume c∗ satisfies Triggered Rationality with respect to a

preference array {Âa}a∈X and a saliency ordering R. Let a be the R-maximal element in

A. Assume that a ∈ A′′ ⊂ A′ ⊂ A and c(A′) ∈ A′′. The element a is also R-maximal in

both A′ and A′′ and thus c(A′), the Âa-maximal element of A′, is also the Âa-maximal

element of A′′. Consequently, c(A′′) = c(A′). ¥
3A set A is symmetric if x ∈ A implies y ∈ A for any y ∼ x where ∼ is a symmetric binary relation

over X.
4A choice function c satisfies the standard Independence of Irrelevant Alternatives property if c(A) ∈

B ⊂ A implies that c(B) = c(A).
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3.2 Post-Dominance Rationality

The choice procedure we have in mind in this subsection is one in which the decision

maker first eliminates any alternative which he deems dominated in some sense by an-

other alternative. He then chooses the best alternative from among the non-dominated

alternatives.

Formally, an extended choice problem is a pair (A,B) where A is a choice problem

and B ⊆ A is a non-empty subset of relevant elements. We say that an extended choice

function c∗ satisfies Post-Dominance Rationality if:

(i) There exists an acyclic binary relation R such that D∗ consists of all the pairs

(A,B) where B = {b | there is no a ∈ A such that aRb}. That is, aRb means that the

presence of a in the choice problem excludes b from the set of relevant elements.

(ii) There exists a binary relation Â, which is transitive whenever restricted to sets of

elements that do not dominate one another, such that c∗(A,B) is the Â-maximal element

in B.

Comment. The relation Â need not be transitive for all triples of alternatives. In-

transitivity is possible for triples in which one of the alternatives is excluded by R. For

example, let X = {a, b, c, d} and let R be the relation for which x /Ry except for aRc and

bRd. Let Â be the order relation a Â b Â c Â d except that d Â a and not a Â d. Define

c∗ accordingly. Then c∗ is a non-empty function that satisfies Post-Dominance Rationality

though Â is not transitive.

The notion of Post-Dominance Rationality was suggested by Manzini and Mariotti

(2004) who characterize this procedure in terms of properties of choice from sets. We

establish a different connection between Post-Dominance Rationality and standard choice.

Exclusion Consistency. A standard choice function c satisfies Exclusion Consis-

tency if for every set A and for every a ∈ X, if c(A ∪ {a}) /∈ {c(A), a} then there is no

set A′ which contains a such that c(A′) = c(A).

Proposition. A standard choice function c satisfies Exclusion Consistency if and only

if there exists an extended choice function c∗ which satisfies Post-Dominance Rationality

such that c = Cc∗ .

Proof. Assume c satisfies Exclusion Consistency. We define two binary relations R

and Â as follows:

(i) aRb if there is a set A such that c(A) = b and c(A ∪ {a}) /∈ {a, b}.
(ii) a Â b if c({a, b}) = a.
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The relation R is acyclic. If there were a cycle, then by Exclusion Consistency, no

element could be chosen from the set of all elements in the cycle.

The relation Â is asymmetric and complete. The relation Â is transitive whenever

restricted to sets of elements that do not relate to one another by R. Otherwise, assume

that a Â b, b Â c and c Â a and that a, b, c are not related by R. Without loss of

generality assume that c({a, b, c}) = b. Then, since c({a, b}) = a we should have cRa, a

contradiction.

For every set A, define B to be the set of R-maximal elements in A, and c∗(A, B)

to be the Â-maximal element in B. Then, c∗(A,B) satisfies Post-Dominance Rationality

and is non-empty for every set A. We need to show that c(A) = Cc∗(A).

Let A0 = B be the set of R-maximal elements in A, and denote its cardinality by

K. We first show that c(A0) = Cc∗(A0). Since the elements of A0 are not related by R,

Cc∗(A0) is the Â-maximal element in A0. If c(A0) = a is not the Â-maximal element in

A0 then there exists b ∈ A0 such that b Â a. By definition c({a, b}) = b. Enumerate

the set A0: a1 = a, a2 = b, ..., aK . Let k∗ = max{k | c({a1, a2, ..., ak}) 6= a}. Then

2 ≤ k∗ < K and ak∗+1Rc({a1, .., ak∗}) which contradicts the definition of A0.

Inductively, construct a sequence of sets Ak starting with A0. Let Ak+1 = Ak ∪ {b}
where b is an R-maximal element in A − Ak. Then b is R-dominated by an element

in Ak and hence by Exclusion Consistency c(Ak ∪ {b}) 6= b. By construction, b does not

dominate any element in Ak including c(Ak) and hence c(Ak∪{b}) = c(Ak). Consequently,

c(A) = c(A0). Thus, c(A) is the Â-maximal element among the R-maximal elements in

A, which implies that c(A) = Cc∗(A).

In the other direction, suppose that c∗ satisfies Post-Dominance Rationality with the

relations R andÂ. Then Cc∗(A) is theÂ-maximal element among the R-maximal elements

in A. We now need to show that c = Cc∗ satisfies Exclusion Consistency. Assume that

c(A) = Cc∗(A) = a and c(A ∪ b) = Cc∗(A ∪ b) /∈ {a, b}. It must be that bRa and, by the

definition of c∗, the element a is never chosen from a set in which b appears. Consequently,

c(A′) 6= a whenever b ∈ A′. ¥

4. Second Comment: Standard Choice and Framing

In this section we examine three contexts in which properties of a frame-sensitive

choice procedure imply that the induced choice correspondence satisfies standard axioms

of choice. Thus, one might argue that there is no revealed preference basis for integrating

these procedures into economic models. We would argue otherwise. It is often natural
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to assume that an observer sees not just the choice problem and the chosen element

but the frame as well. This is especially true when the frame is manipulated by an

exogenous device, such as when a marketer arranges the elements according to some order

or highlights one element as the default. In such cases, the revealed preference approach

does not exclude the interest in frame-sensitive choice procedures even if they imply only

standard assumptions on choice. The information conveyed by the frame may provide

important insights into choice, particularly in cases in which the induced correspondence

specifies more than one element as a possible choice.

4.1 Choice from Lists

In this subsection, an extended choice problem is a pair (A,>) where A is a choice

problem and > is an ordering of A. In other words, the decision maker chooses from lists.

We assume that any ordering of the elements of A is possible.

In Rubinstein and Salant (2006) we studied the following property of an extended

choice function c∗:

List Independence of Irrelevant alternatives (LIIA). If c∗(A,>) = a, then

c(A− {b}, >|A−{b}) = a for every b 6= a.

We showed that any extended choice function which satisfies LIIA induces a choice

correspondence which satisfies the standard Weak Axiom5 (WA). We provide a simpler

proof here.

Proposition (Rubinstein and Salant (2006)).

(i) If an extended choice function c∗ satisfies LIIA, then Cc∗ satisfies WA.

(ii) If C is a choice correspondence that satisfies WA, then there exists an extended

choice function c∗ satisfying LIIA such that C = Cc∗ .

Proof. (i) Assume a, b ∈ A ∩ B, a ∈ Cc∗(A) and b ∈ Cc∗(B). Then there exist

>1 and >2 such that c∗(A,>1) = a and c∗(B, >2) = b. Let >3 be an ordering which is

identical to >2 except for a appearing first if a >1 b and last if b >1 a. We now show that

c∗(B, >3) = a.

It is impossible that c∗(B,>3) = x /∈ {a, b}. Otherwise, by LIIA c∗(B − {a}, >3|B−{a}
) = x. Since c∗(B, >2) = b LIIA implies that c∗(B − {a}, >2|B−{a}) = b. This contradicts

the fact that >2 and >3 are identical on B−{a} and thus should induce the same choice.

5A choice correspondence C satisfies the Weak Axiom if a, b ∈ A ∩ B, a ∈ C(A) and b ∈ C(B) imply

that a ∈ C(B).
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It is also impossible that c∗(B,>3) = b. Otherwise, by LIIA c∗({a, b}, >3|{a,b}) = b. In

addition, LIIA implies that c∗({a, b}, >1|{a,b}) = a but >1 and >3 are identical on {a, b}.
Thus, c∗(B, >3) = a as required.

(ii) If C satisfies WA then there exists a weak preference relation % over X which C

maximizes. Define c∗(A, >) to be the first %-maximal element in A according to >. Then

c∗ satisfies LIIA and C = Cc∗ . ¥

The model of choice from lists most clearly illustrates our assertion regarding revealed

preference and the observability of the frame. The information on the set of available

alternatives is often supplemented by the order of the alternatives. This is true especially

when the list is generated by an exogenous mechanism, e.g., entrees are listed on a menu

and products in a brochure. In such cases, the study of choice from lists is valuable,

as it analyzes an important observable factor that affects choice and suggests a novel

interpretation of choice correspondences.

4.2 Number of Appearances

In this subsection an extended choice problem is a pair (A, i) where i(a) is the number

of times the element a appears in the set A.

We discuss two properties of extended choice functions:

Subtraction. If c∗(A, i) = a and i′ is such that i′(b) = i(b) − 1 ≥ 1 for b 6= a, then

c∗(A, i′) = a. If b 6= a and i(b) = 1, then c∗(A− {b}, i|A−{b}) = a.

Note that when i(a) = 1 for every element a ∈ A, Subtraction reduces to the standard

IIA property.

Additivity. If c∗(A, i) = a and i′ is such that for every b ∈ B ⊆ A i′(b) = i(b) + 1,

then c∗(A, i′) = a if a ∈ B.

In other words, adding one instance of several elements including the chosen element

does not alter the choice.

Proposition. (i) If an extended choice function c∗ satisfies Subtraction and Additivity

then Cc∗ satisfies WA.

(ii) If a choice correspondence C satisfies WA then there exists c∗ satisfying Subtraction

and Additivity such that C = Cc∗ .

Proof. (i) Assume that a, b ∈ A ∩ B, a ∈ Cc∗(A) and b ∈ Cc∗(B). Then there exists

i such that c∗(A, i) = a and i′ such that c∗(B, i′) = b. By Additivity, we can assume
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without loss of generality that i(b) = i′(b). By Subtraction, c∗({a, b}, i|{a,b}) = a and

c∗({a, b}, i′|{a,b}) = b, which implies that i(a) > i′(a). Define i′′ = i′ except for i′′(a) =

i(a). Then, c∗(B, i′′) ∈ {a, b} by Subtraction. Finally, c∗(B, i′′) = c∗({a, b}, i′′|{a,b}) =

c∗({a, b}, i|{a,b}) = a which implies that a ∈ C(B).

(ii) If C satisfies WA then there exists a weak preference relation % which C maximizes.

Define c∗(A, i) to be a %-maximal element with the highest number of appearances and

resolve ties according to some order relation. Then c∗ satisfies Subtraction and Additivity

and C = Cc∗ . ¥

This model is another case in which the information conveyed by the frame is often

observed and the presentation of the choice problem as a standard set excludes available

relevant information. Once again, the above proposition implies that one cannot distin-

guish between a choice correspondence induced by a procedure which takes into account

the number of appearances of the alternatives and a choice correspondence which is the

outcome of maximizing a preference relation. Nonetheless, even from the point of view of

revealed preference, it is a mistake to conclude that there is no place for models of choice

in which this frame appears.

4.3 Default Alternative

In this subsection an extended choice problem is a pair (A, x) where x ∈ A is inter-

preted as a default alternative. We assume that any element x ∈ A can serve as a default

alternative. A similar framework is discussed in Masatlioglu and Ok (2005) and Zhou

(1997).

We study the following two properties of extended choice functions:

Independence of Irrelevant Alternatives (IIA∗). If x ∈ A ⊂ B and c∗(B, x) ∈ A,

then c∗(A, x) = c∗(B, x).

In other words, if an element is chosen from a set, it is also chosen from all subsets of

the set as long as the default does not change. This property is equivalent to the existence

of an array of preference relations {Âa}a∈X such that c∗(A, x) is the Âx-maximal element

in A.

Default Tendency. If c∗(A, x) = a then c∗(A, a) = a.

That is, if an element a is chosen from a set A with some default element, then a is

also chosen from A when it becomes the default element.

Given IIA∗, the property of Default Tendency is equivalent to the condition whereby
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a Âx b implies that a Âa b. Thus, the two properties characterize choice procedures that

apply different rationales as a function of the default option and show preference for the

default alternative.

The following proposition complements the result of Gul and Pesendorfer (2005).6

Proposition.

(i) If c∗ satisfies IIA∗ and Default Tendency then there exists a transitive asymmetric

binary relation Â over X such that for every set A, the set Cc∗(A) contains all the Â-

maximal elements in A.

(ii) Let C be a choice correspondence that maximizes a transitive asymmetric binary

relation Â. Then there exists a choice function c∗ that satisfies IIA∗ and Default Tendency

such that C = Cc∗ .

Proof. (i) Assume c∗ satisfies IIA∗ and Default Tendency. For any two elements a

and b, define a Â b if c∗({a, b}, b) = a. By Default Tendency Â is asymmetric.

Note that if a Â b, then for every set A such that a, b ∈ A, c∗(A, x) 6= b. Otherwise,

by Default Tendency, c∗(A, b) = b and by IIA∗, c∗({a, b}, b) = b.

To see that the relation Â is transitive, assume that a Â b and b Â c. By the above,

c∗({a, b, c}, c) is neither b nor c and therefore it must be a. Then, by IIA∗, c∗({a, c}, c) = a

which implies that a Â c.

It remains to show that Cc∗(A) is the set of Â-maximal elements in A. By Default

Tendency, x ∈ Cc∗(A) if and only if c∗(A, x) = x. By IIA∗, c∗(A, x) = x if and only if

c∗({x, y}, x) = x for every y ∈ A. By the definition of Â, c∗({x, y}, x) = x if and only if

y � x. Thus, x ∈ Cc∗(A) if and only if there is no y ∈ A such that y Â x.

(ii) Expand the relation Â to form a complete order relation Â∗. For every A ⊆ X

and x ∈ A, define

c∗(A, x) =

{
x if x ∈ C(A)

the Â∗-maximal element in {y ∈ A | y Â x} if x /∈ C(A).

The function c∗ is single-valued because x /∈ C(A) implies that {y ∈ A | y Â x} 6= ∅
and because Â∗ is a complete order relation.

The function c∗ satisfies IIA∗. Assume that c∗(A, x) = a. Let B ⊆ A with a, x ∈ B.

We need to show that c∗(B, x) = a. If x ∈ C(A) then x = a is Â-maximal in A and

therefore in B, which implies that x ∈ C(B) and c∗(B, x) = x. If x /∈ C(A) then a is

6Gul and Pesendorfer’s characterization involves a complete but not necessarily transitive binary

relation, while ours involves a transitive but not necessarily complete relation.
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the Â∗-maximal element in {y ∈ A | y Â x}. Since a ∈ B ⊆ A, x is not Â-maximal

in B and thus x /∈ C(B). The element a continues to be the Â∗-maximal element in

{y ∈ B | y Â x} ⊆ {y ∈ A | y Â x} and thus c∗(B, x) = a.

The function c∗ satisfies Default Tendency. If c∗(A, x) = a and a 6= x then a is Â∗-
maximal in {y ∈ A | y Â x}. Therefore, a is Â-maximal in A, which means that a ∈ C(A).

By definition, c∗(A, a) = a.

Finally, Cc∗ = C. If x ∈ C(A) then c∗(A, x) = x and thus x ∈ Cc∗(A). If x /∈ C(A),

then by definition c∗(A, x) 6= x. Since c∗ satisfies Default Tendency, c∗(A, y) 6= x for all

y ∈ A and thus x /∈ Cc∗(A). ¥

As in the previous two examples, one may interpret the above result as a claim that

there is no revealed preference basis for maximization that depends on the default alterna-

tive. However, there are contexts (though probably less common than in the previous two

examples) in which we observe not only the set of alternatives and the chosen element but

also the default alternative. This occurs, for example, when the default is an alternative

previously chosen by the decision maker or one chosen by another person. In such cases,

we believe that the right model of choice is an extended choice function rather than a

standard choice correspondence.
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