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Abstract

We develop a framework for analyzing multi-dimensional reasoning in strategic interactions,

which is motivated by two experimental findings: (a) in games with a large and complex strategy

space, players tend to think in terms of strategy characteristics rather than the strategies

themselves; (b) in their strategic deliberation, players consider one characteristic at a time. An

MD-equilibrium is a vector of characteristics representing a stable mode of behavior: a player

does not wish to modify any one characteristic. The concept is applied to several economic

interactions, where a vector of characteristics, rather than a distribution of strategies, is identified

as stable.
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1. Introduction

The starting point of this paper is the recognition that in games in which the space of strategies

is large and complex players deliberate over the space of characteristics of strategies rather than

over the strategies themselves. In Arad and Rubinstein (2012), we studied a version of the

Colonel Blotto game. In this game, each player (in the role of a colonel) allocates 120 troops

across 6 battlefields ordered in a line. We argued that the main dimensions considered by the

subjects were: (i) the number of reinforced battlefields, i.e. those with more than 20 troops,

(ii) the location of the reinforced battlefields (for example, the outer vs. the inner battlefields), and

(iii) the choice of the unit digit in the number of troops on each battlefield: for example, whether to

allocate 0, 1, or 2 on a battlefield that the player is prepared to abandon. Arad and Penczynski

(2018) investigated the Blotto game as well as multi-object auctions (all-pay and winner-pay)

using an experimental protocol that allows eliciting the subjects’ strategic considerations:

subjects played in teams and were allowed to communicate before making a final decision. The

analysis of the written messages revealed that almost all of the subjects thought in terms of

properties of strategies, rather than in terms of strategies, and thus demonstrated the prevalence

of multi-dimensional reasoning.

These findings suggest that in complex games, one should look for regularity in the

combination of chosen characteristics of strategies rather than in the particular strategies played

(see also Harstad and Selten (2013, 2016)). Formalizing such a notion of stability requires a new

modeling approach. We suggest such an approach below.

In the proposed model, each player classifies the strategies along a number of dimensions. He

makes a decision in each dimension based on the profile of characteristics (not strategies) that

he believes the other player will choose. Once he has decided on the desirable characteristics of

his strategy, he picks a strategy that has them all.

This two-stage process is a common real-life phenomenon. It is often the case that decision

makers first decide on the principles of their plan of action and only then fill in the details

necessary to implement the plan.

For simplicity, we confine the analysis to symmetric two-player strategic interactions. The

model, which we call an edited game, extends the standard model of a game by including a

specification of an array of dimensions. Each strategy has a number of characteristics, one in

each dimension. The set of all strategies is partitioned by the characteristics they have in the

various dimensions. A cell is a set of strategies which share characteristics in all dimensions. A

candidate for equilibrium according to our proposed solution concept is a cell. A cell is unstable if
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changing one characteristic while keeping the others fixed is desirable in the following sense:

there is a strategy which differs in its characteristics from those in the cell only in that one

dimension and which performs better (than all the strategies in the cell) against the uniform

distribution over the strategies in the cell.

The proposed solution concept, which we call MD-equilibrium, is a cell that is not unstable in

the aforementioned sense. In other words, the cell contains an optimal strategy against the

uniform distribution over the cell from among all those that do not differ from the cell in more than

one dimension. Note that the definition of an MD-equilibrium does not rule out the possibility that

there are better strategies which differ in more than one dimension from the strategies in the cell.

If there are no such strategies, then we refer to the MD-equilibrium as global.

Thus, an MD-equilibrium provides only a rough prediction: it does not specify which strategies

will be chosen but rather points to a collection of strategies that share a profile of characteristics,

one for each dimension.

Like Nash equilibrium, an MD-equilibrium is a stable mode of behavior where there is no

possibility of a profitable deviation by an individual player. Such a concept is appropriate for

situations in which players have accumulated experience in playing the game and have settled

on a particular mode of behavior. For the degenerate case of only one dimension and in which

each cell consists of one strategy, an MD-equilibrium is identical to a symmetric pure strategy

Nash equilibrium. Another degenerate case, which is discussed in Section 6, is an edited product

game in which there are a number of dimensions but a cell still consists of only one strategy. In

this case, an MD-equilibrium is identical to a symmetric pure strategy Nash equilibrium of teams,

where each team member is responsible for the choice in one dimension. However, the main

interest in MD-equilibrium is in the non-degenerate cases, where each cell includes a number of

strategies. In those cases, deviations are based on reasoning in terms of cells rather than

strategies and therefore, the existence of MD-equilibrium does not follow from the existence of

Nash equilibrium.

The purpose of the following example is to clarify the model and our solution concept. A

calculator for computing the MD-equilibrium for a wide range of examples, including those in this

paper, is available at https://www.tau.ac.il/~aradayal/MD_Calculator.html .
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Example: Consider the following edited "settlements" game. There are two players and five

territories labeled 1,2,3,4,5. A territory i has a value of i for a player who settles there. A player

chooses either one territory or a pair of territories to settle in. In the case that the territories

chosen by the two players coincide or overlap, there is a confrontation and neither of them gets

to settle in any territories. In the case that the choices don’t coincide or overlap, each keeps the

territory or territories he chose and his utility is the sum of the values of those territories.

For completing the description of the edited game, suppose that each player has in mind two

dimensions: the number of territories he wishes to settle in (i.e. one or two territories) and

whether he chooses at least one of the low-valued territories (i.e. Territory 1 and Territory 2) or

avoids them. Given these dimensions, the strategic considerations in choosing a cell are as

follows: (i) settling in one territory decreases the probability of a confrontation but reduces the

payoff in the case of no confrontation and (ii) avoiding the low-valued territories increases the

payoff in the case of no confrontation.

The following matrix presents the classification of the strategies in the edited game where each

column corresponds to a characteristic in the first dimension while each row corresponds to a

characteristic in the second:

one two

avoid low − valued_territories 3,4,5 3&4,3&5,4&5

not_avoid 1,2 1&2,1&3,1&4,1&5,2&3,2&4,2&5

The cell C1  one,not_avoid is not an MD-equilibrium since any strategy in one,avoid is

better than any strategy in C1 against the uniform distribution over C1. The cell C3  two,avoid is

not an MD-equilibrium since the strategy 5 in one,avoid yields an expected payoff of 5  1/3

against C3, while any strategy in C3 yields 0 against C3. The cell C2  two,not_avoid is not an

MD-equilibrium because the best strategy in C2 against C2, 2&5, is not as good as the strategy

4&5 which yields higher payoff with higher probability.

The only MD-equilibrium is C4  one,avoid where 5 attains an expected payoff of 5  2/3

against C4. This is not a global MD-equilibrium since the strategy 2&5 in two,not_avoid would

yield a higher payoff of 7  2/3 against C4. This MD-equilibrium reflects a mode of behavior in

which players strive to reduce the probability of a confrontation (by settling in one territory) while

aiming for the higher-valued territories (i.e. avoiding 1 and 2).

Note that the MD-equilibrium differs from all of the game’s Nash equilibria. Any mixed strategy
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Nash equilibrium that contains in its support a strategy x ∈ 3,4,5 must also contain the

strategies 1 and 2 in its support since otherwise the strategy 2&x or 1&x would be strictly better

than x.

It is worth emphasizing again that the MD-equilibrium concept involves the stability of

characteristics of strategies rather than of the strategies themselves. When applying the model to

an economic interaction, the modeler must specify the dimensions and their possible

characteristics. The MD-equilibrium is of course sensitive to the specification of the dimensions,

which is a merit of the model in our view. The way that a game is perceived by the players, and in

particular how strategies are organized by dimensions, is an important part of the description of a

strategic situation and might indeed affect behavior. The current model makes it possible to

examine how different perceptions lead to different equilibria.

The modeler’s choice of dimensions is subjective in the same manner that the choice of any

other component of a game model is subjective. In modeling any strategic interaction, the

modeler wishes to include only the relevant players and the relevant set of strategies and capture

in the payoff function only the aspects most significant to the players. This requires that the

modeler activate his judgement and his common sense and that he be familiar with the situation.

The choice of dimensions is simply an additional element in the players’ strategic reasoning that

needs to be specified. When choosing this extra component, one can use introspection regarding

the natural language used to organize the strategy space or turn to empirical evidence. We

believe that there are some regularities in the dimensions perceived by players. This view is

supported by Arad and Penczynski (2018)’s experimental findings, according to which people

have in mind similar dimensions in different resource allocation games.

After specifying the dimensions, the applied economist can use the solution concept to

"predict" or explain the choice of certain types of strategies that share common features, without

committing himself to a prediction of specific pure or mixed strategies. We find the

MD-equilibrium therefore to be an attractive equilibrium concept, especially in the case of games

with a large number of strategies that do not have a pure Nash equilibrium and in which the

mixed strategy equilibrium is complicated (as in the Blotto game, multi-object auctions and the

two-dimensional Hotelling game analyzed in this paper).
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The rest of the paper consists of three parts:

In the first part (Section 2), we present and discuss the formal model and the solution concept.

In the second part (Section 3-5), we apply the concept to three examples of economic

interactions. In each, we specify an edited game that consists of a specific array of dimensions.

The three examples have a common feature in that a player has to allocate resources (troops or

money) among a number of fronts (battlefields, auction items or tennis courts). However, the

examples differ in their stories and payoff functions. In addition, in order to illustrate the richness

of the model, we intentionally choose different specifications of the dimensions and their

characteristics in each example. The model is by no means limited to resource allocation games.

We demonstrate the model’s relevance in two additional types of games: the settlements game

described above and Hotelling’s spatial competition game discussed in Section 6. We find it

intuitive to apply the MD-equilibrium in games whose strategies can be described as an array of

decisions. These include the following decisions: location and price (d’Aspremont, Gabszewicz

and Thisse (1979)), research costs and legal costs (Tullock (1980)), capacity and price (Kreps

and Sheinkman (1983)), and pricing and persuasive advertising (Bagwell (2007)), among many

other famous economic examples.

In the final part of the paper, we deal with two main issues: In Section 6, we provide some

existence results for MD-equilibrium and define a concept of mixed MD-equilibrium which exists

for finite games. In Section 7, we extend the model to asymmetric games.

2. The model and the equilibrium concept

2.1 The model

The basic component of the model is a symmetric two-player game S,u where S is each

player’s action set and us, s′ is a player’s payoff if he chooses s when his opponent chooses s′.

Assume that the set S is finite or that the function u is continuous.

We depart from the standard model by adding a description of the players’ perception of the

space of the strategies. We have in mind that a player thinks about the strategies in terms of K

dimensions. Each strategy has a characteristic in each of the dimensions. A profile of

characteristics - one in each dimension - fits a set of strategies that share this combination. A

player deliberates over the space of the vectors of characteristics rather than on the space of the

strategies. This leads to the following definition:
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Definition: An edited symmetric game is a tuple  S,u, Dkk1,..,K  where S,u is a symmetric

game and each Dk is a function that assigns to every strategy s a characteristic Dks.

Each k stands for a "dimension". The symbol dk denotes a generic characteristic of the k’th

dimension. The notation d  dkk1,..,K is used for the set of strategies s for which Dks  dk for

all k. We call such a set a cell. Note that each function Dk partitions the strategies by their

Dk-characteristic and the set of all cells is the join of all those K partitions.

It is straightforward to extend the definition to edited n-player asymmetric games (see Section

7). However, we choose to focus in the paper on symmetric edited games in order to keep the

notation simple and in order to focus on the conceptual issues.

2.2 The solution concept

We seek a stability concept in the spirit of a symmetric Nash equilibrium which is defined on

the space of vectors of characteristics (cells) rather than on the space of strategies. In order to

define a profile of characteristics as an equilibrium of an edited game, we introduce the concept

of a proper response, which is analogous to that of a best response.

Definition: The characteristic dk
∗ is a proper response in the k’th dimension to the cell d  dk,

denoted by dk
∗ ∈ PRkd, if the cell d−k,dk

∗ contains a best response to the uniform distribution

over d, when restricted to strategies in ek d−k,ek.

The definition captures the model’s two key assumptions: a player thinks in terms of

characteristics and considers one dimension at a time. Thus, a player views the characteristic dk
∗

as a proper response in the kth dimension to a cell d if from among all strategies which share with

d all characteristics besides that in the kth dimension, a best-response strategy to the uniform

distribution over d has dk
∗ as its kth characteristic. The existence of such an optimal strategy is a

player’s justification for choosing dk
∗ in the kth dimension as a response to d.

This definition reflects one way in which to formalize the proper response mode of reasoning;

other ways will be discussed in Section 2.4. We do not argue that players actually implement the

calculation described in the formal definition of a proper response; rather, we view it as an

approximation of the reasoning process in complex settings. In the analysis of families of edited

games below, we will demonstrate that our concept of proper response often captures intuitive

strategic considerations.
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We now arrive at the definition of the solution concept:

Definition: An MD-equilibrium (Multi Dimensional equilibrium) of the edited symmetric game

 S,u, Dkk1,..,K  is a non-empty cell d∗  dk
∗ such that dk

∗ ∈ PRkd∗ for all k.

Thus, a candidate for MD-equilibrium is a cell, i.e. a vector that specifies a characteristic in

each dimension. A player considers the dimensions one at a time and finds each characteristic

dk
∗ to be a proper response to the equilibrium cell.

Denote by us,C the expected utility when playing the strategy s against the uniform

distribution over the cell C. An equivalent definition of the MD-equilibrium is a cell d∗  dk
∗

satisfying that there is a strategy in the cell that maximizes us,d∗ over the set of strategies that

differ in at most one characteristic from the cell characteristics. In an MD-equilibrium, a player

does not find any such strategy to be better than all strategies in the cell when playing against

the uniform distribution over the cell.

The concept concerns only the players’ choice of a cell and is silent about what brings a player

to choose a particular strategy in the cell. In particular, it does not imply that the strategies in the

equilibrium cell are chosen with equal probability nor that the player chooses the optimal strategy

against this distribution. The uniform distribution as well as the optimal strategy serve as

ingredients in the formalization of the players intuitive proper response reasoning process.

The concept of MD-equilibrium is a mix of categorical thinking and dimensional thinking, but

one can think about the two aspects separately. Thus, one can focus only on dimensional

thinking by applying the MD-equilibrium concept to product games where each strategy is a

vector, a player decides on each component separately but each cell is a single strategy (see

Section 6). Alternatively, one might wish to focus only on categorical thinking and allow a player

to reason in terms of characteristics of a strategy though he does so simultaneously for all

dimensions. In that case, we can apply the following definition:

Definition: An MD-equilibrium is global if the equilibrium cell contains a strategy that is a best

response to the uniform distribution over the cell from among all strategies in S.

In other words, an MD-equilibrium is not global if some strategy which differs from it in at least

two dimensions, is a better response to the uniform distribution on the MD-equilibrium cell than

all strategies in the cell itself.
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2.3 Comments about the model and the solution concept

(i) The MD-equilibrium concept is appropriate for situations in which players do not collect

precise information about other players’ behavior due to coarse observations, limited memory,

receipt of only rough information from others, etc. In such situations, a player may become aware

of the stability of behavior in terms of the strategies’ characteristics even if he does not have

reliable information on the distribution of chosen strategies. This is reflected in the idea that in

MD-equilibrium, players hold correct beliefs on the chosen cell but not on the chosen strategies

within the cell.

(ii) In his proper response calculation, a player assumes a uniform distribution over the

strategies in the cell. Thus, it fits a scenario in which a player assumes that his opponent

chooses some strategy in a given cell, but has no reason to believe that one strategy is more

likely to be chosen than another. The approach is consistent with the "principle of indifference",

which is used in, for example, the extensive literatures on risk dominance (see Harsanyi and

Selten (1988)) and on k-level reasoning (see Stahl and Wilson (1995)).

(iii) In the economic examples that follow, we show that an MD-equilibrium exists. However, as

in the case of a pure Nash equilibrium, an MD-equilibrium does not always exist. In section 6, we

present an existence theorem for edited product games where the set of the strategies is a

product set and each cell consists of exactly one strategy. We also prove an existence theorem

for super-modular games where the strategies are classified along a unique dimension. Finally,

we suggest a mixed strategy version of the solution concept and prove the existence of a mixed

strategy MD-equilibrium in any finite edited game with a unique dimension.

(iv) Our solution concept can be expressed using the notion of Nash equilibrium. Consider the

auxiliary "cells game" that is based on the edited game  S,u, Dkk1,..,K  and is defined as

follows (for simplicity, assume K  1): Each player chooses a cell. A player’s payoff if he chooses

d and his opponent chooses d′ is maxx∈dux,d′, that is, the maximal possible payoff when

choosing a strategy in d, given the belief that his opponent chooses each strategy in d′ with equal

probability. Thus, in the cells game, given a player’s choice of a cell, he is assumed to choose

different strategies within the cell against different cells of his opponent. Notice that the payoffs

attached to a pair of cells might not be feasible in the original game S,u. Our solution concept is

any symmetric Nash equilibrium of the auxiliary "cells game". However, we do not find this

connection to be helpful in characterizing the MD-equilibrium and in section 6.3 we explain why

the cells game is not an appropriate basis for defining a reasonable "mixed" version of the

MD-equilibrium.
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(v) The experimental evidence that motivated this paper (Arad and Rubinstein (2012) and Arad

and Penczynski (2018)) suggested that players think in terms of characteristics of strategies

rather than in terms of strategies. However, these experiments were not design to test the

MD-equilibrium "predictions" because they involved a single play of games in which stability is

usually not expected. To test the MD-equilibrium (or the Nash equilibrium for that matter) players

must be allowed to accumulate experience by playing the game multiple times.

(vi) The MD-equilibrium prediction depends crucially on the specification of dimensions and

their possible characteristics since it provides the language used to define the set of cells that are

the candidates for MD-equilibrium. Furthermore, even if the same set of cells is derived from two

different specifications of dimensions, the permissible deviations may differ and hence the

MD-equilibria will not necessarily be identical.

(vii) Some of the ingredients of the MD-equilibrium concept are shared by other economic

concepts. In particular:

(a) There are several game-theoretic models in which the solution concept is a set of strategies

rather than a single strategy. In particular, see Basu and Weibull (1991) who (adjusted for the

symmetric case) search for minimal sets of strategies for which all best responses to any belief

on the set are inside the set (see also the discussion in Myerson and Weibull (2015), p. 950).

(b) Previous examples of categorical beliefs (i.e. players’ beliefs that are framed in terms of

categories rather than strategies) include numerous models with analogy-based reasoning due to

Philippe Jehiel (see, for example, Jehiel (2005)) as well as Piccione and Rubinstein (2003).

(c) A player in our model can be thought of as a team in the sense of Marschak and Radner

(1972), such that all members share the same target and each is responsible for choosing one

characteristic of the team’s decision. (See also Guney and Richter (2016) for the related concept

of D-Nash equilibrium). In a standard team game, an array of characteristics defines a unique

strategy. In our setup, a manager collects members’ choices and chooses one of the strategies

that is consistent with the chosen array of characteristics.

2.4. Alternative solution concepts

As emphasized above, we are not claiming that the solution concept is the only or best way to

construct an equilibrium concept in a strategic situation in which players think in terms of

characteristics rather than strategies. The definition of the MD-equilibrium relies on the notion of

proper response. Any alternative definition of the proper response operator will induce an

alternative solution concept.
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This paper approach is that a player finds a deviation from A to B to be profitable, given A, if B

contains a strategy that achieves a higher expected payoff than any strategy in A against a

uniform distribution over the strategies in A.

Following are two reasonable alternatives that differ in the circumstances under which a player

finds it profitable to deviate from cell A to cell B, given that he expects the other player to choose

a strategy in A:

I. The representative strategy approach: Given the expectation that the other player will choose

a strategy in the cell A, a player anchors his deliberation on the strategy a∗ which he finds to be

the representative strategy of the cell A . He looks for the best responses to a∗ in A and in B, i.e.,

a and b, respectively. He finds the deviation from A to B profitable if b yields a higher payoff than

a against a∗.

Note that unlike this paper’s approach, this approach requires adding a criterion to the edited

game that will determine the representative strategy within a cell. For example, in some contexts,

one can think of the most salient or aesthetic strategy within a cell as being representative. In

other contexts, especially when the cell contains an interval of numbers, a representative

strategy might be the middle point of the cell.

II. The Uniform vs. Uniform approach: Define UX,Y to be the expected payoff of a player who

randomizes uniformly over X given that his opponent randomizes uniformly over Y. The player

deviates from A to B given that the other player plays A if UA,A  UB,A. Thus, a choice of an

array of characteristics, i.e. of a cell, is equivalent to a choice of a uniform distribution over the

chosen cell.

This approach can be interpreted to mean that a player believes his opponent’s choice will be

in a certain cell but he does not have any belief regarding which strategy within the cell he will

choose. Therefore, he treats all the strategies in the opponent’s cell as equally likely.

Furthermore, when considering a cell to choose a strategy from, the player is unsure about the

particular strategy he himself will choose within the cell and hence he again considers all the

strategies in the cell as equally likely. Thus, the player is equally uncertain about his opponent’s

strategy as he is about his own.

We find this paper approach more appropriate than approach II in many circumstances since it

makes sense to assume that a player has more vagueness about his opponent’s strategy within

a cell than about his own. It is likely that when deliberating about his choice of a cell, a player has

in mind concrete actions.
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3. Colonel Blotto: Reasoning on the number of reinforced battlefields and their location

In this section, we apply the solution concept to a variant of the famous Colonel Blotto game

which originally appeared in Borel (1921). In this variant there are two generals and each has N

troops at his disposal. (For simplicity we confine ourselves to values of N that are multiplies of 6.)

Each general allocates his troops among three battlefields denoted 1,2 and 3 (we refer to field 2

as the center and to fields 1 and 3 as the edges). The set of strategies for each general is

S  x1,x2,x3| xi is a non-negative integer and∑ i1,2,3 xi  N. The set contains N2!
N!2 strategies.

When a player uses a strategy x  x1,x2,x3 against a strategy y  y1,y2,y3 he scores one

point in field i if xi  yi, half a point if xi  yi and 0 otherwise. His score is the sum of the points he

scores in the three fields. A match between two strategies can yield only one of three scores: 2:1

(a win), 1.5:1.5 (a draw), 1:2 (a loss). Each general wishes to maximize his expected number of

points.

The Blotto game has received widespread attention due to its interpretation in the Political

Economics literature as a game between two presidential candidates who allocate their limited

budgets among campaigns in the “battlefield” states (see, for example, Brams (1978)). Myerson

(1993) suggested an alternative interpretation of the Blotto game as a vote-buying game. The

game can be also interpreted as an R&D race between two firms who compete by allocating their

limited resources among a number of projects.

As mentioned in the Introduction, experimental evidence indicates that the Blotto game triggers

multi-dimensional reasoning. In particular, the vast majority of players choose their strategy after

deliberating on the number of fields in which to concentrate their resources. We define the

number of reinforced fields as the first dimension in the edited game.

Experimental results also suggest that participants take into account the order of the

battlefields. Therefore, the second dimension is defined as the ordering of the three divisions. In

other words, does the player assign the divisions in increasing order, in decreasing order or not

according to any of the two orderings.

Formally, the edited game involves the following two dimensions:

(i) The number of fields (1,2 or 3) in which the player reinforces his troops, where field i is

reinforced in x if xi ≥ N/3.

(ii) The order of the troop assignments: this dimension receives the characteristic "↗" if the

assignments are in increasing order (x1 ≤ x2 ≤ x3 with at least one strict inequality); "↘" if the
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assignments are in decreasing (x1 ≥ x2 ≥ x3 with at least one strict inequality). Otherwise, it gets

the characteristic "other".

To illustrate, following is the classification of the 28 strategies for the case of N  6 (the

notation abc stands for the strategy a,b,c):

1st dimension

2nd dimension 1 2 3

decreasing ↘ 411,510,600 321,330,420 −

increasing ↗ 006,015,114 024,033,123 −

other 051,060,105 042,132,204,213,231 222

141,150,501 240,303,312,402

The cell 1,↘, for example, is not an MD-equilibrium since ↘ is not a proper response in the

second dimension to 1,↘: the best strategy against 1,↘ within the cell is 4,1,1 (which

achieves one win and two draws against the three strategies in 1,↘ while 0,5,1 ∈ 1,other

does better with two wins and one draw. Intuitively, abandoning the first field, reinforcing the

second and placing a positive number of troops on the third guarantees scoring a point on the

second field and often scoring a point on the third, which is the weakest of the 1,↘ strategies.

The cell 2,other is a (global) MD-equilibrium. Several strategies, including 3,0,3 ∈ 2,other,

are optimal against 2,other with an expected score of 1.72 (4 wins and 5 draws against the 9

strategies in 2,other. This is higher than the score of any strategy outside the set, which at

most achieves an expected score of 1.56 (for example, 0,2,4 yields 4 wins, 2 draws and 3

losses).

Proposition 1: In the edited Blotto game with 3 battlefields and N as a multiple of 6,

2,other is the only MD-equilibrium and is global.

Proof: See Appendix.

The proof that 2,other is the only MD-equilibrium can be shown intuitively by means of the

proper responses in the two dimensions.

Note that "other" is the union of the "peak ∩" strategies (x2  x1,x3) and the "sink " strategies
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(x2  x1,x3).

PR12,other  2: In any cell, there is a strategy that scores at least 1.5 points against the cell.

On the other hand, any strategy that reinforces 1 or 3 battlefields scores less than 1.5 points: any

strategy reinforcing only one battlefield scores one point against a strategy in 2,other if the

reinforced battlefield is matched against a non-reinforced one, and scores at most 1.5 points on

average otherwise. The single strategy of three reinforced battlefields typically wins on only one

of them when playing against 2,other.

PR22,other  other: The set 2,other is evenly partitioned into four classes of strategies

denoted by very_high, low,high, high, low,very_high, low,very_high,high and

high,very_high, low, where very_high, low,high, for example, includes all strategies in which the

highest assignment is in Battlefield 1, the other reinforced battlefield is Battlefield 3 and the

lowest assignment is in Battlefield 2. A strategy of the type very_high, low,high scores on

average about 1.5,1.5,1.5 and 2 points against these four classes, respectively. On the other

hand, a strategy in 2,decreasing, which is of the type very_high,high, low, scores on average

only about 1.5,2,1 and 1.5 points against these four classes, respectively. The key deficiency of

decreasing strategies is that they waste a medium-size assignment (in Battlefield 2) against the

highest assignment in the peak strategies. A similar argument implies that a strategy in

2, increasing is inferior to a sink strategy of the type high, low,very_high when playing against

the strategies in 2,other.

PR11,other ≠ 1: If a player believes that his opponent is concentrating his troops on one field,

then splitting his troops among all three fields (3,other) will yield a win for certain.

PR13,other ≠ 3: Concentrating on the two edges and sacrificing the center (2,other) will win

against the strategy that splits the troops equally among the three fields.

PR22,↗ ≠↗: A player can find a peak strategy with a medium size assignment to the first

field and a high assignment to the second, while sacrificing the third field (2,other). This will win

against most strategies of increasing order. Similarly PR22,↘ ≠↘.

PR11,↗ ≠↗ since 1,other contains a pick strategy that abandons the third field, always

wins the second and has a good chance of winning the first. Similarly PR11,↘ ≠↘.

Discussion: The cell 2,other appears to be immune to deviations when applying intuitive

coarse thinking, which is supported by fine calculations. This result suggests that the following

coarse rule of behavior is stable: Reinforce two battlefields and do not use a monotonic ordering

for the three single-field assignments.
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Interestingly, the MD-equilibrium in this game is in the spirit of the most successful strategies

observed in Arad and Rubinstein (2012)’s experiment of the one-shot Blotto game: these

strategies reinforced two-thirds of the battlefields and did not use monotonic ordering.

Comparison to Nash equilibrium: The equilibrium of the Blotto game’s continuous version

was characterized by Roberson (2006), while that of the discrete version was characterized by

Hart (2008). Both concluded that in equilibrium, players treat the battlefields symmetrically and

the marginal distribution of the troops among the battlefields is essentially uniform in the

(continuous or discrete) interval 0,2N/3.

The MD-equilibrium cell is very different from the support of the mixed strategy Nash

equilibrium. In addition to the order feature (i.e., no increasing or decreasing strategy is included

in the MD-equilibrium), all of the strategies in the MD-equilibrium cell have two reinforced fields

while in Nash equilibrium the expected number of reinforced fields is 1.5. Most importantly, Nash

equilibrium and MD-equilibrium reflect very different modes of behavior. Whereas a player in

MD-equilibrium makes a strategic decision to reinforce two battlefields and avoid a monotonic

ordering, the behavior of a player in Nash equilibrium is consistent with the heuristic of

maximizing the uncertainty regarding the number of troops in each battlefield.

4. A Three-object all-pay auction: Thinking in terms of categorical (high/low) bids

The following game is inspired by Rosenthal and Szentes (2003). There are three objects up

for sale and two bidders. The bidders are expected-payoff maximizers and each receives a

payoff M if he wins any two of the objects. No additional benefit is obtained from winning a third

object and there is no benefit from winning only one object. Each bidder is allowed to make three

bids. He pays what he bids for an object regardless of whether his is the winning bid. For each

object, the highest bid wins and a tie is broken randomly. In the case that no one bids on an

object, each bidder receives the object with probability 1/2.

A strategy is a triple of three non-negative integers, each between 0 and T where T is an even

number. We denote a strategy of three bids by x  x1,x2,x3. However, in this section we have in

mind a situation in which the objects are not naturally ordered. The player chooses three bids

and assigns them randomly to the three objects. That is, if he chooses a triple x1,x2,x3 then

with probability 1/6 he bids x1 on object 1, x2 on object 2 and x3 on object 3, where  is

any permutation of 1,2,3.
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For simplicity, we exclude 0,0,0 from the set of strategies and focus on parameters of the

model (i.e. M and T) for which the equilibrium expected payoff is non-negative.

The game has two main interpretations: that of a multi-object auction where the bidders’

interest in one object depends on the availability of another (such as in the case of oil leases and

spectrum licenses); and that of an election game in which each of two candidates seeks to win a

majority of districts and the votes a candidate receives in each district depend on the relative

investment of the two candidates in the district. We believe that in such circumstances even

sophisticated players think in terms of categories. For example, a player in the election game

might decide on the number of districts in which he will spend his campaign funds and the

relative amounts he will spend in those districts (high amounts in all districts, low amounts in all

districts or a mix of low amounts in some districts and high amounts in others).

We construct an edited game that can be used to determine whether there are stable

descriptions of behavior in which: (i) players choose whether to bid on all the objects or only on a

partial set of objects (without explicitly deciding on which objects), and (ii) players decide whether

to place an high or low bid on each object (without deciding on the exact size of each bid).

Experimental evidence for multi-object auctions suggests that both these dimensions are

frequently considered by players (Arad and Penczynski (2018)).

Formally, we specify the dimensions as follows:

(i) The number of positive bids, which can take a characteristic of either 1,2 or 3.

(ii) The mix of high and low bids (among the positive bids). We divide the set of non-zero bids

into Low  1, . . . ,T/2 and High  T/2  1, . . . ,T. It is assumed that this dimension can receive

three characteristics: "L" (all positive bids are in Low), "mix" (at least one high and one low bid)

and "H" (all positive bids are in High).

Thus, for example, in the case of T  4 the strategies 1,4,4 and 2,3,1 are in 3,mix, the

strategy 1,2,0 is in 2,L and the strategy 0,0,4 is in 1,H.

We now characterize the MD-equilibria for a range of parameters in which the prize is large

enough to justify choosing the highest possible bid on two objects for some beliefs, and small

enough such that it is not always beneficial for a player to increase his bid by one unit if this has

a positive effect on the probability of winning. In this domain a player faces a real trade-off

between decreasing the costs of the bids and increasing the probability of winning the prize.
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Proposition 2: In the edited 3-object two-bidder simultaneous all-pay auction with

2T  M  T2/2, the cells 3,mix and 2,H are the only MD-equilibria. The cells are

non-global unless 3T−2
T−1  M

T  3T
T−1 (that is, with the exception of the case in which M/T is

around 3).

Proof: We focus here on the intuitive strategic considerations and direct the reader to the

appendix for further details.

Notation: For a cell C and a strategy x  x1,x2,x3, denote by Wx,C the probability that the

strategy wins M against the uniform distribution over C. The marginal increase in the probability

of winning M by adding one unit of investment to the first component of the strategy is denoted

by Δx,C  Wx1  1,x2,x3,C − Wx1,x2,x3,C. The three components are symmetric and thus

the calculation of the marginals on one component is valid for the others as well. A player’s

expected payoff from playing x against the uniform distribution over C is

ux,C  Wx,CM − ∑ i1,2,3 xi. Let probCstatement about a strategy x denote the proportion of

strategies in C satisfying the statement.

The following Lemma provides an explicit expression for Δx1,x2,x3,C:

Lemma 1: For a cell C and a strategy x1,x2,x3:

Δx1,x2,x3,C  probCy1 ∈ x1,x1  1 and (y2  x2 or y3  x3/4probCy1 ∈ x1  1,x1 and

either y2  x2 and x3  y3 or y2  x2 and x3  y3/2.

Proof: See appendix.

A strategy is said to be an edge strategy if all of its positive components are on the edges of

the categories Low and High, that is within the set 1,T/2,T/2  1,T. Let edgeC be the set of

edge strategies in C. Lemma 1 implies Lemma 2 which states that the maximization of the

expected payoff over cell C1 below, while playing against the uniform distribution on a cell C2,

has a solution on the edge of C1.

Lemma 2: For any two cells C1 and C2, the maximization maxs∈C1Ws,C2 has a solution in

edgeC1.

Proof: Consider three numbers t, t  1, t  2 belonging to the same category, either Low or High.

The events presented in the above table for x1  t and x1  t  1 have the same probability.

Thus, by Lemma 1, Δt  1,x2,x3,C  Δt,x2,x3,C. Therefore, the maximization
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maxs∈C1Ws,C2 must have a solution that is an edge strategy.

The following three claims show that only 2,H and 3,mix are MD-equilibria:

Claim 1: All the cells besides 2,H and 3,mix are not MD-equilibria.

The following are intuitive considerations which show those cells unstable.

PR11,L ≠ 1: The strategy 1,1,1 ∈ 3,L always wins against 1,L with almost no cost; in

contrast a strategy in 1,L wins with probability of at most 7/12 against 1,L.

PR11,H ≠ 1 or PR21,H ≠ H: There are two candidates for best strategy in 1,H when

playing against 1,H. The strategy T, 0, 0 wins with probability of about 7/12 against 1,H but

costs T and is inferior to T/2  1,T/2  1,T/2  1 ∈ 3,H which costs only about T/2 more but

adds 5/12 to the chances of winning. The strategy T/2  1,0,0 is clearly inferior to 1,0,0 ∈ 1,L

since using the lowest bid in H is a waste against 1,H.

PR13,H ≠ 3: With the expectation that the other player will choose some three high bids, a

player believes that two maximal bids (2,H) are sufficient to almost ensure winning the two

objects and saving the cost of one high bid.

PR13,L ≠ 3 or PR23,L ≠ L: If the best response to 3,L in 3,L involves only two

assignments of T/2, then the third bid of 1 plays only a small role in determining the probability of

winning and hence should be dropped (a strategy in 2,L). If the best response to 3,L in 3,L

happens to involve three assignments of T/2, then a strategy of the type

1,T/2  1,T/2  1 ∈ 3,mix guarantees winning with lower costs.

PR22,L ≠ L: The assumption that M  2T makes T/2,T/2,0 the best strategy within 2,L

against the cell. However, in that case a strategy 0,T/2  1,T/2  1 ∈ 2,H involves only a small

additional cost and guarantees winning.

PR12,mix ≠ 2: any 1,x2,x3 ∈ 3,mix is superior to 0,x2,x3 ∈ 2,mix against 2,mix since it

increases the probability of winning by at least 1/12 and involves only a negligible additional cost.

Claim 2: The cells 2,H and 3,mix are MD-equilibrium. They are non-global unless
3T−2

T−1  M
T  3T

T−1 .

Proof: The formal proof for 2,H appears in the appendix. We present here only an intuitive

proof for 3,mix. All statements of the type "a strategy wins against 3,mix with probability "

should be read as "with probability of approximately " and the symbol  m stands for "m or

m  1".
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The strategy 1,T,T wins almost always against strategies in 3,mix and thus its expected

payoff is about M − 2T. We will show that the only edge strategy that does better than 1,T,T

against 3,mix is 0,T,T ∈ 2,H and hence 3,mix is a non-global MD-equilibrium.

Any edge strategy that costs 2T  T/2 or more is inferior to 1,T,T against 3,mix.

The edge strategies that cost 3T/2 are  0, T/2,T and  T/2, T/2, T/2,all of which win

with probability 1/2 against 3,mix and have an expected payoff of M/2 − 3T/2, which is smaller

than M − 2T.

The edge strategies that cost T are  0, T/2, T/2, which win with probability 1/6 (against all

strategies in High  Low  Low), and  0, 0,T which always lose. Thus, all these strategies

yield an expected payoff of at most M/6 − T  M − 2T.

Any edge strategy that costs T/2 or less always loses .

Finally, there are two types of edge strategies that cost 2T: Any strategy of the type

 T/2, T/2,T wins with probability 5/6 and thus is inferior to 1,T,T. The strategy

0,T,T ∈ 2,H wins with probability 1 and its payoff evaluation requires a more precise

calculation. It does (slightly) better than 1,T,T against 3,mix since

Δ0,T,T, 3,mix  prob3,mixy1  1 and y2  T or y3  T/4  2T−1
6T/23

1
4

and M 2T−1
24T/23

 1 for M  T2/2.

Claim 2 states that 2,H is an MD-equilibrium and that it is not global. The result captures a

natural process of strategic deliberation in which a player who expects his opponent to choose

two high bids, believes that he will almost surely win if he makes two maximal bids. Reducing the

number of bids to one will significantly undermine his chances of winning two objects. Making

three high bids is wasteful since it will increase only marginally his chances of winning and

involves a large additional cost. Making only two bids, with at least one of them low, dramatically

reduces the chances of winning at least two objects.

Discussion: We find that there are two MD-equilibria in this edited game. The first fits a norm

of behavior according to which players bid high for two of the three objects only. The other

involves bidding on all three objects such that at least one bid is low and at least one bid is high.

The global best response to each of the MD-equilibria lies in the other equilibrium cell and the

expected payoff for maximization against the equilibrium cell is almost identical, i.e. M − 2T.

The concept of MD-equilibrium captures strategic reasoning only in the dimensions that are
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specified in the edited game. Thus, in particular, it does not capture a player’s natural

consideration to deviate from the MD-equilibrium cell 2,H by increasing the bid on the

neglected object from 0 to 1. Such a consideration can be captured by adding another dimension

to the edited game, which could have the characteristics 0 or 1 according to the bid on a

neglected object (and modifying the set L to include bids in 2, . . ,T/2). Indeed, Arad and

Penczynski (2018) identified such a dimension in some participants’ justification of their

strategies in various multi-object auctions. However, they also found that a majority of the

participants used only the unit digit 0 in bidding on the "neglected" objects and did not discuss

this dimension in their justifications. Thus, it seems that most participants didn’t think about this

additional dimension, as assumed above.

Comparison to Nash equilibrium: The predictions of MD-equilibrium are different in nature

from those of Nash equilibrium. Although we do not have a characterization of the Nash

equilibria of this game, there is clearly no mixed strategy Nash equilibrium that is spanned by

strategies in 2,H only. Given that the other player chooses strategies in 2,H, then deviating to

spending a very small amount on the third neglected object increases the probability of winning

two objects dramatically.

Furthermore, the mixed strategy Nash equilibrium characterized in Rosenthal and Szentes

(2003) for the continuous case (which probably approximates the equilibrium of this discrete

game when the money grid is fine enough) is a uniform distribution over all strategies that lie on

the surface of a specific tetrahedron. Its support includes strategies in all the cells except 1,L

and 1,H. Thus, the Nash equilibrium includes strategies from 3,H and 3,L, which do not

appear in either of the two MD-equilibria.

5. The tennis coach game with costly players: The role of a designated location

The basic game in this example is an extension of Arad (2012)’s tennis coach problem. Two

tennis teams, each managed by a coach, compete on three courts denoted 1,2 and 3. Each

coach recruits his set of players and assigns a single tennis player to each court. Each tennis

player has one of the skill levels 0,1,2, . . . ,T. Thus, a coach’s strategy is a triple x1,x2,x3 where

xj ∈ 0,1, . . ,T. When a team x  x1,x2,x3 plays against a team y  y1,y2,y3 three matches

are played: in court i the tennis player with skill level xi confronts the player with skill level yi. The

team scores a point in each court i where its player is more skilled than his opponent xi  yi; it
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scores half a point if the two players are equally skilled (xi  yi) and none if xi  yi. A tennis

player of skill level xi costs the coach cxi where c  0. Each coach faces a trade-off between

performance and the cost of the players. The trade-off is inserted into the utility function as

follows: ux,y  |i|xi  yi||i|xi  yi|/2 − c∑ xi. Coaches maximize their expected utility.

The game involves a typical contest in which the outcome depends on costly investments

made by the competitors. From a public welfare perspective, the investment would be considered

a waste if the contest is viewed as pointless. The investment might be considered worthwhile if

the public enjoys the contest and their enjoyment increases with the level of investment.

People often view locations asymmetrically even if there is no payoff-relevant difference

between them. In other words, there is often a salient location, the assignment to which is viewed

differently than the assignment to other locations. The standard solution concepts (and

particularly the mixed strategy Nash equilibrium) treat all locations symmetrically. Some

researchers and in particular Bacharach (2006), have developed equilibrium concepts that take

into account framing effects (for example, attraction to salience) in games where players make a

decision involving locations (such as choosing a location or a subset of locations or deciding on

the priority between locations).

We construct an edited game in which players perceive one of the courts as distinct from the

others. We formalize this by specifying the characteristics in one of the dimensions to be whether

the coach assigns the strongest tennis player on his team to the center court. Evidence that

some people consider whether to focus on the center or the side locations has been found in

experiments of related games (see Arad (2012)). We will see that in an MD-equilibrium of the

edited game, the strongest tennis player on the team will never be assigned to the center court.

Formally, the edited game consists of two dimensions:

(i) The sum of the skill levels of the three tennis players. A characteristic in this dimension can

be any integer between 0 and 3T.

(ii) Whether to assign the most skilled tennis player to the center court (namely, whether

x2  maxx1,x2,x3). This dimension can receive one of two characteristics: "strong" (having the

most skilled player on the center court) and "not strong".

To illustrate, the following matrix presents the partition of the strategy space according to the

two dimensions for the case of T  2:
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0 1 2 3 4 5 6

strong 000 010 020,011,110 120,021,111 022,220,121 122,221 222

not strong 100,001 002,101,200 012,201,102,210 211,202,112 212

To make the situation non-trivial, we limit the range of c and T as follows:

(i) 1/2  c: That is, the coach is interested in increasing his expenses by one unit if it

guarantees scoring half a point more.

(ii) Tc  1/2: That is, it is not beneficial for the coach to spend the maximal possible amount in a

court in order to earn half a point more than with no expenses.

The first and main part of proposition 3 states that a cell of the type Q, strong is never an

MD-equilibrium. The intuition is as follows: The skill level assigned in this cell to each of the side

courts cannot exceed that assigned to the center court and thus cannot be more than half of the

total skill level. A coach can find a strategy against the cell that is superior to any strategy in the

cell by using a strategy in Q,not Strong that abandons the center court and divides the total skill

level as equally as possible between the two side courts. This strategy will score almost 2 points

against Q, strong while the maximal score obtained by a strategy in the cell when played against

the cell is closer to 1.5 (though above).This result is independent of the parameters of the game.

Calculating the MD-equilibria among the cells of the form Q,not strong depends on the values

of c and T. For some parameters, no MD-equilibrium exists. The second part of proposition 3

states that for values of c around 1/3 the cell 3,not strong is an MD-equilibrium for all T. In this

range, 3,not strong is the MD-equilibirum with the least cost. (The cell 1,not strong is never an

MD-equilibrium since 101 ∈ 2,not strong) outperform all strategies in the cell (that tie with all

strategies in the cell). Similarly, the strategies in cell 2,not strong) are outperformed by

110 ∈ 2, strong).

Proposition 3: In the edited tennis coach game with parameters T and c satisfying 1/2  c

and 3T − 1c  3/2:

(a) No cell Q,Strong is an MD-equilibrium.

(b) If c ∈ 5/16,3/8, then the cell 3,not Strong is a non-global MD-equilibrium for all T.

Proof: See Appendix.
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Discussion: Given a decision about the total budget spent on the team, a coach naturally

considers whether or not to assign the strongest player to the center court. A norm of assigning

the strongest player to the designated court is not stable since a coach might think that if the

other coach follows the norm, he can achieve almost 2 points without increasing the total cost of

his team by putting his two strongest player on the edge courts. A stable mode of behavior must

therefore include a norm not to put the strongest tennis player on the designated court.

Comparison to Nash equilibrium: The independence of the payoffs in each court and the

additivity of the costs make it possible to calculate the mixed-strategy Nash equilibria of the game

using the equilibria of the induced game in each single court. Consider the case of T  2. The

strategies in the auxiliary game are 0,1 and 2 and the payoff matrix is given by:

0 1 2

0 1/2 0 0

1 1 − c 1/2 − c −c
2 1 − 2c 1 − 2c 1/2 − 2c

In the range of 1/2 ≥ c ≥ 1/4, the auxiliary game has a unique mixed strategy Nash equilibrium

1 − 2c, 4c − 1,1 − 2c and the Nash equilibrium of the entire game will be any mixed strategy that

induces this marginal distribution of skill levels in each of the three courts.

The strategies in the MD-equilibrium cell 3,not Strong cannot span such a mixed strategy

since none of the strategies in the cell use the skill level of 2 in the center court. Furthermore, for

1/3  c, the Nash equilibrium strategy uses extreme skill levels more than does the

MD-equilibrium: the strength 1 appears in Nash equilibrium with less than half the probability of

the appearance of a skill level within 0,2, whereas in any mixture of strategies from the

MD-equilibrium cell 3,not strong, the skill level 1 appears with at least half the probability of

0,2.

As mentioned above the MD-equilibrium captures an intuitive consideration that is missing from

the standard Nash equilibrium analysis: assigning the strong player to the center court is not

stable since such a mode of behavior is easy to beat.
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6. Existence: Product games, supermodular games and mixed MD-equilibrium

As in the case of Nash equilibrium in pure strategies, MD-equilibrium does not always exist.

We present two examples of families of edited games in which the existence of MD-equilibrium

under standard assumptions is guaranteed: (a) product edited games in which a strategy is a

vector of K numbers and the dimensions are the K components of the vector, and (b) edited

two-player games with supermodular payoff functions. In addition, we extend the MD-equilibrium

to a mixed MD-equilibrium and prove its existence in finite edited games.

6.1. Product edited games

The concept of MD-equilibrium includes two ingredients that differentiate it from standard Nash

equilibrium:

(i) An MD-equilibrium is a set of strategies which share a specific characteristic in each

dimension.

(ii) In looking for a best response strategy to a cell, a player considers only strategies that differ

from the cell in at most one dimension.

The second ingredient can be discussed independently of the first for the family of edited

games that we call product edited games. A product edited game is a tuple  S,u, Dkk1,..,K  for

which the set of strategies S is a product set S  k1,..,K Sk, u is a payoff function and Dks  sk.

For product edited games, each cell is a singleton. A symmetric MD-equilibrium for product

games is a strategy such that any deviation of a player in only one dimension (component) is not

profitable. Note that if the payoff function is concave and differentiable, then the lack of profitable

deviations in any dimension implies that other types of possible deviations are not profitable

either. However, this is not the case for games in which the payoff function is not differentiable.

The following proposition states a simple condition that guarantees the existence of

MD-equilibrium in product edited games:

Proposition 4: Let  S,u, Pkk1,..,K  be a product edited game where Sk is a closed

interval of real numbers and u is a continuous function satisfying that for every s1, . . . , sK

and every dimension k, the function fy  us1, s2, . . . sk−1,y, sk1, . . , sK, s1, . . , sK is concave.

Then, the edited game has an MD-equilibrium.
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Proof: Consider the correspondence T : S →→ S defined by

Ts1, . . , sK  k1,..,K xk ∈ Sk | xk  arg maxy us1, s2, . . . sk−1,y, sk1, . . , sK, s1, . . , sK.

All sets in the range of the correspondence are products of closed intervals. By a standard

fixed point argument, the correspondence has a fixed point that is an MD-equilibrium. 

To illustrate a product edited game, consider the following version of a two-dimensional

Hotelling model: Two political candidates are competing for votes. The set of policies S is the unit

square and each policy represents a stand on two public issues. Each voter has an ideal point

h ∈ S and holds a strictly convex preference relation represented by a continuous function us,h.

The ideal points are distributed according to F. Each candidate selects a point in S. Voters

maximize their utility, while candidates wish to maximize the number of votes they receive. A

candidate considers each issue separately. This strategic situation can therefore be analyzed as

a product edited game in which the two dimensions are the two issues.

This example is not covered by Proposition 4 since the candidates’ induced payoff functions

are not continuous. However, the following argument proves that an MD-equilibrium does exist.

Consider a strategy s1, s2. Each voter has a preferred point in s1,y| y ∈ 0,1. Let ms1 be

the median of those points and define ms2 similarly. The function Ms1, s2  ms2,ms1 has a

fixed point which is an MD-equilibrium by our definition. In the special case, in which the marginal

distribution of preferred positions on one issue is independent of the preferred position on the

other, the MD-equilibrium is the pair of medians of the two marginal distributions.

This argument was used in Roemer (2001, ch 6) while proving that any Nash equilibrium in the

above Hotelling game must be a fixed point of the function M. Roemer also showed that this point

is generically not a Nash equilibrium of the Hotelling game, which implies that an MD-equilibrium

of our edited game is generically not global.

6.2. Existence of MD-equilibrium in supermodular games

The following is a simple example of an existence claim (suggested by Michael Richter) which

relates to edited two-player games with supermodular payoff functions, in which the

one-dimensional space of strategies is partitioned into a finite set of intervals.

Proposition 5: Let  S,u,D  be an edited game where S  m,M ⊂ , and u is continuous

and supermodular (in the sense of Topkins (1979)). Assume that there is a sequence of points in

S, m  a0  a1 . . . aL  M such that Ds  l if s ∈ Pl  al−1,al. Then, an MD-equilibrium

exists.
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Comment: Note that D is actually a correspondence in this case since a border point between

two intervals receives two values. This is a straightforward extension of our model and solution

concept.

Proof: By continuity, the best-response correspondence BR is well-defined. Define the proper

response correspondence PR by l ′ ∈ PRl if there is s ∈ Pl′ which is a best response to the

uniform distribution over Pl. Define the maximal proper response function by MPRl  l ′ where l ′

is the highest index in PRl. We now show that MPR is a non-decreasing function. Suppose the

contrary. Then, there are pairs l1  l1
′
and l2  l2

′
such that MPRl2  l1 and MPRl2

′
  l2

′
.

Therefore, there are a ∈ Pl1 and b ∈ Pl1
′ such that ua,UnifPl2  ub,UnifPl2 and

ub,UnifPl2
′   ua,UnifPl2

′ , violating the supermodularity of u. Thus, the maximal proper

response function is non-decreasing in l. A well-known result (which is a trivial case of Tarski’s

fixed point theorem) guarantees the existence of l such that PRl  l and the cell Pl is an

MD-equilbrium. 

6.3. A mixed MD-equilibrium

In this subsection, we define the concept of a mixed MD-equilibrium for a symmetric edited

game with "one dimension", which is analogous to that of mixed strategy Nash equilibrium, and

show that such an equilibrium always exists.

As discussed in Section 2.3., the MD-equilibrium is meant to capture situations in which players

do not collect precise information about other players’ strategies but rather about the

characteristics of those strategies. A player will not deviate from a particular cell if he learns that

the other players are playing strategies in that cell and the cell is a proper response to itself.

Similarly, one can think about stochastic stability. Players may realize that a number of cells

are chosen by other players and that there is regularity in the frequencies of the chosen cells.

The observed distribution of cells is stable if each cell in its support is a "proper response" to the

distribution. Namely, a distribution of cells is an equilibrium if each cell in its support includes a

strategy which is a best response to the compound lottery that selects a cell and then uniformly

selects a strategy in that cell. This definition reduces to the standard notion of symmetric

mixed-strategy Nash equilibrium if each cell is a singleton and to the MD-equilibrium in the case

that the distribution over the cells is degenerate.

Formally, let  S,u,D  be a symmetric edited game with one dimension. Denote by V the

range of the function D. We denote the cell of strategies s | Ds  v by v. Define Δ  ΔV to
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be the set of all lotteries on V. Thus, a member of Δ is a distribution over cells (for example, a

player chooses some high price with probability 2/3 and some low price with probability 1/3). As in

the case of standard mixed strategies, a member of Δ can be thought of as the belief of a player

about the cells used by the other player. A candidate for equilibrium is a member of Δ. For  ∈ Δ

to be an equilibrium, each cell in the support of  must be a proper response to the belief that the

probability of the other player choosing v is v for each v. A distribution over cells  ∈ Δ is a

mixed MD-equilibrium if every v for which v  0 contains a best response to the following

compound lottery : the characteristic v is first selected with probability v and then, each

strategy s ∈ v is played with equal probability.

Our definition of mixed MD-equilibrium is distinct from the mixed-strategy Nash equilibrium of

the auxiliary game defined in section 2.3 (comment (iv)). Note that the optimal strategy against

the distribution of cells played by the opponent may differ from the strategies that are optimal

against the individual cells. Thus, the implied (unreasonable) interpretation of the mixed-strategy

Nash equilibrium for the auxiliary game is that a player who faces uncertainty regarding his

opponent’s choice of cells and assigns positive probabilities to a number of cells chooses the

optimal strategy against each cell at the right moment. Our definition takes care of this bug.

Proposition 6: Any symmetric edited game with one dimension  S,u,D  has a

symmetric mixed MD-equilibrium.

Proof: Define a correspondence F : Δ → Δ to be  ∈ F if for every v in the support of  there

is a strategy s ∈ v which is a best response to

. For every , the set F is non-empty and

convex. To see that F has a closed graph, consider a sequence n,n in the graph of F which

converges to ,. If v  0, then for any n large enough nv  0. Thus, the cell v contains

a strategy sn that maximizes us,n. By the finiteness of S, there is a strategy s∗ in v that

maximizes us,n for an infinite number of n’s. Since the function us, is linear in , s∗ also

maximizes us,. Thus,  ∈ F and the graph of F is closed. By Kakutani’s fixed point

theorem, F has a fixed point which is a mixed MD-equilibrium. 
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7. Asymmetric edited games

The MD-equilibrium introduced in Section 2 for symmetric games can easily be extended to

asymmetry between the players, whether due to differences in their sets of strategies or the

payoff functions in the basic game or differences in the players’ perceptions of the dimensions

that partition the strategy space in the edited game.

An asymmetric edited game is a tuple  Si,ui, Dk
i k1,..,Ki i∈N where N is the set of players, Si

is player i’s set of strategies, ui is i’s payoff function and Dk
i k1,..,Ki is the collection of player i’s

dimensional functions. A cell for player i is a set of all strategies s ∈ Si which share the Ki

characteristics Dk
i s1≤k≤Ki , that is, each cell is characterized by the choice of a characteristic in

each of the Ki dimensions considered by i. An MD-equilibrium of the edited game is a profile of

cells d∗ii∈N such that for each i, a best response from among s ∈ Si | Dk
i s  dk

∗i for all k

besides at most one dimension to the uniform distribution over j≠i d∗j is in the cell d∗i. We

have in mind that the edited game, including the different sets of dimensions used by each

player, is common knowledge among the players.

As an example, consider a Blotto game with three battlefields and two players B6 and B4.

Player B6 has 6 troops and B4 has 4. Players have in mind two dimensions:

i) The number of reinforced battlefields: a reinforced battlefield for player BT includes at least

T/3 (that is, at least 2 troops for B6 and at least 1 for B4).

ii) The order dimension: whether or not the order of the player’s three troop assignments is

monotonic.

Each of the following matrices represents one player’s partition of his strategy space:

B6 1 2 3

monotonic 411,510,600 321,330,420 −
006,015,114 024,033,123 −

no order 051,060,105 042,132∗,204,213,231 222

141,150,501 240,303,312,402
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B4 1 2 3

monotonic 400 310∗,220 211

004 022,013 112

no order 040 202,031,103,130,301 121

One of the game’s MD-equilibria is 3,no order, 1,monotonic  222,400,004, which is

not global because 411 is a better response to 400, 004 for B6.

The only other MD-equilibrium (marked in bold) is 2,no order, 2,monotonic, which is global.

The strategy 132 is B6’s best response to 2,monotonic with a payoff of 2.13. The structure of

2,monotonic for B4 allows B6 to win all battles in the center by deploying 3 troops there, which

leaves him enough troops to win half of the other battles on the edges. The strategy 310 is B4’s

best response to 2,no order with a payoff of 1.28.

Both MD-equilibria are consistent with the intuition that in a stable situation the weaker player

focuses on a smaller number of fields than the stronger one in order to have a chance of winning

at least in those fields despite his overall inferiority. Thus, in MD-equilibrium the weaker player

uses an assignment of at least 2 troops in either one or two fields, whereas the stronger player

assigns at least 2 troops to 2 fields according to all strategies in his MD-equilibrium cell.

The above feature of the MD-equilibrium concept is shared with the game’s field-symmetric

mixed strategy Nash equilibria. Consider the following auxiliary game where B6’s strategies are

600, 511, 411, 420, 330, 321, 222 while those of B4 are 400, 310, 220, 211, where

the meaning of abc is that all its permutation will be played with equal probability:

400 310 220 211

600 5/3 4/3 4/3 1

510 2 10/6 1.5 4/3

411 13/6 2 10/6 10/6

420 11/6 11/6 11/6 11/6

330 10/6 11/6 13/6 2

321 2 2 2 13/6

222 2 2 2 15/6

The value of the auxiliary game is 2 and in all Nash-equilibria the stronger player uses either

321 or 222 and the weaker player never uses 211. Thus, in Nash equilibrium, the stronger
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player spreads his forces over the three fields (and reinforces two of them) while the weaker one

places his troops on either one or two fields.

8. Discussion

The paper introduces a concept of stability in the spirit of Nash equilibrium that applies to

strategic situations in which a player’s strategy space is large and complex and players reason in

terms of characteristics of strategies rather than the strategies themselves. A symmetric

MD-equilibrium is a stable mode of behavior in the sense that a player who considers deviating

from it by altering his choice in one of the dimensions (while keeping the others fixed) will not find

any justification to do so.

The MD-equilibrium "predicts" a profile of strategies’ characteristics rather than the traditional

prediction of a distribution of strategies. We find this approach to be more realistic in many

circumstances. Thus, when asked about their strategy in a complicated strategic interaction,

people do not usually describe a specific pure or mixed strategy. Rather, they tend to make some

qualitative statement that sums up their strategy, such as: "I always bid high", "I concentrate my

attention on only two fields of study", "I cooperate with only a few players" or "I am playing

aggressively".

In order to apply the MD-equilibrium concept one needs to specify how players characterize the

strategies. However, the need for this additional information should not deter one from using the

concept since the way in which players characterize strategies will influence their behavior and

needs to be understood and integrated within the analysis. Adding this information provides a

new tool for explaining the stability of certain modes of behavior in strategic situations.

The dimensions and characteristics of an edited game provide the language used to describe

an MD-equilibrium. In each of the examples presented in the paper, we used a different language

(i.e. specification of dimensions) and therefore, the insights were expressed in the language of

that specific example. Can we arrive at any general insights based on these examples? Overall,

it can be said that a cell is not an MD-equilibrium if it is characterized by a regularity that can be

used to find a strategy outside the cell which performs better against the cell than any strategy in

the cell. For example, in the Blotto game discussed in Section 3, the cell 2, increasing contains

only strategies of the form low,high,very_high and most of those strategies are defeated by

some strategy of the form high,very_high, low in 2,other. In contrast, the MD-equilibrium

2,other contains an equal mixture of both peak and sink strategies and therefore is harder to
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beat. Similarly, in the auction game discussed in Section 4, it is difficult to defeat the

MD-equilibrium cell 3,mixed due to the uncertainty about the level of each of the bids. In the

tennis game discussed in Section 5, the MD-equilibrium avoids the assignment of the strongest

player to the center court, but does not specify where he should be assigned. The uncertainty

regarding the location of the strongest player makes the cell unbeatable.

Our paper’s journey began from experimental evidence that people think in terms of

dimensions of strategies rather than the strategies themselves. These findings inspired us to

formalize multi-dimensional reasoning and to suggest a framework based on the three concepts

of "an edited game, a proper response and MD-equilibrium", which is an expansion of "a game, a

best response and Nash equilibrium". We adopted a specific formal definition of a proper

response. As mentioned, there are other reasonable definitions that yield different equilibrium

concepts. The framework can also be adapted to non-equilibrium approaches. Overall, the paper

is the first step toward a new paradigm for analyzing behavior in strategic interactions with a

large and complex strategy space.
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Appendix

Proposition 1: In the edited Blotto game with 3 fields and N which is a multiple of 6,

2,other is the only MD-equilibrium and is global.

Proof: Denote by px,y the number of points that a player using the strategy x scores against

the strategy y. Given a cell C, let px,C  ∑y∈C px,y. Obviously, comparing two strategies x and

y played against the uniform distribution over C is equivalent to comparing px,C to py,C.

Claim 1: All cells besides 2,other are not MD-equilibria.

1,↘ (and similarly 1,↗): The strategy 0,2N/3  1,N/3 − 1 ∈ 1,other wins against all

strategies in 1,↘ except for N/3  2,N/3 − 1,N/3 − 1 with which it ties. Any strategy

x1,x2,x3 ∈ 1,↘ ties with itself and with at least one other strategy in 1,↘: either

x1  1,x2,x3 − 1 (if x3 ≥ 1), or x1  1,x2 − 1,0 (if x2 ≥ 1 and x3  0) or N − 1,1,0 (if x2  x3  0).

2,↘ (and similarly 2,↗): The strategy 0,2N/3,N/3 ∈ 2,other wins against all strategies in

2,↘, whereas any strategy in 2,↘ ties with itself.

1,other: The strategy N/3,N/3,N/3 ∈ 3,other wins against all the strategies in 1,other.

3,other: The strategy N/2,0,N/2 ∈ 2,other wins against N/3,N/3,N/3, the only strategy in

3,other.

Claim 2: The cell 2,other is a (global) MD-equilibrium.

To illustrate, the following table presents the distribution of assignments in the center field and

in an edge field for the case of N  18 (where 2,other contains 51 strategies). The cell

corresponding to assignment n and field i contains the number of strategies in 2,other for which

the assignment in field i is n.
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assignment field 2 category field 3 category

12 2 H2 1 H3

11 4 H2 2 H3

10 6 H2 3 H3

9 6 M2 4 H3

8 4 M2 5  2 M3

7 2 M2 6  4 M3

6 0 M2 6  6 M3

5 2 L2 1 L3

4 3 L2 1 L3

3 4 L2 2 L3

2 5 L2 2 L3

1 6 L2 3 L3

0 7 L2 3 L3

The pattern of the distributions is generalized in the following table (the explanations refer to six

categories H2,M2,L2,H3,M3,L3 of pairs n, i).

x2  n ∈ # strategies in 2,other Explanation

H2 N/2,2N/3 22N/3 − n  1 x1 or x3 is in N/3,N − n

M2 N/3,N/2 2n − N/3 x1 or x3 is in N/3,n − 1
L2 0,N/3 N/3 − n  1 edges are reinforced; x1 ∈ N/3,2N/3 − n

x3  n ∈ # strategies in 2,other Explanation

H3 N/2,2N/3 2N/3 − n  1 x1 ∈ N/3,N − n

M3 N/3,N/2 − 1 N − 2n  min2N/3 − n  1,N/3 x2 ∈ n  1,N − n or

x2 ∈ 0,N/3 − 1 ∩ 0,2N/3 − n

L3 0,N/3 ⌈N/6 − n/2⌉ N/3 ≤ x1  x2 and x1 ∈ N/3, N − n/2

To see that 2,other is a global MD-equilibrium, we need to prove that for each strategy

x ∉ 2,other, there is a strategy y ∈ 2,other which does at least as well as x against 2,other.

Case 1: x has only one reinforced field.

If x has a peak in the center, it will lose against half of the strategies in 2,Other, which are
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"sinks", and thus its expected score is no more than 1.5. On the other hand, any set of strategies

contains a strategy that achieves an expected score of at least 1.5 when playing against the set.

Thus, there must be a strategy in 2,other that is weakly better than x. Otherwise, and without

loss of generality, field 3 is reinforced. When playing against all strategies in 2,other, x scores

as follows: in field 3, at most |2,other|; in field 2, less than the sum of entries in category L2; and

in field 1, less than the sum of entries in category L3. The sum of the entries in L3 equals the sum

of the entries in H2:

∑
nN/3

⌈N/6 − n/2⌉  ∑
N/2n≤2N/3

22N/3 − n  1. The sum of entries in M2 is 2 ∑
i1,..,N/6

i. Therefore,

px, 2,other  2|2,other|− 2 ∑
i1,..,N/6

i.

We will show that pN/2,0,N/2, 2,other  px, 2,other. In each edge field, N/2,0,N/2 wins

a point against any assignment except those in H3, where it loses to any assignment in

N/2  1,2N/3 (there are ∑
iN/21,..,2N/3

2N/3 − i  1  ∑
i1,..,N/6

i strategies with such assignments) and

ties with the assignment N/2 (there are N/6  1 such strategies in 2,other). Furthermore, it

scores half a point in the center when playing against an assignment 0 (there are N/3  1

strategies in 2,other with 0 in the center). Thus,

pN/2,0,N/2, 2,other ≥ 2|2,other|− ∑
i1,..,N/6

i − N/6  1/2  N/3  1/2 

2|2,other|−2 ∑
i1,..,N/6

i − 1/2.

Case 2: x has at least two reinforced fields.

We show that x is inferior to N/2,0,N/2 ∈ 2,other.

Since x ∉ 2,other, it follows that the center must be reinforced and w.l.o.g. field 3 must also

be, which implies that x2 ≤ x3.

Consider a strategy x with x3  N/2 and therefore x1  0. The strategy x1 − 1,x2,x3  1 is

superior to x against 2,other since the minimal marginal gain from adding 1 to field 3 (category

M3) is larger than the maximal marginal loss from subtracting 1 from field 1 (category L3). Thus, x

is inferior to a strategy of the type a,N/2 − a,N/2 ∈ 2,↗.

Consider x  a,N/2 − a,N/2 where a ≤ N/6. The strategy is not superior to 0,N/2,N/2 because

the sequence of marginal gains from increasing the assignment in field 1

N/6,N/6,N/6 − 1,N/6 − 1,N/6 − 2,N/6 − 2. . . .  (category L3) is dominated by the sequence of
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marginal losses from decreasing the assignment in the center N/3,N/3 − 2,N/3 − 4, . . .  (category

M2).

Consider x  0,N/2,N/2. The strategy N/2,0,N/2 is superior to x and its advantage is

pN/2,0,N/2, 2,other − p0,N/2,N/2, 2,other  ∑ i1,..,N/6 i  1/2. The number of

assignments in 2,other that are greater than N/2 in field 2 is twice the number in field 3, which is

∑ i1,..,N/6 i. The relative advantage of N/2,0,N/2 over 0,N/2,N/2, since it ties with the 0

assignment (the former strategy ties in the center and the latter ties in the edge), is larger than

the disadvantage that it ties with the N/2 assignment. More formally, the total points scored by

N/2,0,N/2 in fields 1 and 2 when playing against all strategies in 2,other is

|2,other|−∑ i1,..,N/6 i − N/6  1/2  N/3  1/2, while the analogous number of points for

0,N/2,N/2 is N/6/2  |2,other|−2∑ i1,..,N/6 i − N/3/2.

Finally, consider a strategy of the type x  a,N/2 − a − b,N/2  b where a  b ≤ N/6 (a ≥ 0,

b  0). The gain in field 3 from the extra b in the edge, compared to a,N/2 − a,N/2, is

N/6  1  2N/6 . . .2N/6 − b  N/6 − b  1/2 (category H3) while the loss in the center from

decreasing the assignment to N/2 − a is at least b. Thus, for all b we have

N/6  1  2N/6 . . .2N/6 − b  N/6 − b  1/2 − b  N/6  1/2 − b − N/6 − b  1/2 ∑ iN/6−b1
N/6

 −b/2 ∑ iN/6−b1
N/6 i  ∑ i1,..,N/6 i. Therefore, x is inferior to N/2,0,N/2. 

Proposition 2: For the edited 3-object two-bidder simultaneous all-pay auction with

2T  M  T2/2, the cells 3,mix and 2,H are the only MD-equilibria. The cells MD-equilibrium

2,H is not global unless 3T−2
T−1  M

T  3T
T−1 (that is, with the exception of the case in which M/T

is around 3)

Lemma 1: For a cell C and a strategy x1,x2,x3: Δx1,x2,x3,C 

probCy1 ∈ x1,x1  1 and (y2  x2 or y3  x3/4probCy1 ∈ x1  1,x1 and either y2  x2 and

x3  y3 or y2  x2 and x3  y3/2.

Proof: The Lemma follows from the following table which classifies all strategies y for which

moving from x1,x2,x3 to x1  1,x2,x3 changes the probability of winning M when playing

against y.
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The event prob. of winning M increases the increase

y1 ∈ x1,x1  1 and... y1  x1 y1  x1  1

from to from to

either y2  x2 and x3  y3 or y2  x2 and x3  y3 1/2 1 0 1/2 1/2

either y2  x2 and y3  x3 or y2  x2 and y3  x3 1/4 1/2 0 1/4 1/4

both y2  x2 and y3  x3 1/2 3/4 1/4 1/2 1/4

either y2  x2 and y3  x3 or y2  x2 and y3  x3 3/4 1 1/2 3/4 1/4

Lemma 2: For any two cells C1 and C2, the maximization maxs∈C1Ws,C2 has a solution in

edgeC1.

Proof: Consider three numbers t, t  1, t  2 belonging to the same category, either Low or High.

The events presented in the above table for x1  t and x1  t  1 have the same probability.

Thus, by Lemma 1, Δt  1,x2,x3,C  Δt,x2,x3,C. Therefore, the maximization

maxs∈C1Ws,C2 must have a solution that is an edge strategy.

Notice that given the constraints 2T  M  T2/2, the inequality Δx1,x2,x3,C ≥ 1
2T

guarantees

that increasing x1 by one unit is strictly beneficial when playing against C while the inequality

Δx1,x2,x3,C ≤ 2
T2 implies that increasing x1 by one unit is strictly harmful.

Claim 1: All cells besides 2,H and 3,mix are not MD-equilibria.

Proof:

(1,H): Within 1,H the optimal strategy against the cell must be either T, 0, 0 or T/2  1,0,0

and they are inferior to strategies in 2,H and 1,L, respectively:

uT/2  1,T/2  1,T/2  1, 1,H  M − 3T
2 − 3  uT, 0, 0, 1,H  M 7

12 −
1
6T  − T and

u1,0,0, 1,H  5
12 M − 1  uT/2  1,0,0, 1,H   5

12 
1
6T M −

T
2 − 1.

(1,L): The strategy 1,1,1 ∈ 3,L always wins against 1,L and its payoff of M − 3 is higher

than that of the two edge strategies in 1,L: u1,0,0, 1,L   5
12 

1
6T M − 1 and

uT/2,0,0, 1,L  7/12M − T/2.

(3,H): The strategy 0,T,T ∈ 2,H is superior to T/2  1,T/2  1,T/2  1 because the expected

payoffs of the former are approximately M − 2T and of the latter − 3T
2 . Furthermore,
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u0,T,T, 3,H  T3−2T2T
T3 M − 2T  uT,T,T, 3,H  T3−3T2

T3 M − 3T since T2/2  M.

It is straightforward to verify that ΔT/2  1,T/2  1,T, 3,H  1
2T (the strategy

T/2  1,T/2  1,T almost always loses in the second bid and wins in the third and hence the

marginal expected gain is on the scale of 4
T

1
2 ) and thus T,T/2  1,T is a better strategy against

3,H.

The strategy T/2,T,T ∈ 3,mix is superior to T/2  1,T,T against 3,H since

MΔT/2,T,T, 3,H  M T−1
2TT/22

  1.

(3,L): Parallel arguments to those in the previous case for strategies consisting of bids in the

category High apply to strategies consisting of bids in the category Low: 1,1,1 and 1,1,T/2 are

not best responses to 3,L and the strategy 0,T/2,T/2 ∈ 2,L is superior to 1,T/2,T/2. The

other edge strategy T/2,T/2,T/2 is inferior to T/2  1,T/2  1,1 ∈ 3,mix, which wins M with

certainty and costs less.

(2,L): As in step 1 of Claim 1, T/2,T/2,0 is the best strategy within 2,L against the cell.

The strategy T/2  1,T/2,0 ∈ 2,mix does better since ΔT/2,T/2,0, 2,L  1
2T .

(2,mix): We will show that for any l ∈ Low and h ∈ High the strategy 1, l,h ∈ 3,mix is

superior to 0, l,h against 2,mix. The strategy 1, l,h increases the probability of winning M by

at least 1/12 (since it wins with probability 1 against any strategy in 2,mix of the form 0,y2,y3

where y2 ∈ High and y3 ∈ Low whereas 0, l,h wins with probability 1/2 against those strategies).

Thus, its expected improvement is at least M/12 − 1 which is positive for T ≥ 6. 

Claim 2: The cell 2,H is an MD-equilibrium. It is not global unless 3T−2
T−1  M

T  3T
T−1 .

Proof:

Step 1: The strategy T,T, 0 is an optimal strategy within 2,H against the cell itself and

achieves an expected payoff of 1 − 1
T M − 2T. (Note that the payoff is positive whenever

M ≥ 2T  3).

For x1,x2, 0 ∈ 2,H, we have Δx1,x2, 0, 2,H 

prob2,Hy1 ∈ x1,x1  1and y3  0/4  prob2,Hy1 ∈ x1  1,x1 and

y2  0/2  1
4

4
T

1
3 

1
2

4
T

1
3  1

T . Since this marginal is greater than 1
2T , the strategy T,T, 0 is

optimal within the cell against 2,H.
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The strategy wins against all strategies in the cell (which contains 3T2/4 strategies), with the

exception of: (i) T  1 strategies of the type T, 0,y3, 0,T,y3 and T,T, 0, which it wins against

with probability 1/2, and (ii) T − 2 strategies in 2,H of the type T,y2  T, 0 and y1  T,T, 0,

which it wins against with probability 3/4. That is, it wins M with probability

1 − T1/2T−2/4
3 T

2
2

 1 − 1
T  and its expected payoff against 2,H is 1 −

1
T M − 2T.

Step 2: The cell 2,H is an MD-equilibrium.

We wish to verify that no strategy in 1,H, 3,H, 2,mix or 2,L achieves an expected payoff

against 2,H larger than that of T,T, 0.

1,H: For x1, 0,0 ∈ 1,H, we have Δx1, 0,0, 2,H  prob2,Hy1 ∈ x1  1,x1 and (y2  0

or y3  0/4  1
4

2
3

4
T  2

3T . Thus, the strategy T, 0, 0 is optimal in 1,H against 2,H. The

strategy wins M with probability 2
3

1
2 1 −

1
2

2
T  

T−1
3T . Given the constraints, which imply also that

T ≥ 6, the strategy is inferior to T,T, 0 ( T−1
T M − 2T ≥ T−1

3T M − T).

3,H: By Lemma 2, it is sufficient to show that no strategy in edge3,H does better than

0,T,T against 2,H.

Any strategy that involves a cost of at least 2T  T/2 is inferior to 0,T,T since at most it adds
M
T −

T
2  0 to the expected payoff.

The other edge strategies in 3,H are T/2  1,T/2  1,T, which wins only with probability of

about 2/3 but which costs the same as T,T, 0, and T/2  1,T/2  1,T/2  1, which wins with

probability
32 T

2
−1 1

2
 3
4


3 T
2
2

≤ 2
T and M 2

T −
3T
2 − 3  1 −

1
T M − 2T.

2,L: No strategy in 2,L wins M when playing against any strategy in 2,H and

1 − 1
T M − 2T ≥ −2 given M  2T̸.

2,mix: Placing a bid in Low that is higher than 1 is not optimal when playing against 2,H.

Therefore, an optimal strategy in 2,mix against 2,H is of the form x1, 0,1. Now,

Δx1, 0,1, 2,H  prob2,Hy1 ∈ x1  1,x1 and

y2  0/4prob2,Hy1 ∈ x1  1,x1, y3  0/2 
1
4

1
3

4
T  1

2
1
3

4
T  1

T and thus 0,1,T is an optimal strategy in 2,mix against 2,H.

This strategy is inferior to 0,T,T since saving T does not justify the loss of M with probability of

approximately 1/2. Formally, W0,1,T, 2,H  1
2 −

1
2T (i.e. it wins against any strategy in 2,H
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of the types 0,y2,T, 0,y2,y3  T, y1, 0,y3  T, y1, 0,T and y1,y2, 0 with probabilities 1/4, 1/2,

1, 1/2, and 0, respectively) and M T−1
2T − T − 1 ≤ T−1

T M − 2T since 2T  M.

Step 3: The MD-equilibrium 2,H is not global unless 3T−2
T−1  M

T  3T
T−1 .

The strategy 1,1,T ∈ 3,mix wins M with probability 2/3 against 2,H and its expected payoff

is about 2/3M − T, which is greater than M − 2T if 3T  M. The strategy T,T, 1 ∈ 3,mix costs

one unit more than T,T, 0 and increases the probability of winning against any strategy of the

form T,y2, 0 or y1,T, 0 by 1/4. The frequency of such strategies in 2,H is approximately 1
3

4
T .

Thus, the approximate expected improvement is 1
4

4M
3T − 1 which is positive if M/T  3. Formally, if

3T−2
T−1  M

T , then

u1,1,T, 2,H  1 − 1
T M − T − 2  1 − 1

T M − 2T  u0,T,T, 2,H.

Proposition 3: In the edited tennis coach game with parameters T and c satisfying 1/2  c

and 3T − 1c  3/2:

(a) No cell Q,Strong is an MD-equilibrium.

(b) If c ∈ 5/16,3/8, then the cell 3,not Strong is a non-global MD-equilibrium for all T.

Proof of Proposition 3:(a) The upper bound on the range of c guarantees the claim for

Q  0,1, 3T − 1 and the lower bound guarantees the claim for 3T.

Let 2 ≤ Q ≤ 3T − 2. Note that the total score in any match between two teams with the same

total skill level is either 1,1.5 or 2.

Let q  minQ/2,T. We first show that either a  q,Q − 2q,q or b  q, 0,q  1, both of

which are strategies in Q,not Strong, scores 2 points against all strategies in Q,Strong except

for two strategies against which they score 1.5 points.

For even Q or 3T − 2 ≥ Q  2T, the strategy a scores 2 points against all strategies in

Q,Strong that do not assign q to a side court (since none of the strategies in this cell assign

more than q to a side court). The strategy a scores 1.5 points against the only two strategies in

Q,Strong that assign q to one of the side courts, i.e. q,q,Q − 2q and Q − 2q,q,q.

For odd Q  2T, the strategy b always wins in the third court since there is no strategy

z ∈ Q,Strong with z3 ≥ q  1. There are only two strategies in Q,Strong in which the tennis

player in court 1 has a skill level q: q,q  1,0 and q,q, 1, and b scores 1.5 points against these

two strategies and 2 points against all others in Q,Strong.
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It remains to show that every x ∈ Q,Strong does worse than one of the strategies

a,b ∈ Q,no Strong since it ties against at least two strategies in Q,Strong besides x. The

following table specifies pairs of two strategies for every x ∈ Q,Strong for which x1  x3 (the

case of x3  x1 is symmetric). Note that the strategies identified in the third and fifth rows in the

table are in Q,no strong) because Q ≤ 3T − 2.

x ∈ Q,Strong strategies in Q,No_Strong which tie with x

x1  x3  0 1,x2 − 1,0 0,x2 − 1,1
x2  x1  x3  0 x1 − 1,x2,x3  1 x1  1,x2,x3 − 1

x1  x2  x3 x1 − 1,x2  1,x3 x1,x2  1,x3 − 1
T  x2  x1  x3 x1 − 1,x2,x3  1 x1 − 1,x2  1,x3
T  x2  x1  x3 x1 − 1,x2,x3  1 x1 − 2,x2,x3  2
x2  x1  x3 ≥ 0 x1 − 1,x2,x3  1 x1,x2 − 1,x3  1

(b) Let mij  uj  1,x−i, 3,not Strong − uj,x−i, 3,not Strong. Note that mij is

well-defined since it is independent of x−i. Note also that m1j  m3j. Let mi  mi0,mi1, . . . . 

be the vector of marginals for the i’th court.

For T  2, the best strategy in 3,not Strong is 210 which achieves an average score of 1.625.

Any strategy in 3,Strong scores only 1.5 points against the cell. It is straightforward to verify that

(in this range of c) no strategy in Q,not_strong does better than 210 against 3,not Strong. The

MD-equilibrium is not global in this range since the strategy 010 ∈ 1,Strong scores 1 point

against all strategies in the cell and 1 − c  1.625 − 3c.

For T ≥ 3, the cell 3,not Strong is identical for for every T ≥ 3. The vectors of marginals are

m2  6/12,2/12,0,0,0. . .  and m1  m3  3/12,3/12,3/12,1/12,0, . . .  which are decreasing

sequences. Thus, the best strategy for Q  3 against the cell is 210 which achieves an average

score of 10/6. In order to verify that there is no better strategy in any cell Q,not Strong, note that

c ≥ 1/4 guarantees that adding skill to the side courts is not beneficial. Furthermore, c ≤ 3/8

guarantees that 100 is no better than 210 (since it reduces the average score by 3/4, which is

more than the saving of 2c). Thus, 3,not Strong is an MD-equilibrium. It is not global since the

strategy 010 is superior to 210 against the equilibrium cell (since the saving of 2c is larger than the

loss of 5/8 on the first court). 
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