
Holding a group together:

non-game-theory vs. game-theory

Michael Richter

Department of Economics, Royal Holloway, University of London

Ariel Rubinstein

School of Economics, Tel Aviv University

and Department of Economics, New York University

March 17, 2021

ABSTRACT: Each member of a group chooses a position and has preferences

regarding his chosen position. The group’s harmony depends on the pro-

file of chosen positions meeting a specific condition. We analyse a solution

concept (Richter and Rubinstein, 2020) based on a permissible set of indi-

vidual positions, which plays a role analogous to that of prices in compet-

itive equilibrium. Given the permissible set, members choose their most

preferred position. The set is tightened if the chosen positions are inharmo-

nious and relaxed if the restrictions are unnecessary. This new equilibrium

concept yields more attractive outcomes than does Nash equilibrium in the

corresponding game.
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1. Introduction

Each member of a group has to choose a position on the real line and has a single-

peaked preference relation over his position. Each member cares only about the po-

sition he chooses and does not attempt to influence, what we call the group’s overall

position. If the members’ choice profile does not satisfy a harmony condition related to

the overall position, then a crisis erupts. We analyse three such conditions. In the first, a

profile is harmonious if there is a position which a majority (or super majority) of mem-

bers agree on. In the other two, harmony requires that no member’s chosen position is

too far from the overall position, which is either the median or the average of the chosen

positions.

A leading scenario we have in mind is a debate within a political party. Each of the

party’s members has his own ideal policy. Each expresses a position and the profile of

expressed positions determines the party line. The unity of the party is dependent on

the members’ positions not deviating too much from that party line. If there is wide

variation among the members’ ideals (as is the case in many large political parties in

Western countries) and all of the party’s members stick to their ideals, then a crisis tears

the party apart. In order to survive, the party needs some mechanism which directs the

party’s members to express positions that preserve unity.

We employ the non-conventional Y-equilibrium concept developed in Richter and

Rubinstein (2020). A Y-equilibrium specifies the convex set of permissible positions and

each member’s chosen position. In a Y-equilibrium:

(i) the rationality condition: each member’s choice is his most preferred position from

among the permissible ones;

(ii) the harmony condition: the profile is harmonious;

(iii) the maximality condition: there is no larger set of permissible positions from which

a profile satisfying (i) & (ii) can be assigned.

Thus, a Y-equilibrium is required to be resistent to two forces. The first modifies

the permissible set when the profile of chosen positions leads to a crisis. The second

loosens restrictions on the permissible set when they are unnecessarily tight, that is,

when members’ optimal choices after the loosening would still avoid a crisis.
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We regard the permissible set as an expression of social norms which, like compet-

itive prices, apply uniformly to all members of the society. This uniformity might be

viewed as the outcome of a societal desire for fairness but primarily it is a simplicity

condition. Norms must be simple and easy to understand and apply. An important as-

pect of simplicity is that the norms do not depend on personal characteristics.

The Y-equilibrium notion offers a decentralized way to obtain harmony in a society,

without introducing an extraneous medium. No authority dictates the permissible and

forbidden sets, just as there is no authority that sets prices in the market.

We created the concept of Y-equilibrium as an abstract generalization of the concept

of competitive equilibrium to non-market social situations. We require that in equilib-

rium the permissible set yields a profile of optimal choices that preserves a harmony

condition. The permissible set plays a role analogous to that of the price system. The

harmony condition is analogous to the market requirement that total demand not ex-

ceed total supply. The maximality condition is akin to the condition that total demand

equals total supply.

In each of the three parts of the paper, we require that in equilibrium the profile

of positions satisfy some version of group cohesion related to an overall position. In

Richter and Rubinstein (2020), we analyzed a pairwise cohesion requirement that the

maximum distance between any two positions must not exceed a certain bound.

The paper can be viewed as an analysis of a Political Economics model in which

an individual does not try to influence the overall outcome. Rather he cares about the

position he expresses and some sort of unity is required for the existence of the group.

However, the main target of this paper is methodological. We suggest the reader to

consider using a non-strategic approach before instinctively grabbing a conventional

game-theoretic analysis off the shelf. For each of the three harmony conditions, we

study the corresponding game in which each member selects a position, where his first

priority is to avoid a crisis and his second priority is the position he takes. In a Nash

equilibrium, either the group collapses and no single member can save it by changing

his position, or the group survives and no member can improve his position without

causing a crisis.
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As mentioned above, our approach is closer to competitive equilibrium theory than

to game theory. Although game theory is rich and beautiful, we do not find it as ap-

pealing for the class of situations analyzed here. In particular, in the game-theoretic

approach, each member faces a dual mandate: maximizing his individual position and

avoiding a crisis. The latter requires that each member possesses information about all

of the other members’ choices. In our approach, an individual’s task is much simpler:

each member simply maximizes his position from among the set of permissible posi-

tions. We will see that the three corresponding games have a vast multiplicity of Nash

equilibria, most of which even lack the natural monotonicity property (the more right-

ish individuals have a weakly more rightish equilibrium position). Of course, it is up to

the reader to judge between the approaches; we just plea for researchers in Economics

not to automatically apply a particular solution concept.

2. The model

Each member of a group N = {1, . . . , n} chooses a position along the line X = �. The

group has an odd number of members. Each member i has continuous and strict con-

vex preferences over his position with a finite peak at p e a k i . For simplicity, we assume

that all peaks are distinct. Without loss of generality, we assume that the members are

ordered by their peaks from left to right. Denote the left-most peak by L, the median by

M and the right-most by R . A profile is a vector in X N and for ease of notation, we denote

x = (x i )i∈N , y = (y i )i∈N and z = (z i )i∈N . The group’s overall position is O(x ) where O is a

function of the positions chosen by the members. In each of the three versions of the

model, we use a different aggregation scheme: the mode, the median and the average.

Unlike in many familiar models, a member in our model does not care about the

group’s overall position. While in Hotelling (1929) a member cares only about the group’s

position and in Downs (1957) he also cares about his chosen position, here we go a step

further by positing that a member cares only about his chosen position.

The final component of the model is a set F ⊆ X N of harmonious choice profiles that

avoid a crisis. Each of the three cases that we consider is characterized by a different

function O and set F . In all three, the function O and the set F are anonymous.
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2.1 The equilibrium concept

A Y-equilibrium consists of two ingredients: The first is a convex permissible set, con-

sisting of the alternatives that all members choose from. It is a reflection of the social

norms that dictate the limits on the positions that are acceptable. The second is a pro-

file of choices from the permissible set – one choice for each member.

The following definition formalizes the three conditions (rationality, harmony and

maximality) described in the introduction:

Definition 1 A Y-equilibrium is a pair 〈Y , (y i )〉 where Y is a a convex set and (y i ) is a

profile of choices satisfying:

(i) for all i , y i is a�i -maximal position in Y ;

(ii) (y i )∈ F ; and

(iii) for no convex set Z ⊃ Y is there a profile (z i ) ∈ F such that z i is a �i -maximal alter-

native in Z for all i .

There are two motivations for our requirement that the permissible set is convex.

First, there is a natural asymmetry between the permissible and the forbidden. For ex-

ample, it is conceivable that a social norm would consider acceptable a social visit be-

tween 1-3 hours but it would be strange if the norm was the reverse (where the only

socially acceptable visits are either short visits of less than 1 hour or long visits of more

than 3, but medium visits of 2 hours are a social faux pas). “Forbidden” is associated

with extreme conditions and “permissible” with moderate conditions. Second, in our

one-dimensional setting, convexity implies that permitted behavior is an interval. An

interval is defined by a lower and upper bound which is the simplest way to describe a

subset of the line. Simplicity is a merit, and perhaps necessary, for a public norm to be

understood and internalized by a large group of members.

Note that in Richter and Rubinstein (2020), we allow the grand set X to be finite or

otherwise non-Euclidean. Therefore, we considered two variants of the solution con-

cept: without a convexity requirement (called Y-equilibrium) and with a convexity re-

quirement (called convex Y-equilibrium). In the current paper, the set of alternatives is

convex and therefore we only consider the second notion, which we simply refer to as

Y-equilibrium.
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Given that the set Y is required to be convex and that all preference relations are

single-peaked, each member’s optimal choice is unique. Therefore, a Y-equilibrium

can be specified simply by the permissible set. Thus, we often refer to a Y-equilibrium

〈Y , (y i )〉 by its permissible set Y only.

The permissible set is uniform for all members. Although one can imagine situations

in which the norms are different for different members, fair normative principles tend

to be uniform. Moreover, uniformity has the merit of simplicity.

It is worthwhile comparing the Y-equilibrium concept to that of standard competi-

tive equilibrium for an exchange economy:

(a) The two notions have similar structures. The permissible set in our solution is

analogous to a system of prices in the competitive equilibrium model, in that both de-

termine the choice sets.

(b) The permissible set is uniform, as is the competitive price system. In the stan-

dard competitive market model, all members face the same (linear) set of “net trades”.

(c) The competitive market model, unlike ours, has initial endowments, which leads to

nonuniform final choice sets (even though the net trade sets are uniform, subject to

feasibility).

(d) There is an analogy between a hidden assumption in the concept of competi-

tive equilibrium without endowments and our maximality requirement. Consider an

environment in which each agent has some money and there is a finite supply of goods

available. One can think about a weak equilibrium concept, which is a price vector such

that, for each good, the agents’ total demand does not exceed the total supply. In con-

trast, the standard competitive equilibrium notion is a price vector in which the sum

of all agents’ demands equals the total bundle. Thus, one can think about competitive

equilibrium as a weak equilibrium with the additional requirement of price minimality

or equivalently the maximality of agents’ opportunity sets.

We view Y-equilibrium as a decentralized concept. In competitive equilibrium, prices

adjust when there is excess supply or demand in order to achieve feasibility of the agents’

optimal choices (market clearing). Likewise, we imagine that the permissible set adjusts

by analogous equilibrating forces. If the profile of optimal choices induces members to

choose an inharmonious profile, then there is a pressure that tightens the permissible

set. On the other hand, if the limits can be loosened and the members’ updated optimal

choices are feasible then there is a pressure to relax the limits.
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2.2 The corresponding game

The following is the strategic game that corresponds to our model. The players are the

members of the group. The set of actions for each player is the set of positions X .

Each member j has a preference relation �j∗ on the set of choice profiles, such that

x = (x i )�j∗ y = (y i ) if either:

(i) x ∈ F and y /∈ F , or

(ii) both x , y ∈ F or both x , y /∈ F and x j �j y j .

In other words, every member lexicographically first prefers harmony and then his own

position.

The structure of the members’ preferences is a more extreme version of what is re-

ferred to in the literature as conformism (see Jones (1984)). In that literature, each mem-

ber of society faces a tradeoff between choosing an alternative that is close to his ideal

and his wish to conform to the group’s average behavior. These two considerations also

appear in our model but the smooth tradeoff is replaced by a lexicographic priority for

conformity.

The standard Nash equilibrium is applied to this game. A crisis equilibrium is a Nash

equilibrium profile outside of F . If it exists, then it must be the profile in which each

member chooses his peak since otherwise a member could deviate to his peak – which

he prefers – regardless of whether that results in harmony.

Note that every Pareto-efficient profile (z i ) in F is trivially a Nash equilibrium. If

(z i ) is not a Nash equilibrium, then there must be some member who strictly prefers a

different position and harmony is not disturbed if he moves to that new position. Since

all other members are indifferent to that move, it is a Pareto improvement, contradicting

the Pareto efficiency of (z i ). However, as demonstrated later, a Nash equilibrium does

not need to be Pareto-efficient.

The notion of a non-crisis Nash equilibrium in this game is identical to that of so-

cial equilibrium in Debreu (1952). The relation between Y-equilibrium and Debreu’s

social equilibrium was discussed in detail in Richter and Rubinstein (2020). The results

presented here confirm what we have argued before, namely that the two concepts of

Y-equilibrium and Debreu’s social equilibrium may lead to very different outcomes.
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3. A voting model

In this section, the harmony constraint is that at least τ of the n members propose

the same position where (n + 1)/2 ≤ τ ≤ n . That is, τ is a threshold between sim-

ple majority and full unanimity. This threshold could be interpreted as the minimal

number of members who are needed for a resolution to be made and a resolution is

necessary for the group to be in harmony. A profile satisfies the harmony condition if

there is a position chosen by at least τ members, and the unique majority-chosen po-

sition is taken to be the overall position. Recall that the members are ordered so that

p e a k 1 < p e a k 2 < . . .< p e a k n .

3.1 Y-equilibrium

Proposition 1 characterizes all Y-equilibria for every τ. The set of Y-equilibrium overall

positions is [p e a k n+1−τ, p e a k τ]. In particular, for the case of simple majority, the only

Y-equilibrium overall position is M . It follows that higher voting thresholds, rather than

promoting compromise, support additional extreme equilibrium outcomes.

Regarding permissible sets, for every threshold above a simple majority, each sup-

ported overall outcome is part of a unique Y-equilibrium, whereas for the simple major-

ity case, there are two Y -equilibria that support the unique overall position M .

Proposition 1 (i) For the case of simple majority, there are exactly two Y-equilibria. Each

has overall position M .

(ii) For any other threshold, the set of Y-equilibrium overall positions is [p e a k n+1−τ, p e a k τ].

Each overall position is supported by a unique Y-equilibrium.

Proof. (i) If a permissible set contains points both to the left and the right of M , then

no alternative attracts majority support: one member chooses M , a minority chooses

to the right of M and a different minority chooses to the left of M . Therefore any Y-

equilibrium must be a subset of [M ,∞) or (−∞, M ]. A majority supports M from [M ,∞),
and therefore [M ,∞) and (−∞, M ] are the only Y-equilibria.

(ii) We say that a convex set is a d-set if it contains at least two points in [p e a k n+1−τ, p e a k τ].

Observe that from any d-set, there is no alternative which is chosen by at least τmem-

bers. This is because if p e a k n+1−τ ≤ s < t ≤ p e a k τ are in a permissible set, then less
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than τmembers prefer any alternative above s to s and less than τmembers prefer any

alternative below t to t .

The set [p e a k τ,∞) is a Y-equilibrium with the overall outcome p e a k τ: members

1, . . . ,τ all choose p e a k τ while all others choose their peaks. Any larger set [l ,∞) is a

d-set. No other Y-equilibrium Y could have the overall position p e a k τ since Y cannot

be a subset of [p e a k τ,∞) and thus would be a d-set. Analogous arguments apply for

(−∞, p e a k n−τ+1].

For any position p e a k n+1−τ < t < p e a k τ, the set {t } is a Y-equilibrium (any larger

set is a d-set) and is also the unique Y-equilibrium with overall position t .

There is no Y-equilibrium Y with an overall position larger than p e a k τ since then

either Y is a subset of [p e a k τ,∞) or it is a d-set. An analogous argument rules out Y-

equilibria with overall positions to the left of p e a k n−τ+1. �

Notice that any position outside [L, R] is not an Y-equilibrium overall position for

any threshold. In the simple majority case, we have a “median voter theorem”: M is

the only Y-equilibrium overall position. While the unique overall position is M , which is

often taken to be an ideal compromise outcome, the permissible set is not in the spirit

of compromise since it allows choosing positions only to one side of M .

3.2 The voting game

A crisis equilibrium typically exists (except the case n = 3 and τ= 2). The Nash equilib-

rium notion allows for any overall position, even those outside of [L, R]. All non-crisis

Nash equilibria have a specific structure: τmembers choose an overall position and the

rest choose their peaks.

Proposition 2 The set of non-crisis Nash equilibria of the voting game consists of all pro-

files where a bare majority τ choose a position t , while all other members choose their

peaks.

Proof. Clearly, these are Nash equilibria. To see that there are no others, consider a Nash

equilibrium in which at least τmembers choose a common position t . Every member

who is not at t is not instrumental in maintaining harmony, and so must be at his peak. If

strictly more than τmembers choose t , then none of them is instrumental for harmony,

and at least one of them is not at his peak and would deviate. �
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3.3 Comparing the solution concepts

The difference between the two solution concepts is starkest for the simple majority

case. While the Y-equilibrium concept yields M as the only overall position, all positions,

including those outside the range [L, R], are Nash equilibrium overall positions.

The Nash equilibria of this game require extreme coordination between the mem-

bers because exactlyτmembers must support the overall position while all others choose

their peak. In a Y-equilibrium, the permissible set handles the coordination, just as com-

petitive prices coordinate supply and demand.

4. The near-median model

In this section, the overall position O(x ) is the median of the members’ choices, and

feasibility requires that all chosen positions are within d from the median. Formally,

F = {x | d (x j ,O(x )) ≤ d for all j }. We focus on the richest case, L + d <M < R − d . We

avoid boring details about the case in which the inequalities don’t hold, since it adds

nothing to the discussion. Without loss of generality, we set d = 1.

4.1 Y-equilibrium

Proposition 3 characterizes the Y-equilibria. There is a multiplicity of Y-equilibria, of

which [M − 1, M + 1] is special. It is the only one with overall position M and the only

one with a Pareto-efficient choice profile. It is also the only one that involves choices

both to the right and to the left of the median choice; in all other Y-equilibria, a majority

of members choose one of the endpoints of the permissible set.

Proposition 3

(i) The Y-equilibria of the near-median model are the following sets:

(a) [M −1, M +1] (with overall position M);

(b) [t−1, t ]with L+1< t <M , or [t , t+1]with M < t <R−1 (with overall position t );

(c) (−∞, L+1] or [R −1,∞) (with overall position L+1 or R −1).

(ii) The only Pareto-efficient Y-equilibrium is (a).

10



Proof. (i) We first verify that the above are indeed Y-equilibria.

(a) [M−1, M+1]. Obviously the median of the members’ choices is M and it remains

M from any larger permissible set. From [M −1, M +1]member 1 (with peak L) chooses

M −1, but would rather go further left while member n (with peak R) chooses M +1 and

would rather go further right. Thus, from any larger permissible set, at least one member

must be further than 1 from the median. Therefore, there is no larger permissible set

with a feasible profile of optimal choices.

(b-c) [t − 1, t ] with L + 1 < t <M . A majority of members choose t and member 1

chooses t − 1. Any right extension of the set would move the median to the right while

any left extension would move the choice of member 1 to the left. Thus, the profile

of optimal choices from any larger permissible set violates the harmony condition. A

similar argument holds for the other three cases.

We now show that there are no other Y-equilibria:

First, we show that in any other Y-equilibrium 〈Y , y 〉 the overall position is in

[L + 1, R − 1]. Suppose that O(y ) > R − 1. Observe that Y necessarily contains an al-

ternative z which is to the left of R − 1 because it is not a subset of the Y-equilibrium

[R − 1,∞). Since z ,O(y ) ∈ Y and Y is convex it follows that R − 1 ∈ Y . The majority of

members who have peaks to the left of R − 1 will choose a position to the left of R − 1, a

contradiction to O(y ) being to the right of R −1. Similarly, L+1≤O(y ).

Second, for each L + 1 ≤ t ≤ R − 1 we have already described a Y-equilibrium with

overall position t . Thus, it is sufficient to show that there are no two Y-equilibria, 〈Y , y 〉
and 〈Z , z 〉, with O(y ) = O(z ) = t . If M < t , then the left endpoint of Y and Z is t .

Therefore, the sets Y ,Z are nested, contradicting the smaller one being a Y-equilibrium.

Similarly, it cannot be that t < M . If t = M , then Y ,Z ⊆ [M − 1, M + 1], which is a Y-

equilibrium, and thus Y =Z = [M −1, M +1].

(ii) The Y-equilibrium [M−1, M+1] is Pareto-efficient. To see this, notice that all inte-

rior members are at their peak and cannot be improved. Thus, any Pareto-improvement

must move members at the right endpoint further to the right, or members at the left

endpoint further to the left, or both. Such a Pareto improvement does not change the

median position. Since both endpoints are 1 away from M , then any new position is

farther than 1 away from M , violating the harmony requirement.
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The Y-equilibria in (b ) and (c ) are Pareto-inefficient. Consider, for example, any Y-

equilibrium [t − 1, t ] with overall position t < M . A majority of members are at t and

would like to move to the right. Thus, a Pareto-improvement can be achieved by moving

a single member (or any number of members less than a majority) closer to his peak. �

4.2 The near-median game

We will now study the set of non-crisis Nash equilibria and show that the set of Nash

equilibrium overall positions is also [L+ 1, R − 1]. When preferences are sufficiently di-

verse, for example if L+2<M <R −2, then the game has a crisis equilibrium where (as

in any crisis equilibrium) all members choose their peaks and the overall position is M .

Proposition 4 (i) The only Y-equilibrium of the near-median model in which the profile

is a Nash equilibrium of the near-median game is [M −1, M +1].

(ii) The set of Nash equilibria overall positions of the near-median game is [L+1, R −1].

(iii) In every Nash equilibrium with an overall position t <M , there are two members i , j

with p e a k i , p e a k j ≥M such that i chooses t , and j chooses strictly to the right of t .

Proof. (i) The position profile chosen from the Y-equilibrium [M − 1, M + 1] is a Nash

equilibrium of the game. A player who chooses an internal point is at his first-best. A

player who chooses an endpoint, say M +1, does not prefer to move to the left since his

peak is to the right and does not prefer to move to the right since he will then be further

away from M , thus causing a crisis.

On the other hand, consider the Y-equilibria (−∞, L+1] or [t−1, t ]with L+1< t <M .

A majority of members choose the right endpoint of the permissible set, which is also the

overall position, and prefer to move to the right. Each of them has a profitable deviation,

a move of size less than 1 towards his ideal position, which does not change the median

position and preserves harmony.

(ii) We now construct a Nash equilibrium with overall position t ∈ [L + 1, M ) (the

case t ∈ [L + 1, M ) is analogous). Assign to each i with p e a k i ≤ t his most preferred

position in [t −1, t ]. The number m of such members satisfies 1≤m <(n +1)/2. Assign

t to any (n + 1)/2−m members with peaks greater than t . Assign to every other i his
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most preferred position in [t , t +1]. This assignment is harmonious and its median is t .

No member at his peak wishes to move. Members at t − 1 only wish to move leftward,

while members at t +1 (if there are any) only wish to move rightward; but any such move

would violate harmony. Each of the rightist members at t wishes to move to the right,

but each is pivotal for harmony.

For example, for n = 3 and peaks at 0, 5 and 10, the Nash equilibrium constructed

for t = 4½ is (3½,5,4½). Note that this Nash equilibrium is not monotonic in members’

peaks.

p e a k 1 = 0 p e a k 2 = 5 p e a k 3 = 10

y 1 y 3 y 2

Figure 1: Example Nash equilibrium with median 4½.

There is no Nash equilibrium with an overall position t < L + 1 <M . If there were,

then no member chooses the position t − 1 < L, since any member who chooses that

point would prefer to move right and can do so without disturbing feasibility. As a ma-

jority of members choose a position in (−∞, t ] and a majority of members have peaks

in [M , R], there is a member who wishes to move to the right and can do so without

violating harmony (even if he moves the median to the right).

(iii) No member j with p e a k j < t chooses a position y j > t since he would benefit

by deviating to t . Likewise, no member j with p e a k j > t chooses a position y j < t .

Thus, since there is a majority of members with peak weakly above M and there is a

majority of members with choice weakly below t , there must be at least one member i

with p e a k i ≥ M who chooses t . Member i would move to the right unless he would

shift the median to the right. Thus, the number of members who choose positions in

[t − 1, t ] is exactly (n + 1)/2 and it includes member 1. Thus, there is some member j

whose peak is weakly above M and whose choice is strictly above t . �
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4.3 Comparing the solution concepts

The set of non-crisis Nash equilibria is huge and one can verify that it is equal to the set

of all Pareto-efficient profiles. The Y-equilibrium approach and the Nash equilibrium

approach yield the same set of overall positions but each overall position is supported

by many Nash equilibria and only by a unique permissible set and a unique profile.

The Nash equilibria differ from the Y-equilibrium notion on multiple fronts: First, in

every Nash equilibrium (except the one which is also a Y-equilibrium), some members

are trapped. That is, when the overall position is below the median, the trapped member

is “rightist” and wishes to move further to their peaks, as other rightist members are

allowed to, but they cannot because it would cause some other "extreme left" members

to be too far from the new median, thus causing a crisis.

Second, as a consequence of this trapping and as demonstrated in Proposition 4, the

Nash equilibria typically are non-monotonic in the sense that member i – who is more

rightish than member j – chooses a position to the left of the position chosen by j . In

contrast, a Y-equilibrium is based on choice from the same set and a member’s choice is

always monotonic in his peak.
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5. The near-average model

In this section, the overall position O(x ) of the profile x is the average of the choices,

denoted by a v g (x ). The harmony condition requires that all chosen positions are “near

the average”. Formally, F = {x | d (x j , a v g (x ))≤ 1 for all j }. We focus on the more inter-

esting case where R − L > 2, in which the ideal positions are diverse.

5.1 Y-equilibrium

There is a continuum of Y-equilibria. The left limit of a Y-equilibrium permissible set

is either −∞ or a point in [L, L′] where L′ < R . The right limit is either ∞ or a point in

[R ′, R]where L <R ′. No two Y-equilibria have the same overall position.

Proposition 5 In the near-average model:

(a) There are L < L′ and R ′ < R and a continuous and strictly increasing function r :

[L, L′] → [R ′, R] with r (L) = R ′ and r (L′) = R such that the Y-equilibria are: (−∞, R ′],
[L′,∞) and for each l ∈ (L, L′) the set [l , r (l )].

(b) There are no two Y-equilibria with the same overall position.

(c) Every Y-equilibrium profile is Pareto-efficient but there may be other Pareto-efficient

profiles.

Proof. (a) For any s ≤ t , let x (s , t ) be the profile where x i (s , t ) is member i ’s most pre-

ferred location in [s , t ] and Φ(s , t ) =maxi d (x i (s , t ), a v g (x (s , t ))), which is the maximal

distance between a member’s position and the average. The function Φ(s , t ) is continu-

ous and Φ(s , s ) = 0 for all s . The function is also strictly decreasing in s when s ∈ [L, R]

and constant when s /∈ [L, R] and is strictly increasing in t when t ∈ [L, R] and constant

when t /∈ [L, R].

Since R − L > 2, it follows that Φ(L, R) > 1. Thus, there is a unique R ′ < R with

Φ(L, R ′) = 1 and a unique L′ such that Φ(L′, R) = 1. For every l ∈ (L, L′), we have Φ(l , R)>

1, and so there is a unique point r (l ) such that Φ(l , r (l )) = 1.

It follows that (−∞, R ′], [L′,∞) are Y-equilibria and there is no other unbounded Y-

equilibrium. Also, for every l ∈ (L, L′) the set [l , r (l )] is a Y-equilibrium. There is no

other Y-equilibrium [l , r ] where −∞ < l < L since Φ(l , R ′) = 1 and therefore, if R ′ < r

then Φ(l , r ) > 1 and if r ≤ R ′ then [l , r ] is strictly included in the Y-equilibrium Y =
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(−∞, R ′]. There is no Y-equilibrium [l , r ] with l > L′ since such a set is a subset of the

Y-equilibrium [L′,∞).
(b) Notice that a v g (x (l , r (l ))) is an increasing function of l ∈ [L, L′] since the intervals

move to the right, the members’ choices weakly move to the right and the members at L

and R strictly move to the right. Thus, no two Y-equilibria have the same average choice.

(c) Consider a bounded Y-equilibrium of the type [l , r ]with the overall position t . Since

L < l and r < R , some members choose l while others choose r . By the maximality

condition, t = l +1 or t = r −1.

WLOG, assume that t = l +1. Members with peaks to the left of l choose l but wish

to move further left. Members with peaks between l and r choose their peaks. Members

with peaks to the right of r choose r but wish to move further right. Suppose there is a

Pareto-improvement with average t ′. Members with peaks in [l , r ] remain at their peak.

If members move only to the right, then t ′ > t , the members who choose l do not move

and d (l , t ′) > 1, thus violating harmony. Otherwise, some members move to the left.

Let λ be the largest move leftward. Since not all members move to the left, the average

decreases by less than λ and therefore d (l −λ, t ′)> 1, thus violating feasibility.

A similar argument demonstrates the Pareto efficiency of the two unbounded Y-

equilibria.

Finally, consider a three member group where p e a k 1 =−2, p e a k 2 =−1 and p e a k 3 =

1. The profile (0,−1,+1) is Pareto-efficient since members 2 and 3 are at their peaks and

any move by member 1 violates the harmony condition. However, the profile is not a

Y-equilibrium outcome since member 1 prefers to move to −1 which must be in the

permissible set . �
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For illustration, suppose that there are three members with peaks at 1, 4 and 7, re-

spectively. The Y-equilibria are depicted in Figure 2. Notice that R ′ = 2.5 and L′ = 5.5.

1 2 3 4 5 6

1

2

3

4

5

6

left
endpoin

t

rig
ht endpoin

t

Av g

y 1 y 2,y 3

interval

l

Figure 2: The two infinite Y-equilibrium permissible sets, (−∞,2.5] and [5.5,∞), are depicted
by the red arrows. The bounded permissible sets have left endpoints l ranging from 1 to 5.5.
Each bounded Y-equilibrium is a horizontal interval between the dashed lines. Three such equi-
libria are depicted by the red line segments. The average of each permissible set is depicted by
the orange curve. Choices of members 1, 2 and 3 are respectively depicted by blue, green and
burgundy dots.

5.2 The near-average game

Every Y-equilibrium profile is Pareto-efficient and thus is also a Nash equilibrium of the

near-average game. However, when there are at least five members, there are many more

Nash equilibria, and in fact any position can be a Nash equilibrium overall position.
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Proposition 6 When n ≥ 5, all positions, even those outside of [L, R], are Nash equilib-

rium overall positions of the near-average game.

Proof. Consider a profile of choices in which one member is at t and all others are split

equally between t − 1 and t + 1. This is a Nash equilibrium of the near-average game

regardless of the members’ preferences, since any individual move to the left (right) will

bring the average to below (above) t and makes it of distance larger 1 for at least one

member who stays at t +1 (t −1). �

5.3 Comparing the solution concepts

Every possible position, including those outside [L, R] is an overall Nash equilibrium

position. Many of the Nash equilibria are Pareto-dominated. For example, any Nash

equilibrium with overall position to the right of R is dominated by another Nash equi-

librium. In contrast, the set of Y-equilibrium overall positions is restricted to [L, R]. Each

overall position in this range is supported by a unique Y-equilibrium and the Y-equilibria

profiles are Pareto efficient.

A Nash equilibrium like the one described in (ii) depends on a high degree of co-

ordination between the players. A player’s optimization requires knowledge of all other

players’ choices. Tragic coordination might leave players stuck at positions far from their

peaks.

These Nash equilibria are especially tragic because from these profiles, no agent has

a feasible deviation, and thus, they are Nash equilibria regardless of preferences. This

means that all previously identified flaws can simultaneously apply to these Nash equi-

libria: in addition to Pareto inefficiency, they may be non-monotonic, they may feature

envy where the middle agent wishes to move to one of the endpoints, and they may be

unstable (a pair of agents might like to swap positions, but cannot individualistically

move).
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6. Final comments

This paper is a part of a larger project exploring “price-like” though “non-price” insti-

tutions that can bring harmony in conflicting social environments (see Piccione and

Rubinstein (2007), Richter and Rubinstein (2015, 2020) and Rubinstein and Wolinksy

(2021)).

Three models were presented in which each member of a group chooses a position

along a line and stability depended on the combination of positions satisfying a specific

constraint: “having enough support for one of the positions”, “not being too far from

the median” or “not being too far from the average”. We characterized the Y-equilibrium

concept and compared it to Nash equilibrium, and arrived at four observations:

(a) In all three models, there is a much larger multiplicity of Nash equilibria than Y-

equilibrium choice profiles.

(b) Many of the Nash equilibria require an extraordinary degree of coordination be-

tween the members in order for them to jointly satisfy the harmony constraint. The

Y-equilibrium solution concept only requires members to know the social restrictions,

just as in the marketplace individuals need only know prices but not other members’

actions.

(c) In two of the models, all positions – even outside the range of the members’ peaks –

are Nash equilibria overall positions. This is not the case for Y-equilibrium.

(d) In all three models there are non-monotonic Nash equilibria. A Y-equilibrium is

always monotonic. Furthermore, most of the Nash equilibria have an envious flavor:

some members are trapped with the responsibility of upholding feasibility while others

are freer in their choices. The trapped members would like to move towards the freer

members, but they cannot because doing so would destroy harmony either for them-

selves (as in the voting model) or for some other members (as in the other two models).

Needless to say, we are not arguing that the common game-theoretical approach is

“wrong” or “valueless”. But we do urge the reader to put a question mark before auto-

matically applying Nash-equilibrium-like concepts and to consider alternative solution

concepts in the spirit of the one presented here.
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