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Abstract

The paper presents an approach to selecting among the many subgame perfect
equilibria which exist in a standard concession game with complete
information. We extend the description of a game to include a specific
"irrational® (mixed) strategy for each player. An "extended equilibrium" is
then an equilibrium of the original game that is the limit of an equilibrium
of the corresponding game of incomplete information obtained by introducing
the irrational strategies with arbitrary small probability. Depending on the
irrational strategies chosen, we demonstrate that, for the "war of attrition",
this approach may select a unique equilibrium in which the weaker player moves
immediately. A player is weaker if either he is more impatient or his

irrational strategy is to wait in any period with the higher probability.



1. The War of Attrition

The following game is a variant of the "War of Attrition® which is now
a standard paradigm in economic theory. (See Hendricks and Wilson (1985) for
a survey of the literature) Two players, 1 and 2, are involved in a dispute.
Time is discrete and the players alternately have the option to concede. If
player 1 concedes in period t, the outcome is (A,t). If player 2 concedes in
period t, the outcome is (B,t). If neither ever concedes the outcome is
(C,»).

The game form is illustrated in Figure 1. To enforce the alternation
of moves, we restrict player 1 to move only in the even periods and player 2
to move only in the odd periods. A strategy for player 1 is then a sequence
o = (al(t))vm,aa,”.’ where al(t) € [0,1] 1is the probability that player
1 will not concede in period t conditional on the game reaching period t.
Similarly, a strategy for player 2 is a sequence
@, = (@ ())y 55,0

We suppose that the preferences of the players can be represented by
VNM utilities v, satisfying vl(C,w) = VZ(C,w) =0 and, for t < o,
vi(x,t) = ui(x)6:, where ul(A) = uZ(B) = L (the low payoff) is the return
to conceding and u (B) = u,(A) = H (the high payoff) is a player's return if
the other player concedes. We assume that 0 < § <1 and Hé > 1L > 0 for
i =1,2. Thus, if a player is sure his opponent will concede in the next
period, it is optimal for him not to concede, but, if he is to be the first to
concede, he prefers to do it sooner rather than later.

There are two asymmetries in the model. One is due to the order of

the moves in the game. For our purposes, this asymmetry is not important



since our results below do not depend on the order in which the players move . '
The second potential asymmetry is in the time preferences of the players (6,
may be different than §,). It is on this asymmetry that we will focus our
attention.

Regardless of the relative size of the discount factors, there is an
infinity of subgame perfect equilibrium outcomes. One of these outcomes is
for player 1 to move immediately. Another is for player 1 to wait and for
player 2 to move immediately. Our own intuition, however, suggests that the
weaker player, the one with the lower discount factor, should concede
immediately. One of the aims of the paper is to develop a criterion for

selecting this particular equilibrium outcome.

2. What Is Missing in the Model

We take the position that a game of complete information can generally
be thought of as an approximation to a multi-person decision problem in which
each player is reasonably certain about the objectives of the other players
but does entertain the possibility that one or more of the other players will
act irrationally. There are, of course, many ways to model an "irrational"
player. For the purposes of this paper, we will identify an irrational player
with a particular mixed strategy. Our criterion for selecting an equilibrium
will then require that it be close to an equilibrium of the corresponding
perturbed game obtained by introducing some irrational player with arbitrary
small probability.

FF R Ak
! This asymmetry could be eliminated by supposing that the players move

simultaneously in each period. Our general results remain unchanged, but the
analysis of the equilibrium becomes more complicated.



One may view our approach as the combination of two ideas that are
already well established in the literature. In a series of papers, Kreps,
Milgrom, Roberts, and Wilson (1982), Kreps and Wilson (1982), and Milgrom and
Roberts (1982) have included the players' doubts explicitly in the model. In
determining the equilibrium outcomes in the chain store paradox and in the
prisoner’s dilemma, they suppose that the players assign a small probability
that their opponents use a certain strategy specified exogenously by the
modeller (the "tough" chain store strategy and the "tit-for-tat" accordingly) .
Under such an assumption they are able to obtain sequential equilibria which
are not equilibria of the original game.

Our approach differs from theirs in that we are interested in
selecting an equilibrium from the set of equilibria of the original game of
complete information rather than trying to justify a new equilibrium outcome.
Thus, although we modify the game by adding an irrational player, we are only
interested in the equilibria as the probability of the irrational player goes
to zero. This leads us to the second idea to which our idea is related.
Selten (1975), Myerson (1978), Kohlberg and Mertens (1985), and others have
suggested equilibrium concepts based on the limit of the equilibria of
sequences of perturbed games.

The most widely used of these ideas is Selten’s concept of a
"trembling hand" perfect equilibrium. An equilibrium is trembling hand
perfect if it is the limit of the equilibria of some sequence of games in
which the behavior strategy at each information set is perturbed with
increasingly small probability. Thus not only is the specific perturbation
unspecified in advance but any errors across information sets are

uncorrelated. Evidently, mistakes are to be interpreted as errors of



execution rather than errors of rationality.

The primary motivation behind Selten’s approach was to extend the
intuition of subgame perfection to games with incomplete information. The
motivation behind our approach is to test an equilibrium against a
prespecified possibility of irrational behavior. Thus, our concept of an
"extended" equilibrium differs from the trembling hand perfect equilibrium in
two ways. First, our perturbations are in mixed strategies rather than local
strategies (or mixed strategies in the agent—normal form). This leads to the
possibility that mistakes are correlated across information sets.? Second, we
specify as part of the description of the "extended" game the precise form of
irrational behavior (and hence the specific perturbations of the strategies)

to be considered.

3. The Concept of an Extended Game

For any n player game I' in extensive form and any vector of behavior

strategies g* = (a?,...,o:), we will call (P,g*) an extended game. We

interpret the extended game as a statement of the underlying game plus the
beliefs of the players about the form of the possible irrationality of the
others. Each player believes that player i has the preferences defined by T
with probability near 1 but believes that there is some chance that the
strategy of player i is o?.

For any ¢ € (0,1), let (F,g*,e) be a game with the same extensive
form and payoffs as I with the property that any strategy combination ¢ for
(F,g*,e) is equivalent to the strategy combination eg+(1—e)g* for I.°
Fsek ke ek

2 See Binmore (1985) for a discussion about the relation between correlated
trembles and irrational behavior.

> If I(g) is the payoff to player i from strategy combination g for the



Then, given some metric function d on the space of strategies, we may define
an extended (subgame perfect) equilibrium for (P,g*) as a strategy
combination ¢ such that, for any ¢ > 0, there is an €, € (0,¢) and a
strategy combination ¢' such that (i) d(ai,a;) <e, i=1,...,n, and
(ii) ¢’ is a (subgame perfect) equilibrium for (F,g*,el).

For games with a finite strategy space, the existence of an extended
equilibrium (using the Euclidean norm) follows from standard arguments.4

With these concepts in hand, we turn to the concession game described

in Section 1.

4. The Main Result

We will use the concept of an extended subgame perfect equilibrium to
study how the specification of beliefs about the form of the possible
irrationality of the other player influences the equilibrium outcome of the
concession game described in Section 1. Our basic point can be illustrated by
the following example. Suppose that each player is irrational with
probability e > 0 where for player 2 irrationality means never to concede
and for player 1 it means to concede always. It is easy to check that,
regardless of the values of 61 and 6,, the only equilibrium outcome is for
player 1 to concede immediately. This observation fits nicely our intuition
that the asymmetry in the content of "out of rationality" behavior is critical
in determining the outcome of the game. Player 2 can build up a reputation of
R R AR E T T

game I', then Hf(g) = Hi(eg + (1—e)g*) is the payoff to player i in the
game (F,g*,e) from strategy combination o.

* An equilibrium o(e) exists for each (F,g*,e). Letting ¢ -+ 0, we may
extract a convergent subsequence. The limit is an extended equilibrium for
(F,g*). Note that it is also an equilibrium for T.



playing tough whereas player 1 does not have the tools to do that. 1In this
section, we parameterize the ability of players to build up their reputations
and investigate its implications for the equilibrium of the game.5

In general, there are irrational opponents against whom it is optimal
to concede immediately but to wait if the game reaches some later stage
without a concession. Consequently, if the influence of an irrational player
is to be independent of time, we must impose some stationarity in the
strategies of the irrational opponents. We will therefore restrict attention
to irrational players whose strategies are of the form vy = (v,v,Y,...).
That is, the irrational player plans to concede with the same probability
(1-v), conditional upon reaching any period in which he is permitted to move.
This leads to the class of extended games (F(61,62),(71,72)) where 61 and 62
define the original game F(81,82) and (11,12) are stationary strategies of
the irrational players 1 and 2.

In what follows, let i refer to an arbitrary player and j to the other
player. Assume any integer t is odd or even as the definitions require.

To state our main result, let P, be the solution of the equation

5,[(1-pH + p,§.L] = L.

Suppose that, conditional on reaching period t, player j concedes with
probability (l—pj). Then player i is indifferent between conceding in period
t—1 and waiting until period t+l to concede. If, conditional on reaching
period t, player j plans to wait with a probability greater than P, then

FEFRFFFFFKKTAN

5 For a discussion of this use of the concept of reputation, see Wilson
(1985).



player i prefers to concede in period t-1 rather in period t+l. If,
conditional on reaching any period t, player j plans to wait with a
probability less than P, then player i prefers to wait until period t+l
rather than concede in period t-1. Since we suppose that SiH > L, it follows
that 0 < P, < 1. Furthermore, 6 > Sj implies P, > p,.

Finally, let d be any metric which generates the product topology in
the space of strategies. For instance, we may define the distance between two
strategies o, and a{ as

day,a) = o la (20)-as(2e) 27",

The distance between a, and a, may be defined similarly. Then we may state

our main result as follows.

Theorem 1: Consider (F(61,62),(7l,72)) with the metric d. Suppose v, > p,-
Then 72/p2 > 'yl/p1 implies that al(O) = 0 1is the unique extended subgame

perfect equilibrium outcome.

Recall that v, is the probability that, upon reaching any period, the
irrational player i does not concede, and p, is the probability of waiting in
any period that induces indifference for player j between immediate concession
and waiting to concede at his next turn. If 7, is greater than P, then,
faced with his irrational opponent, player 1 would concede immediately. If in
addition, the ratio 72/1:)2 is greater than 71/p1, then Theorem 1 implies that
player 1 concedes immediately in any extended subgame perfect equilibrium. In

particular, if the players have identical time preferences (51 = 62), the



player with the better facility for building a reputation for toughness (the
highest yi) will win, while if the players have the same facilities for
establishing a reputation (71 = 72), then the more impatient player concedes
immediately.

Theorem 1 is a statement about the equilibrium outcomes. For almost
all parameter values, the extended subgame perfect equilibrium is itself

unique.

Theorem 2: Consider (F(61,52),(71,72)) with the metric d.
(a) If =v,/p, > 7,/P, > 1, then a, = (0,p,,p,,P,,.--) and

a, = (pz,pz,pz,...) is the unique extended subgame perfect equilibrium.
(b) 1If 72/p2 > 1> 71/p1, then a = (0,0,0,...) and a, = (1,1,1,...) 1is

the unique extended subgame perfect equilibrium.

Civen the conditions of Theorem 1, Theorem 2 reveals a kind of second
order benefit to player 1 if his irrational counterpart (who plays 71) is
sufficiently tough. When 'yl/p1 < 1, player 2 always waits and player 1
always concedes, regardless of the history of the game. However, when v /p,
> 1, either player i concedes with probability (1—pi) upon reaching any later
period. Thus, if player 1 makes a "mistake" in the first period and waits,
there is positive probability that player 2 will eventually concede.

Theorem 1 depends upon the satisfaction of two conditions. First, at
least one of the players must have the ability to build a reputation for
toughness. Second, one of the players must have an advantage over his
opponent in building his reputation. If either of these conditions are

violated, we obtain a different set of extended subgame perfect equilibrium



outcomes.

Theorem 3: Consider (F(81,62),(71,12)) with the metric d.

(a) If 72/p2 = 'yl/p1 > 1, then (al,az) is an extended subgame perfect
equilibrium if and only if o, = (al(O),pl,pl,pl,...) and
a, = (pz,pz,pz,...), where o, (0) € [p1’71]'

(b) 1f 72/p2,71/p1 < 1, then (i) al(O) =0 and (ii) al(O) =1 and

az(l) — 0 are both extended subgame perfect equilibrium outcomes.

If 71/131 = 72/p2 > 1, then both players have an equal facility for
building a reputation for toughness. In this case, player 1 concedes
immediately with a probability between l-p, 6 and 1=y, Thereafter, the
probability with which player 1 concedes depends only on the impatience of the
other player. If neither irrational player is sufficiently tough to induce a
rational opponent to concede, then it is an extended subgame perfect
equilibrium outcome for either player to concede immediately.6

If we reverse the order of 71/p1 and 72/p2, the statement of the

theorems must be modified, but the results are essentially the same.

5. Concluding Remarks

In this paper, we have developed some concepts which, in some cases,
allow us to select a specific outcome in games with multiple equilibria.
Essentially, we are suggesting that the specification of a game be extended to

include the details about the kind of response a player expects to face if his

Fesekdkk kR kR
® In fact, we can show that when 7i/pi <1 for i = 1,2, the set of extended
subgame perfect equilibria for (F(61,62),(71,7?)) is equal to the set of
perfect equilibria for I'(6,,6,). )
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opponent deviates from rational behavior. For the particular concession game
we have examined above, we have parameterized how the differences in the
tendency of players to play excessively tough (or weak) affects the
interaction of rational players.

As we have seen, for some parameter values (i.e. when the irrational
behavior of both players tends to be excessively weak), this approach yields
no additional restrictions on the equilibrium outcomes. For other parameter
values, however, our concept leads to a unique equilibrium outcome.’
Philosophically, this approach is very different from the approach of many
other writers, including Kohlberg-Mertens who seek a single criterion which
all games must satisfy. Although our approach may seem less satisfying than
using more rigid criteria, we believe it is preferable to make explicit the
presumptions we have in certain situations rather than obscure them behind
artificial criteria the motivation of which is somewhat vague.

Kk dkdrddddhbdn

7 The possibility that the choice of irrational perturbations may affect the
equilibrium outcome is illustrated most dramatically in a recent paper by
Fudenberg and Maskin (1986). In the context of a repeated game, they show
that every individually rational payoff can be approximated as an equilibrium
payoff of a game with the proper choice of irrational behavior.
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Appendix

In this appendix, we establish a series of lemmata which lead to the
the proofs of Theorems 1 to 3. To establish our results, we study in Lemmata
1 to 8 the structure of the game (F(51,62),(71,72),e) for small values of e.
The proofs of the theorems then follow from a study of the equilibria of
(F(61,62),(71,72),e) as ¢ is made arbitrarily small.
To simplify the exposition, we will suppose that 1 > v, > 0 for
i=1,2.°

Suppose player 1 is playing strategy a,. We will use the following
notation. Let ul(t) be the probability that player 2 believes that player 1

is an irrational player conditional on the game reaching period t. Define

pl(—l) = ¢, and, for any odd period t,

p,(E42) = v (£)/B (t+1)

where

B(t+1) = [1-p () ]a, (t+1) + p (£)7,

is the probability that player 2 believes that player 1 will not concede in
period t+l conditional on reaching period t+l. Finally, for any even period
t, let I (t,a ) be the expected payoff to player 1 from waiting until period t

FAAEATFAALATAR

8 1f v, =1 for some player i, only a slight modification of the proofs is
requlred If ., 0 for both players i, then the set of extended equilibria
correspond to tﬁe set of all Nash equilibria. If =, = 0 for only one player
i, the main results of the paper are still satlsfled but the argument is a
bit more complicated due to the possibility that one of the players can move
with probability 1 in finite time.
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and then conceding, given that the rational player 2 plays strategy o,.
Similarly, II,(»,a,) is the payoff to player 1 if he plans never to concede,
given @,. For odd periods t, pz(t—l), ﬂz(t), Hz(t,al) may be defined
similarly.

In what follows, we will assume that both players are following
equilibrium strategies. We proceed by establishing some restrictions on the

equilibrium strategies.

Lemma 1: Suppose t > 0.

(a) If ﬁi(t) > P, then (i) aj(t—l) = 0 (which implies uj(t) =1) or
(ii) aj(t+1) = 1.

(b) ﬁi(t) <p, implies aj(t—l) =1,

(e) Bi(t+k) > p, for all even k = 0 implies aj(t—l) =0,

Proof:

If, conditional on reaching period t, player i plans to wait with
probability greater than P, then, conditional on reaching period t-1, player
j prefers moving immediately to waiting until period t+l to move. Since
7, > 0 1implies that each period is reached with positive probability, it
follows that Hj(t—l,ai) > Hj(t+1,ai). Therefore, either aj(t—l) =0, in
which case “j(t) =1, or aj(t+1) = 1. This establishes (a).

To establish part (b), note that, if, conditional on reaching period
t, player 1 plans to wait with probability smaller than P, then, conditional
on reaching period t-1, player j prefers to wait until period t+l to moving
immediately. Therefore, Hj(t—l,ai) < Hj(t+1,ai) and hence aj(t—l) =1,

To establish part (c¢), recall from the proof of part (a) that
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ﬁi(t+k) > p, implies Hj(t+k—l,ai) > Hj(t+k+l,ai). Therefore, if

ﬁi(t+k) > p,; for all even k > 0, then
Hj(t—l,ai) > limk_ml'[j(t+2k,ai) = Hj(oo,ai)

which implies that aj(t~l) = 0 1is a best response. Q.E.D.
For 1 =1,2, define
By = (1-p,)/(1-,).

Then, using the definitions of ﬂi(t+1) and ﬁi, we may express Bi(t+1) as
B(t+1) = p, + [1=, ()] (e, (t+1)-1]) + (1-p,) [k, 4, (t)1/A,.
Therefore, if pi(t) > ﬁi, then ﬁi(t+l) <p, for any value of ai(t+1)

between 0 and 1. It then follows from Lemma 1 that aj(t) =1. If
ui(t) < ﬁi, then ai(t+l) =1 implies ﬁi(t+l) > p,. Note, also, that
ﬁi <1l if and only if 7, <P,

Lemma 2: B, (t) > p, implies B (t+l) < ﬁi.

Proof:

If v, >p,, then p (t+l) =<1 <ﬁi.

If v =< P, then ﬂi(t) > P, implies that pi(t—l) < u,.

1

Therefore,
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p(E+1) = vy, (e-1)/B,(t) < p (t-1) < .

Q.E.D.

Lemma 3: Suppose t > 1,

If p(t=2) < ﬁj and 1> K> p (t-1)

> ﬁ;, then
(a) &, (t) = 1;

(b) 4, (£+1) < p, (t=1) [v,/[1-K+Ky,]].

Proof:

Suppose ai(t) < 1. Then

A(0) = (1w (tD)]a, (6) + 7,p,(t-1) < 1-(1—y)p, (t-1) < 1-(1-y))F,
= p..

1

Lemma 1(b) then implies that aj(t—l) =1

Our assumption that

pj(t—2) < ﬁj then implies that ﬂj(t—l) > P, and from Lemma 1(a) either

ai(t) =1 or ai(t—2) = 0 which implies that ui(t—l) =1

A contradiction.
To establish (b), note that since

ai(t) =1, it follows that

p (t+1) = p(=1) [, /B,(E)] = ,u.i(t—l)[,Yi/f[(1—,Ui(t——1))ai(t)+’)’i#i(t—l)]]
< py (e=1) [,/ [1-K+y K] ]

Lemma 4: (a) Suppose t > 1.

Then pj(t—2) < ﬁj and ui(t—l) < u
implies ﬁi(t) 2 p,.
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(b) Suppose t > 0. Then pj(t) < ﬁj implies either B, (t) = p, or

p,i(t+l) =1.

Proof:

Suppose there is a t > 1 such that uj(t—2) < ﬁg and ﬂi(t) <p,.
Then Lemma 1 implies that aj(t—l) = 1 and hence that ﬂj(t—l) > P, But
Lemma 1 then implies that either ai(t) =1 or ui(t-l) = 1. If we now
suppose that pi(t—l) =< ﬁi, then it follows by definition ﬂi(t) 2 p,. This
contradiction establishes part (a).

To establish part (b), suppose there is a t > 0 such that
uj(t) < ﬁg and ﬂi(t) > p;- Then Lemma 1(a) implies that aj(t+1) =1 and

therefore that

ﬁj(t+1) aj(t+l)[1—#j(t)] + #j(t)vj = [l—uj(t)] + uj(t)vj

=1 - (Ol > l=ptuy, = p,.
It also follows from Lemma 2 that B (t+]) < ﬁi. Proceeding by induction, we
may establish that ﬂj(t+k) > P, for all odd k > 0. It then follows from

Lemma 1(c¢) that ai(t) = 0 which implies that pi(t+1) =1. Q.E.D.
Lemma 5: If 72/p2 >1 > 71/p1, then pl(l) =1,

Proof:

Suppose pl(l) < 1. Note first that 7, > P, implies that ﬁz > 1.
Therefore, if pl(l) > ;1’ then it follows by induction on Lemma 3(b) that
pl(t) < ﬁl for some t < ®», Let é be the smallest such t. Then Lemma 4(a)

implies that ﬂl(€+l) > p, from which it follows that
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B (E+2) < p ()Y, /p, < p(t) < ;71 < 1.

Letting i =1 in both parts (a) and (b) of Lemma 4, it follows that
ﬂl(E+l) = P,.- Proceeding by induction, we may conclude that ﬁl(t+1) =P,
and pl(t) < ﬁl <1 for odd t > E.

Now consider player 2. For ¢ > €+2, Lemma 4 implies that either

ﬁz(t) =p, or pz(t+1) = 1. Therefore, if uz(t+1) < 1, it follows by

definition that
P (E+1) [, (£=1) = v, /p, > 1,

By induction, we may conclude that pz(E) =1 for some t > E. But this
implies that Bz(t) =7, > P, for all odd t > t. Then, by Lemma 1(c),
al(E) = 0 and hence pl(E+1) = 1. This contradiction pProves the result.

Q.E.D.
Define éi = sup{t: ui(t) < 13.

Lemma 6: Suppose 7i/pi >1 for i =1,2. Then (a) ﬁi(t) = p, for
25t<t, 1-1,2; () £, <o for i=1,2; and (c) et | - 1.
Proof:

Since 7i/pi > 1 implies ﬁ; > 1, part (a) follows immediately from

Lemma 4.

>
it

To establish (b)), suppose that ©, Then since ﬁ; > 1 for
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i1=1,2, it follows from Lemma 4 that ﬂi(t) = P, and hence that
pi(t) = (7i/pi)pi(t—2) for all t > 1. But since 'yi/pi > 1, this implies
that p,(t) > 1 for t sufficiently large. A contradiction.

To establish (c¢), suppose that ui(t) = 1. Then, for all odd k > 0,

ﬂi(k+t) =7, > p,. Then Lemma 1(c) then implies that aj(t) = 0 and hence

pj(t+1) 1. Q.E.D.
Lemma 7: Suppose 7i/pi >1, 1 =1,2. Then

(a) El = Ez—l implies

B2 (/) D < 1 Ly (1) Gy p yEel 1, (2) (v,/p,) %272,
(b) t, = t,+1 implies

m (D (v /pp%% < 1 = 1,(2) (v,/p,) %22 < py (1) (v, /p)) G2t/

Proof:

Since 7i/pi > 1 implies that ﬁi > 1, it follows from Lemma 4(a)
that g (t+1) = P,. Suppose ¢t - Ej—l. If B (t+1) > p,, then by
Lemna 1(a), either (i) p(t) = u (£+1) = 1 or (ii) @, (t,+2) = 1 which
implies that 1 = pj(ei+3) < pj(€i+l) < 1l. 1In either case, we have a
contradiction, and, therefore, ﬂi(€i+l) = P,- Consequently, 21 = 22—1

implies

2 /o) T = () < 1= p(E 42) - # (1) (v, /p)) B2,
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Moreover, we have already established that ﬂz(tz+1) = p Therefore,

2"

H
[

1 (E42) = 1, (2) (1, /p,) 2By s (£ 41))

1, (2) (7,/p,) 2%

IA

These two relations establish part (a). A similar argument establishes part

(b). Q.E.D.

In order to use Lemmata 1 through 7 to establish our main results, we
must first verify that a subgame perfect equilibrium exists for

(F(61,62),(71,72),e) for all small e.

Lemma 8: Suppose 7, > P, and 72/p2 = 71/p1. Then, for any game
(F(61,62),(71,72),e) with 0 < € < pi/yi, i=1,2, a subgame perfect

equilibrium exists.

Proof:

Suppose first 71/p1 < 1. Llet o = (0,0,0,...) and
o, = (1,1,1,...). Since al(O) = 0, it follows that ul(t) = 1 and hence
ﬂl(t+l) =7, =P, for all odd t > 0. It may then be verified that, for all
odd t, az(t) =1 1is a best response. Furthermore, since ﬁé > 1, az(t) =1
implies that ﬂz(t) >, > P, for all even t > 0. It may be readily
verified that @, = (0,0,0,...) 1is the best response.

Suppose next that 71/pl > 1. Define t to be the unique even integer

t which satisfies
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2)/2
e(r1,/p)"% < 1 5 e(v,/p,) ¥

Then define a,(0) so that ey, +(l-€)a,(0) = £,(0) = v,e(v,/p,)*? and choose

@, so that ﬂl(t) =p, for even t = 2,4,...,2, and al(t) = 0 for even
t > E. Then it may be verified that ul(g+l) = 1 and hence that

ﬁl(t) =7, Z P, for even t > E. Choose @, SO that ﬂz(t) =P, for odd

A

t <t and az(t) =0 for odd t = E+1. Then p1(£+2) =1 and hence
ﬂz(t) =7, >p, for odd t > E+1. The value of E has been chosen so that
)t/2 > pz/yz. Therefore, ﬂz(€+1) = pz(a)yz = p It may

B, (8) = €(v,/p, 2

be verified that these strategies form a pair of best responses. Q.E.D.

The next Lemma establishes some properties of the subgame perfect

equilibrium for (P(61,6?),(71,72),e) as € Dbecomes small.

Lemma 9: Suppose 72/p? = 'yl/p1 > 1. Then for any t > 0 and any € > 0,
there is a % > 0 such that, for all ¢ < ¥: (a) ﬂz(l) = P, (b) %i > t,
and (c) Iai(t)—pil < €,
Proof:

We establish first that B,(1) for € > 0 sufficiently small.

I
o
N

Suppose ﬂz(l) <p,. Then

1y (2) = 1y (0)7,/8,(1) > p,(0)v,/p, = ev,/p,.

Furthermore, Lemma 1 implies that al(O) =1 and hence pl(l) < ul(—l) = €.

It then follows from Lemma 7 (a and b) that
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€(7,/P,) "2 <, (2) (ry/p) TP < p (1) (v, /0,0

< eCr,/p)",

contradicting the assumption that 'yl/p1 < 72/p2. We conclude that

ﬂz(l) z p,. This implies in turn that p2(2) < 672/p2 <1< ﬂ; for e
sufficiently small. Then, since ul(l) <1« ;1’ part (a) follows from Lemma
ba.

To establish part (b), note that Lemma 7 then implies that
€ (v,/p,) TP = (2) (v,/p,) % = 1.

Therefore, for any t > 1, there is an % > 0 such that e < ¥ implies

A

t <t,. We may conclude, therefore, that t, > o as €~ 0.
Combined with part (b) Lemma 6 then implies that for e < ¥,

ﬂl(k) =P, for even k, 0 < k < t. Lemma 7 then yields

B (0) = (1) (ry/p) D2 = (1) (y /py) B2 (p gy B
< (P1/71)(E1_t)/2'
Since Gl + o as ¢ = 0, it follows that pl(t) + 0 as ¢ -+ 0. Then since
ﬂl(t) =P, it follows from the definition of ﬂl(t) that al(t) > p, as
e + 0.
A similar argument establishes that, for any odd t > O, az(t) > p,

as € —+ 0, Q.E.D.
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Proof of Theorems 1 and 2:

We establish first Theorem 2a. Suppose 72/p2 > 7l/p1 > 1. Then the

definitions of pl(l) and ﬁl(O) combined with Lemma 7 (a and b) imply that

[ev,+(1=€)a (0) ) /7, = B,(0) /v, = e/m (1) = (p,/v,)1,(2) /(1)

(b,+2)/2
< [v,p,/7,p,] 22

Then since Lemma 9 implies that Ez » o as ¢ > 0, it follows immediately
that al(O) +0 as ¢ ~+ 0. Lemma 9 also implies that ai(t) > p,. Theorem
2a then follows from Lemma 8 and the definition of the metric d.

To prove Theorem 2(b), we note that if 72/p2 >1 > 71/p1, then since
Lemma 5 implies al(O) = 0, it follows that ul(t) =1 for all odd t > 0.
Therefore, ﬂl(t) =7, <P for even t > 0. It then follows from Lemma 1(b)
that, for all odd t, az(t) = 1 1is the unique best response and hence
ﬁz(t) > 7, > p,. Lemma 1(c) then implies that, for all even t, al(t) =0 1is
the unique best response. Theorem 2(b) then follows from Lemma 8 and the
definition of the metric d.

Theorem 1 follows from Theorem 2 except for the case where
72/p2 >1 = 7l/p1. But, in this case, Lemma 5 implies that al(O) = 0. The

theorem then follows from Lemma 8 and the definition of the metric d. Q.E.D.

Proof of Theorem 3(a):

Suppose that 7?/p2 = 'yl/p1 > 1. To establish that p, < al(O) <7,
note first that Lemma 9 implies that ﬂz(l) =P, and hence p2(2) = (yz/pz)e.

From Lemma 7, combined with Lemma 6, we know that e < ul(l) < pz(Z).

Therefore,
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e = p, (1) = e(v,/B,(0)) = ev,/[(1=€)a (O)+ev ] = p,(2) = e(v,/p,).

Therefore, if a subsequence of al(O) converges as € -+ 0, then, in the limit,

To complete the proof of Theorem 3(a), it is sufficient to show that
for any x € [p1’71]’ there is a sequence {et} such that (i) € = 0 and
(ii) al(O) = x for some subgame perfect equilibrium of
(F(61,62),(71,72),et). For each positive integer t such that (71/p1)t/2 > 1,

A

let € € (0,1) Dbe the unique solution to

ey, + (1=)x = v e(v,/p)"2.
Note that e, >0 as t - =

Now consider the sequence of games {(F(&l,Sz),(yl,yz),et)}. For each
even t, choose @, so that al(O) = x, ﬁl(k) =p, for even k, 0 < k < t, and
al(k) = 0 for even k » t. Note that ul(t+1) = 1 and hence
B (k) = v, > p, for all even k > t. Define @, so that g (k) = p, for odd
k < t (This is possible since 72/p2 = 'yl/p1 so that for all even k < t,
uz(k—l) < pz/72') and az(k) =0 for all odd k > t. Note that
yz/p2 = 71/p1 also implies ﬂz(t+1) z p,. Therefore, @, and a, form a pair

of best responses. Q.E.D.

Proof of Theorem 3(b):

It is enough to verify that if 'yz/pz,yl/pl <1, then
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(i) a = (0,0,0,...) and a, = (1,1,1,...) and (ii) a = (1,1,1,...) and
a, = (0,0,0,...) are both extended subgame perfect equilibria.

Consider the game (I'(6,,6,),(v,,7,),€) with 0 < e < ﬁi, i=1,2.
Suppose a, = (1,1,1,...). Then, for all even t > O,
po () < p (t=2) < ... < p(2) < €< ',22. Therefore, f,(t) > p, for all odd
t > 0. Lemma 1(c) then implies that, for all even t = 0, al(t) =0 1is a
best response. On the other hand, if @ = (0,0,0,...), then pl(t) =1 for
all odd t > 0 and hence ﬂl(t) =7, =P for all even t > 0. Therefore,
for all odd t > O, az(t) =1 1is a best response. This establishes case (i).

The argument for case (ii) is similar. Q.E.D.



Figure 1,
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