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Abstract

A "problem solver" (PS) is an agent who when interacting with other agents does not

"put himself in their shoes" but rather chooses a best response to a uniform

distribution over all possible configurations consistent with the information he receives

about the other agents’ moves.

We demonstrate the special features of a PS by analyzing a modified coordination

game. In the first stage, each of the other participants - who are treated as

conventional players - chooses a location. The PS then receives some partial

information about their moves and chooses his location. The PS wishes to coordinate

with any one of the conventional players and they wish to coordinate with him but not

with each other. Equilibria are characterized and shown to have different properties

than those of Nash equilibria when the PS is treated as a conventional player.
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1. Introduction

Consider a gamelike situation in which all agents but one choose their actions in the

first stage and the other agent chooses his action after receiving some information

about the choices made in the first stage. According to the standard game-theoretic

approach, the second-stage player "puts himself in the shoes" of the first-stage

players, forms beliefs about their behavior, updates his beliefs according to the

information he received and responds optimally to those beliefs. However, there are

situations in which the second-stage player does not base his choice on the beliefs he

forms about the other agents’ moves but rather on the set of configurations of actions

consistent with what he observes.

For example, imagine that someone has written a crossword puzzle and offers you a

prize if you can solve it. It is unlikely that you will think much about his "strategy". It is

more likely that you will use your knowledge and powers of logic to fill in the crossword

based on the clues given.

Alternatively, imagine a situation in which someone writes the names of two

countries (members of the UN), each on a different card, and places them face down

in front of you. You are told that each name has four different letters and that they

have three letters in common. Your task is to guess one of the two names. You will

eventually come to the conclusion that the only possible configuration is {Iran, Iraq}

and thus either of them will be a successful guess. However, what would be your

guess if you are told that the two names share precisely two letters. In that case, there

are three possible pairs: {Chad,Cuba}, {Iran, Mali} and {Iraq,Mali}. If you aren’t thinking

strategically about the motives of the person who chose the two countries, then your

guess will probably be Mali, since it appears in two of the possible configurations

whereas the others appear in only one.

Finally, imagine you are considering entering a particular market of several similar

products (such as breakfast cereals) with an incumbent who produces all the

products. You observe your competitor’s cumulative profits but not their breakdown by

product. You need to decide which of the products to produce if you enter the market.

In such a situation, you are likely to first compute values for the unknowns that are

consistent with what you observe and then assign probabilities to each consistent

scenario, rather than forming beliefs about the competitor’s moves and updating them

according to what you observe.
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In these examples, agents do not think strategically but rather reason as if they were

solving a puzzle. Accordingly, we introduce a new type of economic agent, which we

refer to as a problem solver (PS). The PS interacts with the other agents and receives

only partial information about their moves; he does not deliberate about their motives.

We assume that the PS calculates the set of possible configurations of the other

players’ moves that are consistent with what he observes and chooses a best

response to the uniform distribution over that set. For the PS, finding all the

configurations of moves that are consistent with what he observes is like solving a

puzzle.

The platform we use to demonstrate the idea is a new version of the coordination

game. The agents in the interaction are labelled 0,1, . . ,n. Each agent chooses an

alternative from a set X. Agent 0 is the PS and the other n agents are treated as

conventional players. The PS is interested in coordinating his choice with one of the

other players. Each of the players 1, . . ,n would like to coordinate with the PS and to

avoid coordinating with any other player. Players 1, . . ,n first make their choices

simultaneously, following which the PS receives some information about their choices

and then makes his own.

If the PS is treated as a conventional player, then the game would have many trivial

pure equilibria which do not make much sense. In fact, regardless of the information

player 0 receives, every profile of n distinct choices, one of which is chosen by player 0

with probability 1, is consistent with a pure sequential equilibrium. The success of the

coordination is due to player 0’s knowledge of the equilibrium. The information player 0

receives regarding the other n players is superfluous.

We suggest a different approach according to which player 0 is a problem solver. He

identifies all the profiles of the players’ choices that are consistent with the data he

receives and treats them as equally likely. He then chooses an action in order to

maximize the chance that his choice will match that of at least one of the other

players.

We analyze the equilibria of the modified game assuming that the set X is a large

matrix and the PS observes only the number of players located in each row and in

each column of the matrix. The equilibrium of the model in the presence of a problem

solver differs significantly from that of the above coordination game in which the PS is
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treated as a conventional player. We show that in all equilibria, the PS coordinates

with one of the players with certainty. However, an interesting phenomenon emerges:

There exist equilibria in which the PS chooses a position in the matrix which he

believes might be vacant even though it is occupied with certainty. Such a

phenomenon would not arise in the case that the PS is a conventional player.

The concept of a PS in this paper is strongly linked to the idea of an Artificial

Intelligence (AI) agent. An AI agent is one that receives percepts from the environment

and performs actions in order to maximize its chance of success in achieving some

goal (see, for example, Russell and Norwig (2009)). Our PS has exactly these

features: The environment is the players’ actions. The partial information received by

the PS concerns the players’ moves. The PS goal is to maximize the chances of

choosing an occupied entry.

2. The model

Consider the following "romantic game". There are n men, each of whom would like

to be picked by a certain woman. Each man has to declare his favorite country to

vacation in (from a set A), as well as his favorite cuisine (from a set B). The

declarations don’t have to be truthful. Men would like to be viewed as unique. In other

words, they do not want to be viewed as having the same pair of characteristics as

other men. The woman gets to view the distributions of the declared countries and the

declared cuisines, after which she declares the type of man (i.e., a pair in A  B) that

she is willing to be matched with. If her declaration does not match any of the men’s

declarations, then everyone is disappointed. If there is a man whose declaration

matches hers, they are happy and the other men feel miserable.

Formally, there are n  1 agents. We refer to agent 0 as a PS and to agents 1, . . ,n as

players. Each agent chooses a position, which is a pair of characteristics in the set

X  A  B (where A and B are finite and disjoint sets). For simplicity, assume that both

A and B contain at least n elements. Consistent with the convention in chess, we refer

to the elements of A as columns and to the elements of B as rows. A product set of

columns and rows is called a box.

The n players make their choices simultaneously. The PS observes only the number
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of occupied entries in each column and row. With that information he chooses his

position.

The PS gains utility of 1 if his choice coincides with that of one of the players and 0

otherwise. Each of the players 1, . . ,n gains utility of 1 if his choice coincides only with

that of the PS, −1 if his choice coincides with that of at least one of the other players

and 0 otherwise. (In the final section, we analyze two variants of the model. In the first,

a player does not have disutiluty from making the same choice as another player and

if the PS picks an entry chosen by more than one player he is randomly matched with

one of them. The second is a version of the hide-and-seek game: the PS wants to pick

a player and players want not to be picked by the PS.)

Given these preferences, we can confine ourselves to strategy profiles in which no

two players occupy the same position. An outcome of the n players’ choices is a

matrix M  Ma,b, where Ma,b ∈ 0,1, with n 1’s. The notation Ma,b  1 signifies that

the position a,b is occupied and Ma,b  0 signifies that it is vacant. The PS observes

only the data vector dM  dMxx∈AB where dMx is the number of players

occupying entries with a characteristic x in the matrix M (i.e., dMa   lMal and

dMb   kMkb). A vector d is consistent if there is a matrix M such that d  dM. By

definition, the PS observes a consistent data vector. We refer to da  db as the

score of the entry a,b.

The PS assumes that all matrices consistent with the data he observes are equally

likely and randomly picks an entry with the highest probability of being occupied.

Formally, a matrix M is said to be d-consistent if dM  d. Let d,x be the proportion

of d-consistent matrices, in which x is occupied. If d,x  1, we say that x is revealed

to be occupied by d. If d,x  0, we say that x is revealed to be vacant by d.

Hereafter, we use the term "revealed" to mean "revealed to be occupied". We say that

the matrix M is revealed if it is the only matrix consistent with dM. Denote by CM

 x | dM,x is maximal the set of all entries with the highest probability of being

occupied, given dM. The probability that the PS picks x is M,x  1/|CM| for each

x ∈ CM and M,x  0 for each x ∉ CM.

An equilibrium is a matrix M such that no player can increase his probability of being

picked by moving to a vacant entry. Formally, let Mx → y be the matrix derived from

M after switching the values of entries x and y. The matrix M is an equilibrium if, for
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each occupied entry x, M,x ≥ Mx → y,y for any entry y that is not occupied in

M.

Example 1: Consider the following matrices with n  5 (vacant rows and columns

are not depicted).

M1 
1∗ 1 1

1 0∗∗ 0

1 0 0

M2 
1∗ 1 1

1 1 0

0 0∗∗ 0

M3  1∗ 1 1 1 1

∗ ∗ ∗ ∗ ∗

The matrix M1 is revealed. Thus, the probability of each occupied entry being picked

is 1/5. However, M1 is not an equilibrium. If the occupier of ∗ moves to ∗ ∗, the new

data vector will be 2,2,1, 2,2,1, which is consistent with 5 matrices, such that

each of the four entries a,b for which da,db  2,2 is occupied in 4 of the 5

matrices. Each of the 4 entries a,b for which da,db is 2,1 or 1,2 is occupied

in 2 of the 5 matrices. The unique entry a,b, for which da,db  1,1, is

occupied in only one of the d-consistent matrices. Thus, by moving from ∗ to ∗ ∗ the

mover increases his probability of being picked from 1/5 to 1/4.

The matrix M2 is revealed but is not an equilibrium since the player who occupies ∗

can increase his probability of being picked from 1/5 to 1/3 by moving to ∗ ∗.

The matrix M3 is revealed and is an equilibrium. If the player at ∗ moves to an entry

such as ∗ ∗ (which does not share any characteristics with the other four occupied

entries), then the new data vector will be consistent with 5 matrices and in only one of

them is ∗ ∗ occupied. Each of the other occupied entries is occupied in 4 of the 5

matrices consistent with the new data and thus the mover reduces his probability of

being picked from 1/5 to 0. If the occupier of ∗ moves to an entry such as ∗ ∗ ∗ (which

shares one characteristic with one other occupied entry), then the new matrix will also

be revealed and the player gains nothing by moving.

Comment: Notice that the coordination problem which arises here is very different

from that due to the lack of common language regarding the available alternatives, as

discussed, for example, in Crawford and Haller (1990) and Bacharach (1993). In fact,

if the PS in our model interacts with only one player then coordination is trivial since

the PS receives full information about the location of the player. What makes

coordination non-trivial in our model is the lack of strategic reasoning on the part of the
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PS and the partial information he observes about the locations of the players,

information that might not enable him to identify an occupied entry.

3. The Problem Solver’s Behavior

In this section, we present some properties of the set of matrices that are consistent

with a given data set. These properties determine the Problem Solver’s "response

function". In particular, we will show that either:

(1) The set of entries that are revealed to be occupied is nonempty (and consists of

all entries with a score above a certain number) and the PS randomly picks one of the

revealed entries;

or

(2) No entry is revealed and the PS randomly picks one of the entries with the

maximal score.

Claim 1: Let d be a consistent data vector such that d1  d2, where 1 and 2 are

elements of A. Then, for all b ∈ B, d, 1,b ≥ d, 2,b. Furthermore, if there is a

d-consistent matrix M such that for some b, M1,b  1 and M2,b  0 , then

d, 1,b  d, 2,b.

Proof: Let b ∈ B. Fix the values for all entries other than those in columns 1 and 2.

Partition the class ℂ of all d-consistent matrices with these fixed values outside

columns 1 and 2 into four cells, denoted byM,,  ∈ 0,1 , ∈ 0,1, such that

M, is the cell in this partition that consists of the matrices for which M1,b   and

M2,b  . We will show that |M1,0| ≥ |M0,1| and ifM1,0 is not empty, then the

inequality is strict. This is sufficient since if there is a d-consistent matrix M such that

M1,b  1 and M2,b  0, then for at least one set of entries in columns B − 1,2 we have

M1,0 ≠ ∅.

We first show that ifM1,0  ∅, thenM0,1  ∅. IfM0,1 is not empty, then there

is M ∈ ℂ with M1,b  0 and M2,b  1. By d1  d2, there is a row b′ where M1,b′  1

and M2,b′  0. Switching all values in 1,2  b,b′ (i.e., changing all 0’s to 1’s and

vice versa), we obtain another matrix in ℂ which is inM1,0. Therefore, ifM1,0 is

empty, then the number of matrices in ℂ in which M1,b  1 is the same as the number

of matrices in ℂ̸ in which M2,b  1.

We next show that ifM1,0 ≠ ∅, then the number of elements inM0,1 is strictly
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smaller than that inM1,0. Define L1,1 to be the set of rows in which the data

regarding the rows implies that the missing values in columns 1 and 2 are 1,1, and

define L0,0 in a similar manner. For the rows in B − L11 − L00, the data dictates that the

missing values in columns 1 and 2 be either 0,1 or 1,0. It must be that in any

1  d1 − |L1,1| of these rows the values in the two columns are 1,0 and in the

other 2  d2 − |L1,1| rows the values must be 0,1. Thus,

|M1,0| C1 − 1,1  2 − 1  |M0,1| C1,1  2 − 1 where Ck, l is

the number of sets of size k in a set of size l. The strict inequality follows from the fact

that 1  2. 

Claim 2: Let d be a consistent data set. Assume that a∗,b∗ maximizes the score

over A  B and is not revealed. Then, for any cell a,b that does not maximize the

score d, a∗,b∗  d, a,b.

Proof: By Claim 1, without loss of generality, it is sufficient to show that

d, a∗,b∗  d, a,b∗ for any a for which da∗  da. Also by claim 1, it is

sufficient to show that there exists a matrix M consistent with d, such that Ma∗,b∗  1

and Ma,b∗  0.

Since 1  d, a∗,b∗, there exists a d-consistent matrix M with Ma∗,b∗  0. Since

da∗  da, there must be some b ∈ B with Ma∗,b  1 and Ma,b  0.

If Ma,b∗  1, then by switching the values in the four entries a∗,a  b∗,b, we

obtain a d-consistent M′ with Ma∗,b∗
′  1 and Ma,b∗

′  0.

b∗ 0 1

b 1 0

a∗ a

If Ma,b∗  0, then since b∗ maximizes d over B, there also exists an a′ such that

Ma′,b∗  1 and Ma′,b  0. By switching the values in a∗,a′  b∗,b, we obtain a

d-consistent matrix M′ with Ma∗,b∗
′  1 and Ma,b∗

′  0.
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b∗ 0 0 1

b 1 0 0

a∗ a a′



Claim 3: Let M∗ be a matrix such that the box C  R is occupied and the "dual" box

Cc  Rc is vacant. Then, each element in C  R is revealed to be occupied and each

element in the dual box is revealed to be vacant.

R 1 1 1 ? ?

R 1 1 1 ? ?

? ? ? 0 0

? ? ? 0 0

? ? ? 0 0

C C C

Proof: Given a data vector d and a set E of rows or columns, let dE  ∑e∈E de. It

must be that dM∗Cc  dM∗Rc  |C||R| n. On the other hand, for every matrix M

such that Ma,b  0 for some a,b ∈ C  R, it must be that dMCc  dMRc

|C||R| n and thus M is inconsistent with dM∗. An analogous argument can be used

to show that the positions in the dual box are revealed to be vacant. 

Let d be a consistent data vector. Order the elements of A so that

da1 ≥ da2 ≥. . . .≥ da |A| and order the elements of B so that

db1 ≥ db2 ≥. . . .≥ db |B|. By Claim 1, if ai,bj is revealed to be occupied, then so

are all the entries in the box a1, . . ,ai  b1, . . ,bj. Thus, the set of revealed entries is

a "step set". That is, there is a sequence of disjoint sets of columns A1,A2, . . . ,AI

and a sequence of disjoint sets of rows B1,B2, . . . ,BI such that (i) the set of

revealed (to be occupied) entries is ij≤I1 Aj  Bi, (ii) the d-value is constant over

each Ai (or Bi) and (iii) the d-value of any entry in Ai (or Bi) is larger than the

d-value of any entry in Aj (or Bj) where j  i. (In the illustration below the

sequences are a1,a2,a3,a4,a5,a6 and b1,b2,b3,b4,b5)).
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b1 Y Y Y Y Y Y X

b2 Y Y Y Y Y X Z

b3 Y Y Y Y Y X Z

b4 Y Y Y X X Z Z

b5 Y Y X Z Z Z Z

b6 X X Z Z Z Z Z

b7 X X Z Z Z Z Z

a1 a2 a3 a4 a5 a6 a7

In what follows, we denote the step set of revealed entries by Y  ij≤I1 Ai  Bj,

the dual step set by Z  ij≥I3 Ai  Bj and the union of the boxes between Y and Z

by X  ijI2 Ai  Bj.

Claim 4: Let d be a consistent data vector. Assume that the set of revealed

elements Y is not empty. Then, every element in the dual step set Z is revealed to be

vacant.

Proof: Given a consistent data vector d, the Gale-Ryser algorithm (see Gale (1957),

Ryser (1957) and Krause (1996)) ends with a d-consistent matrix. The algorithm is

sequential and starts with a certain initial matrix. In each step of the algorithm, a

permissible pair of entries that are positioned in the same row – one occupied and the

other vacant – is selected and their values are swapped. To be precise, order the

elements in each of the sets A and B according to their d-values a1, . . . ,a |A| and

b1, . . . ,b |B|. The algorithm starts with a matrix M0 in which, for any row b, 1’s are

assigned to the entries in columns a1, . . . ,adb of this row. For M0, the number of 1’s in

column ak is zk  |b | the number db ≥ k|. Obviously,∑ i1,..,k zi ≥ ∑ i1,..,k dai

for all k. In each step of the algorithm, a "1" in the lowest index column for which the

number of 1′s is strictly greater than da is moved to the first column a′ in which the

number of 1′s is strictly less than da′.

In his proof that the algorithm ends with a d-consistent matrix, Krause (1996) shows

that the algorithm works by starting with any matrix having the following two

properties: (i) The number of 1’s in each b ∈ B is db and (ii) for each k, the sum of

the 1’s in the first k columns is at least as large as∑ i1,..,k dai.
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Note that if∑ i1,..,j∗ zj  ∑ i1,..,i∗ dai, then for every d-consistent matrix the entries

in a1, . . ,ai∗  b1, . . ,bj∗must be occupied and the entries in

A − a1, . . ,ai∗  B − b1, . . ,bj∗must be vacant.

Thus, to prove Claim 4, it is sufficient to show that, for all l,

∑ i1,..,|A1|...|Al| zi  ∑ i∈A1...Al dai. Assume not. Then, for some l we have

∑ i1,..,|A1|...|Al| zi  ∑ i∈A1...Al dai. Let k∗ be the lowest k  |A1|. . .|Al| for

which∑ i1,..,k zi  ∑ i1,..,k dai. It must be that db |B1|...|BI1−l|  k∗. Otherwise,

zb |B1|...|BI1−l| ≥ k∗ and in any d-consistent matrix all entries in

a1, . . ,ak∗  b1, . . ,b |B1|...|BI1−l| are occupied, in contradiction to the definition of

|Al|. Now start the Gale-Ryser algorithm from a matrix that modifies M0 by moving a

single "1" from the entry a |A1|...|Al|,b |B1|...|BI1−l| to the empty entry

ak∗ ,b |B1|...|BI1−l|. The matrix satisfies properties (i) and (ii) and thus the algorithm

starting with the modified matrix leads to a d-consistent matrix in which one of the

revealed entries is 0, a contradiction. 

4. Equilibrium

In this section, we show that in all equilibria the PS picks an occupied entry with

probability 1 (Proposition 1) and we classify the structure of all equilibria (Proposition

2). Even though in every equilibrium the PS picks an occupied entry for certain, there

are equilibria in which the PS assigns a strictly positive probability to the possibility

that the position he is picking is vacant (Proposition 3).

Proposition 1: In equilibrium, the PS picks an occupied entry with probability 1.

Proof: Let M be an equilibrium. If there are revealed positions, then the PS

obviously chooses one of them. If no entry is revealed, then, by Claim 2, CM is the

box of all the entries that maximize the dM score. It is left to show that all entries in

CM are occupied.

If an entry a,b outside CM is occupied and a∗,b∗ ∈ CM is vacant, then the

move from a,b to a∗,b∗ is beneficial: the score of a∗,b∗ in Ma,b → a∗,b∗

increases by at least 1 relative to the score in M and the score of any other entry

increases by at most 1. Thus, a∗,b∗ maximizes the score after the move, and by
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Claim 1 it will be picked with a positive probability.

If all the occupied entries are in CM and it contains a vacant entry, then any

vertical move from an occupied entry a∗,b to a vacant entry a∗,b∗ is beneficial

since: (i) a∗,b∗ maximizes the score after the move, (ii) CMa∗,b → a∗,b∗

⊆ CM and (iii) the entry a∗,b is obviously not revealed and, by Claim 2, it is

excluded from CMa∗,b → a∗,b∗. 

Proposition 2: If M is an equilibrium, it must have one of the following three

structures:

(1) The matrix M is revealed and forms a "step set". The PS picks one of the

occupied positions.

(2) There is a "step set" of entries that are revealed as occupied and the PS picks

one of them. The "dual step set" is revealed to be vacant. Each box lying between

these two sets contains at least three occupied entries that are not picked by the PS.

(3) None of the positions are revealed to be occupied. All positions with maximal

score are occupied and the PS picks one of them.

Proof: The fact that the set of revealed entries forms a step set follows from Claim

1. By Claim 4, the dual step set is revealed to be vacant.

Assume that M is an equilibrium in which some, but not all, occupied entries are

revealed. We will show that any box A ′  B ′ in area X (i.e., the area consisting of all the

positions between Y, the set of entries that are revealed as occupied, and Z, the set of

entries that are revealed to be vacant) contains at least three occupied entries that do

not share any characteristic (namely, they are positioned in three different rows and

three different columns). If A ′  B ′ is entirely vacant, then a move from an unrevealed

occupied entry into this empty box will be beneficial to the mover since it will reveal

this entry to be occupied (by Claim 3). It is impossible that all occupied entries in this

box lie in the same row or the same column since (again, by Claim 3) they would then

be revealed. It is also impossible that in equilibrium all occupied entries in this box lie

in exactly two rows (or two columns) since if a1,b1 and a2,b2 in that box are

occupied then a move from a1,b1 to a1,b2 is beneficial since the deviator will be

revealed (once again, by Claim 3).

Finally, if none of the positions are revealed as occupied, then, by claim 2, CM

Page 13



contains all of the positions with the highest score and, by the proof of Proposition 1,

all of the entries in CM must be occupied. 

An interesting feature of the model is that although in equilibrium the PS always

picks an occupied position, there are equilibria in which he does not know that the

position is occupied. Such a phenomenon could not occur under the conventional

equilibrium assumption but may emerge in our setup.

Proposition 3: For n ≥ 10, there exists an equilibrium in which the PS picks an

occupied entry although it is not revealed to be occupied.

Proof: The matrix M4 demonstrates such an equilibrium for n  10. The example

can be modified for any n  10 by "extending" the "arms of the top-left L".

M4 

1 1 1 1 0 0 0

1 0 0 0 0 0 0

1 0 0 0 0 0 0

1 0 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

No entry is revealed by dM4 and the PS chooses the top-left position x∗ which

achieves the maximum score of 8, whereas any other entry achieves a score of at

most 5. (The PS assigns a probability of 2400/2850  0.85 to x∗ being occupied.) For

any occupied entry x ≠ x∗ and unoccupied entry y, no entry is revealed in M4x → y

and x∗ remains the entry with the highest score in M4x → y (being equal to 7 or 8

whereas the score of y would not be higher than 6). By Claim 2, x∗ would still be

chosen by the PS given the data dM4x → y. Thus, no deviation is profitable. 

Comment: Were the PS to take into account that the n players’ profile of choices is

consistent with Nash equilibrium, he would conclude that the entry he is choosing is

occupied. However, the whole point of modeling an agent as a problem solver is that

Page 14



he does not think strategically. Rather, he treats the problem as a puzzle to be solved,

using the information he possesses, without making any assumptions about the

various solutions to the puzzle.

5. Two variants of the model

(a) Players can share entries

Thus far we have assumed that none of the players want to share an entry with

another player regardless of whether or not the entry is picked by the PS. Assume

now that players do not have disutility from sharing an entry with another player. Once

the PS has chosen an occupied cell he randomly picks one of the occupiers and each

player is interested in increasing the probability of being picked. Formally, a player’s

utility is 1/k if he shares the PS’s chosen cell with k − 1 other players and 0 otherwise.

A matrix is an assignment of non-negative integers (not necessarily zeros or ones) to

all entries, such that the sum of the numbers in all entries is n. For each row (column),

the PS receives information about the total number of players occupying that row

(column). The PS identifies the matrices that are consistent with the data and then

randomly picks an entry with the largest number of consistent matrices in which this

entry is occupied (by at least one player). For example, the data da1  db1  3 and

da2  db2  1 is consistent with two matrices:

2 1

1 0
and 3 0

0 1
.

Only the top-left entry is occupied in both matrices and therefore it is picked by the PS.

An equilibrium is a matrix such that a player who occupies one entry cannot

increase his utility by moving to another. Formally, in equilibrium there is no occupied

entry x and (not necessarily unoccupied) entry y such that Mx→y,y
My1

 M,x
Mx

where

Mx → y is the matrix in which x is decreased by 1 and y is increased by 1.

Obviously, any matrix in which the n players occupy n entries in one row or in one

column is an equilibrium (since the move of a player to another occupied entry

reduces his utility from 1/n to 1/2n − 2 and the move of a player to an unoccupied

entry cannot increase the probability of being picked by the PS).
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We are able to prove that any other matrix is not an equilibrium (with the exception

of n  2 with the two players occupying the same entry). The proof is not presented

here but can be obtained from the authors.

(b) Players don’t want to be picked by the PS

Suppose that none of the n players wishes to be "detected" by the PS. More

precisely, each player receives a utility of 1 if he discoordinates with the PS, 0 if his

choice matches that of the PS and negative utility if he chooses the same entry as one

of the other players.

Any diagonal matrix M, in which each player chooses a distinct row and a distinct

column, is an equilibrium. Given dM, the PS will select each of the n2 entries with the

score 2 and thus a player’s probability of being detected by the PS is 1/n2.

Consider the matrix Mx → y that results from the move of a player from an

occupied entry x to an unoccupied entry y, where y is an entry that shares a row or a

column with one of the occupied entries in M. The score of y in Mx → y is maximal

and thus it is one of at most nn − 1 entries in CMx → y. Thus, the move from x to y

increases a player’s probability of being detected.

In any other matrix M, the minimal box that contains all occupied entries is of size

kl, where k ≤ n and l ≤ n, with at least one of the inequalities being strict. Then, there

is an occupied entry in M with a score strictly greater than 2. Any player who occupies

an entry x with a maximal score will benefit by moving to an entry y, which does not

share a row or column with any other player, since such a move reduces his chances

of being picked by the PS from 1
kl
to at most max 1

k1l
, 1

kl1
.
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