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Preface

This is the second edition of my lecture notes for the first quarter of

a microeconomics course for PhD (or MA) economics students. The

lecture notes were developed over a period of 20 years during which I

taught the course at Tel Aviv, Princeton, and New York universities.

I published this book for the first time in 2007 and have revised it

annually since then. I did so with some hesitation since several superb

books were already on the shelves. Foremost among them are those of

David Kreps. Kreps (1990) pioneered the shift of the game theoretic

revolution from research papers into textbooks. His book covers the

material in depth and includes many ideas for future research. His recent

book, Kreps (2013), is even better and is now my clear favorite for

graduate microeconomics courses.

There are four other books on my shortlist: Mas-Colell, Whinston

and Green (1995) is a very comprehensive and detailed textbook; Bowles

(2003) brings economics back to its authentic political economics roots;

Jehle and Reny (1997) has a very precise style; and finally the classic

Varian (1984). They constitute an impressive collection of textbooks

for an advanced microeconomics course. My book covers only the first

quarter of the standard course. It does not aim to compete with these

other books, but rather to supplement them. I published it only because

I think that some of the didactic ideas presented might be beneficial

to both students and teachers and it is to this end that I insisted on

retaining its lecture notes style.

Downloading Updated Versions

The book is posted on the Internet, and access is entirely free. I am

grateful to Princeton University Press for allowing it to be downloaded

for free right after publication. Since 2007, I have updated the book an-

nually, adding material and correcting mistakes. My plan is to continue

revising the book annually. To access the latest electronic version go to:

http://arielrubinstein.tau.ac.il.

Solution Manual

Teachers of the course can also get an updated solution manual. I do

my best to send the manual only to teachers of a graduate course in
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microeconomics. Requests for the manual should be made at:

http://gametheory.tau.ac.il/microtheory.

Gender

Throughout the book I use only male pronouns. This is my deliberate

choice and does not reflect the policy of the editors or the publishers.

I believe that continuous reminders of the he/she issue simply divert

readers’ attention. Language is of course very important in shaping our

thinking, and I don’t dispute the importance of the type of language we

use. But I feel it is more effective to raise the issue of discrimination

against women in the discussion of gender-related issues rather than

raising flags on every page of a book on economic theory.

Acknowledgments
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and Rafi Aviav helped me with the English editing. Avner Shlain pre-

pared the index.

Special thanks to Rafi Aviav and Benjamin Bachi for their devoted work

in producing the revised versions of the book.



Introduction

As a new graduate student, you are at the beginning of a new stage of

your life. In a few months you will be overloaded with definitions, con-

cepts, and models. Your teachers will be guiding you into the wonders

of economics and will rarely have the time to stop to raise fundamental

questions about what these models are supposed to mean. It is not

un-likely that you will be brainwashed by the professional-sounding lan-

guage and hidden assumptions. I am afraid I am about to initiate you

into this inevitable process. Still, I want to use this opportunity to pause

for a moment and alert you to the fact that many economists have strong

and conflicting views about what economic theory is. Some see it as a

set of theories that can (or should) be tested. Others see it as a bag

of tools to be used by economic agents. Many see it as a framework

through which professional and academic economists view the world.

My own view may disappoint those of you who have come to this

course with practical motivations. In my view, economic theory is no

more than an arena for the investigation of concepts we use in think-

ing about economics in real life. What makes a theoretical model “eco-

nomics” is that the concepts we are analyzing are taken from real-life

reasoning about economic issues. Through the investigation of these

concepts, we indeed try to understand reality better, and the models

provide a language that enables us to think about economic interactions

in a systematic way. But I do not view economic models as an attempt

to describe the world or to provide tools for predicting the future. I

object to looking for an ultimate truth in economic theory, and I do not

expect it to be the foundation for any policy recommendation. Nothing

is “holy” in economic theory and everything is the creation of people

like yourself.

Basically, this course is about a certain class of economic concepts

and models. Although we will be studying formal concepts and models,

they will always be given an interpretation. An economic model differs

substantially from a purely mathematical model in that it is a combi-

nation of a mathematical model and its interpretation. The names of

the mathematical objects are an integral part of an economic model.

When mathematicians use terms such as “field” or “ring” that are in

everyday use, it is only for the sake of convenience. When they name a
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collection of sets a “filter”, they are doing so in an associative manner;

in principle, they could call it “ice cream cone”. When they use the term

“well ordering”, they are not making an ethical judgment. In contrast to

mathematics, interpretation is an essential ingredient of any economic

model.

The word “model” sounds more scientific than “fable” or “fairy tale”,

but I don’t see much difference between them. The author of a fable

draws a parallel to a situation in real life and has some moral he wishes

to impart to the reader. The fable is an imaginary situation that is

somewhere between fantasy and reality. Any fable can be dismissed

as being unrealistic or simplistic, but this is also the fable’s advantage.

Being something between fantasy and reality, a fable is free of extraneous

details and annoying diversions. In this unencumbered state, we can

clearly discern what cannot always be seen from the real world. On our

return to reality, we are in possession of some sound advice or a relevant

argument that can be used in the real world. We do exactly the same

thing in economic theory. Thus, a good model in economic theory, like

a good fable, identifies a number of themes and elucidates them. We

perform thought exercises that are only loosely connected to reality and

have been stripped of most of their real-life characteristics. However, in

a good model, as in a good fable, something significant remains. One can

think about this book as an attempt to introduce the characters that

inhabit economic fables. Here, we observe the characters in isolation.

In models of markets and games, we further investigate the interactions

between the characters.

It is my hope that some of you will react and attempt to change what

is currently called economic theory and that you will acquire alternative

ways of thinking about economic and social interactions. At the very

least, this course should teach you to ask hard questions about economic

models and the sense in which they are relevant to real-life economics. I

hope that you walk away from this course with the recognition that the

answers are not as obvious as they might appear.

Microeconomics

In this course we deal only with microeconomics, a collection of models

in which the primitives are details about the behavior of units called

economic agents. Microeconomic models investigate assumptions about

economic agents’ activities and about interactions between these agents.

An economic agent is the basic unit operating in the model. When we
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construct a model with a particular economic scenario in mind, we might

have some degree of freedom regarding whom we take to be the economic

agents. Most often, we do have in mind that the economic agent is an

individual, a person with one head, one heart, two eyes, and two ears.

However, in some economic models, an economic agent is taken to be

a nation, a family, or a parliament. At other times, the “individual”

is broken down into a collection of economic agents, each operating in

distinct circumstances, and each regarded as an economic agent.

We should not be too cheerful about the statement that an economic

agent in microeconomics is not constrained to being an individual. The

facade of generality in economic theory might be misleading. We have

to be careful and aware that when we take an economic agent to be a

group of individuals, the reasonable assumptions we might impose on it

are distinct from those we might want to impose on a single individual.

For example, although it is quite natural to talk about the will of a

person, it is not clear what is meant by the will of a group when the

members of the group differ in their preferences.

An economic agent is described in our models as a unit that responds

to a scenario called a choice problem, where the agent must make a

choice from a set of available alternatives. The economic agent appears

in the microeconomic model with a specified deliberation process he uses

to make a decision. In most of current economic theory, the deliberation

process is what is called rational choice. The agent decides what action

to take through a three-step process:

1. He asks himself, what is desirable?

2. He asks himself, what is feasible?

3. He chooses the most desirable from among the feasible alternatives.

Note the order of the stages. In particular, the stage in which de-

sires are shaped precedes the stage in which feasible alternatives are

recognized, and therefore the rational economic agent’s desires are in-

dependent of the set of alternatives. Note that rationality in economics

does not contain judgments about desires. A rational agent can have

preferences that the entire world views as being against the agent’s in-

terest.

Furthermore, economists are fully aware that almost all people, almost

all the time, do not practice this kind of deliberation. Nevertheless, until

recently the practice of most economists was to make further assump-

tions that emphasize the materialist desires of the economic agent and

minimize the role of the psychological motives. This practice has been
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somewhat changed in the past few years with the development of the

“Economics and Psychology” approach. Still, we find the investigation

of economic agents who follow the rational process to be important,

because we often refer to rational decision making in life as an ideal

process. It is meaningful to talk about the concept of “being good” even

in a society where all people are evil; similarly, it is meaningful to talk

about the concept of a “rational man” and about the interactions be-

tween rational economic agents even if all people systematically behave

in a nonrational manner.

Bibliographic Notes

For an extended discussion of my views about economic theory, see Ru-

binstein (2006a), and my semi-academic book Rubinstein (2012).
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LECTURE 1

Preferences

Preferences

Our economic agent will soon be advancing to the stage of economic

models. Which of his characteristics will we be specifying in order to

get him ready? We might have thought name, age and gender, per-

sonal history, brain structure, cognitive abilities, and his emotional state.

However, in most of economic theory, we specify an economic agent only

by his attitude toward the elements in some relevant set, and usually we

assume that his attitude is expressed in the form of preferences.

We begin the course with a modeling “exercise”: we seek to develop a

“proper” formalization of the concept of preferences. Although we are on

our way to constructing a model of rational choice, we will think about

the concept of preferences here independently of choice. This is quite

natural. We often use the concept of preferences not in the context

of choice. For example, we talk about an individual’s tastes over the

paintings of the masters even if he never makes a decision based on

those preferences. We refer to the preferences of an agent were he to

arrive tomorrow on Mars or travel back in time and become King David

even if he does not believe in the supernatural.

Imagine that you want to fully describe the preferences of an agent

toward the elements in a given set X . For example, imagine that you

want to describe your own attitude toward the universities you apply to

before finding out to which of them you have been admitted. What must

the description include? What conditions must the description fulfill?

We take the approach that a description of preferences should fully

specify the attitude of the agent toward each pair of elements in X . For

each pair of alternatives, it should provide an answer to the question of

how the agent compares the two alternatives. We present two versions

of this question. For each version, we formulate the consistency require-

ments necessary to make the responses “preferences” and examine the

connection between the two formalizations.
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The Questionnaire Q

Let us think about the preferences on a set X as answers to a long

questionnaire Q that consists of all quiz questions of the type:

Q(x,y) (for all distinct x and y in X):

How do you compare x and y? Tick one and only one of the

following three options:

� I prefer x to y (this answer is denoted as x ≻ y).

� I prefer y to x (this answer is denoted by y ≻ x).

� I am indifferent (this answer is denoted by I).

A “legal” answer to the questionnaire is a response in which exactly

one of the boxes is ticked in each question. We do not allow refraining

from answering a question or ticking more than one answer. Further-

more, by allowing only the above three options we exclude responses

that demonstrate:

a lack of ability to compare, such as

� They are incomparable.

� I don’t know what x is.

� I have no opinion.

� I prefer both x over y and y over x.

a dependence on other factors, such as

� It depends on what my parents think.

� It depends on the circumstances (sometimes I prefer x, but

usually I prefer y).

and intensity of preferences, such as

� I somewhat prefer x.

� I love x and I hate y.

The constraints that we place on the legal responses of the agents

constitute our implicit assumptions. Particularly important are the as-

sumption that the elements in the set X are all comparable and the fact

that we ignore the intensity of preferences.

A legal answer to the questionnaire can be formulated as a function

f , which assigns to any pair (x, y) of distinct elements in X exactly one

of the three “values”, x ≻ y or y ≻ x or I, with the interpretation that

f(x, y) is the answer to the question Q(x, y). (Alternatively, we can use

the notation of the soccer betting industry and say that f(x, y) must

be 1, 2, or × with the interpretation that f(x, y) = 1 means that x is



Preferences 3

preferred to y, f(x, y) = 2 means that y is preferred to x, and f(x, y) = ×
means indifference.)

Not all legal answers to the questionnaire Q qualify as preferences

over the set X . We will adopt two “consistency” restrictions:

First, the answer to Q(x, y) must be identical to the answer to Q(y, x).

In other words, we want to exclude the common “framing effect” by

which people who are asked to compare two alternatives tend to prefer

the first one.

Second, we require that the answers to Q(x, y) and Q(y, z) are con-

sistent with the answer to Q(x, z) in the following sense. If the answers

to the two questions Q(x, y) and Q(y, z) are “x is preferred to y” and

“y is preferred to z”, then the answer to Q(x, z) must be “x is preferred

to z”, and if the answers to the two questions Q(x, y) and Q(y, z) are

“indifference”, then so is the answer to Q(x, z).

To summarize, here is my favorite formalization of the notion of

preferences:

Definition 1

Preferences on a set X are a function f that assigns to any pair (x, y) of

distinct elements in X exactly one of the three “values” x ≻ y, y ≻ x, or

I so that for any three different elements x, y, and z in X , the following

two properties hold:

• No order effect : f(x, y) = f(y, x).

• Transitivity:

if f(x, y) = x ≻ y and f(y, z) = y ≻ z, then f(x, z) = x ≻ z and

if f(x, y) = I and f(y, z) = I, then f(x, z) = I.

Note again that I, x ≻ y, and y ≻ x are merely symbols representing

verbal answers. Needless to say, the choice of symbols is not an arbitrary

one. (Why do I use the notation I and not x ∼ y?)

A Discussion of Transitivity

Transitivity is an appealing property of preferences. How would you

react if somebody told you he prefers x to y, y to z, and z to x? You

would probably feel that his answers are “confused”. Furthermore, it

seems that, when confronted with an intransitivity in their responses,

people are embarrassed and want to change their answers.

On some occasions before giving this lecture, I asked students to fill

out a questionnaire similar to Q regarding a set X that contains nine
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alternatives, each specifying the following four characteristics of a travel

package: location (Paris or Rome), price, quality of the food, and qual-

ity of the lodgings. The questionnaire included only thirty-six questions

since for each pair of alternatives x and y, only one of the questions,

Q(x, y) or Q(y, x), was randomly selected to appear in the question-

naire (thus the dependence on order of an individual’s response was not

checked within the experimental framework). Out of 458 students who

responded to the questionnaire, only 57 (12%) had no intransitivities in

their answers, and the median number of triples in which intransitivity

existed was 7. Many of the violations of transitivity involved two alter-

natives that were actually the same but differed in the order in which

the characteristics appeared in the description: “A weekend in Paris at

a 4-star hotel with food quality Zagat 17 for $574”, and “A weekend in

Paris for $574 with food quality Zagat 17 at a 4-star hotel”. All students

expressed indifference between the two alternatives, but in a comparison

of these two alternatives to a third alternative—“A weekend in Rome at

a 5-star hotel with food quality Zagat 18 for $612”— a quarter of the

students gave responses that violated transitivity.

In spite of the appeal of the transitivity requirement, note that when

we assume that the attitude of an individual toward pairs of alternatives

is transitive, we are excluding individuals who base their judgments on

procedures that cause systematic violations of transitivity. The following

are two such examples.

1. Aggregation of considerations as a source of intransitivity. In some

cases, an individual’s attitude is derived from the aggregation of

more basic considerations. Consider, for example, a case where X =

{a, b, c} and the individual has three primitive considerations in mind.

The individual finds an alternative x better than an alternative y if a

majority of considerations supports x. This aggregation process can

yield intransitivities. For example, if the three considerations rank

the alternatives as a ≻1 b ≻1 c, b ≻2 c ≻2 a, and c ≻3 a ≻3 b, then

the individual determines a to be preferred over b, b over c, and c

over a, thus violating transitivity.

2. The use of similarities as an obstacle to transitivity. In some cases,

an individual may express indifference in a comparison between two

elements that are too “close” to be distinguishable. For example,

let X = R (the set of real numbers). Consider an individual whose

attitude toward the alternatives is “the larger the better”; however, he
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finds it impossible to determine whether a is greater than b unless the

difference is at least 1. He will assign f(x, y) = x ≻ y if x ≥ y + 1 and

f(x, y) = I if |x− y| < 1. This is not a preference relation because

1.5 ∼ 0.8 and 0.8 ∼ 0.3, but it is not true that 1.5 ∼ 0.3.

Did we require too little? Another potential criticism of our definition is

that our assumptions might have been too weak and that we did not im-

pose some reasonable further restrictions on the concept of preferences.

That is, there are other similar consistency requirements we may want

to impose on a legal response to qualify it as a description of prefer-

ences. For example, if f(x, y) = x ≻ y and f(y, z) = I, we would natu-

rally expect that f(x, z) = x ≻ z. However, this additional consistency

condition was not included in the above definition because it follows

from the other conditions: if f(x, z) = I, then by the assumption that

f(y, z) = I and by the no order effect, f(z, y) = I, and thus by tran-

sitivity f(x, y) = I (a contradiction). Alternatively, if f(x, z) = z ≻ x,

then by the no order effect f(z, x) = z ≻ x, and by f(x, y) = x ≻ y and

transitivity f(z, y) = z ≻ y (a contradiction).

Similarly, note that for any preferences f , we have that if f(x, y) = I

and f(y, z) = y ≻ z, then f(x, z) = x ≻ z.

The Questionnaire R

A second way to think about preferences is through an imaginary ques-

tionnaire R consisting of all questions of the type:
R(x,y) (for all x, y ∈ X , not necessarily distinct):

Is x at least as preferred as y? Tick one and only one of the

following two options:

� Yes

� No

By a “legal” response we mean that the respondent ticks exactly one

of the boxes in each question. To qualify as preferences, a legal response

must also satisfy two conditions:

1. The answer to at least one of the questions R(x, y) and R(y, x) must

be Yes. (In particular, the “silly” question R(x, x) that appears in

the questionnaire must get a Yes response.)

2. For every x, y, z ∈ X , if the answers to the questions R(x, y) and

R(y, z) are Yes, then so is the answer to the question R(x, z).
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We identify a response to this questionnaire with the binary relation

% on the set X defined by x % y if the answer to the question R(x, y) is

Yes.

(Reminder : An n-ary relation on X is a subset of Xn. Examples:

“Being a parent of” is a binary relation on the set of human beings;

“being a hat” is an unary relation on the set of objects; “x+ y = z” is

a 3-ary relation on the set of numbers; “x is better than y more than

x′ is better than y′” is 4-ary relation on a set of alternatives, etc. An

n-ary relation on X can be thought of as a response to a questionnaire

regarding all n-tuples of elements of X where each question can get only

a Yes/No answer.)

This brings us to the traditional definition of preferences.

Definition 2

Preferences on a set X is a binary relation % on X satisfying:

• Completeness : For any x, y ∈X , x % y, or y % x.

• Transitivity: For any x, y, z ∈X , if x % y and y % z, then x % z.

The Equivalence of the Two Definitions

We will now discuss the sense in which the two definitions of preferences

on the set X are equivalent. But first it is useful to recall the following

definitions:

The function f : X → Y is a one-to-one function (or injection) if

f(x) = f(y) implies that x = y.

The function f : X → Y is an onto function (or surjection) if for every

y ∈ Y there is an x ∈ X such that f(x) = y.

The function f : X → Y is a one-to-one and onto function (or bijec-

tion, or one-to-one correspondence) if for every y ∈ Y there is a unique

x ∈ X such that f(x) = y.

When we think about the equivalence of two definitions in economics,

we are thinking about much more than the existence of a one-to-one cor-

respondence: the correspondence also has to preserve the interpretation.

Note the similarity to the notion of an isomorphism in mathematics

where a correspondence has to preserve “structure”. For example, an

isomorphism between two topological spaces X and Y is a one-to-one

function from X onto Y that is required to preserve the open sets. In

economics, the analogue to “structure” is the less formal notion of in-

terpretation.
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Table 1.1

A response to: A response to:

Q(x, y) and Q(y, x) R(x, y) and R(y, x)

x ≻ y Yes No
I Yes Yes

y ≻ x No Yes

We will now construct a one-to-one and onto function, named Trans-

lation, between answers to Q that qualify as preferences by the first

definition and answers to R that qualify as preferences by the second

definition, such that the correspondence preserves the meaning of the

responses to the two questionnaires.

To illustrate, imagine that you have two books. Each page in the first

book is a response to the questionnaire Q that qualifies as preferences

by the first definition. Each page in the second book is a response to the

questionnaire R that qualifies as preferences by the second definition.

The correspondence matches each page in the first book with a unique

page in the second book, so that a reasonable person will recognize that

the different responses to the two questionnaires reflect the same mental

attitudes toward the alternatives.

Since we assume that the answers to all questions of the type R(x, x)

are Yes, the classification of a response to R as preferences requires

only the specification of the answers to questions R(x, y), where x 6= y.

Table 1.1 presents the translation of responses.

This translation preserves the interpretation we have given to the

responses. That is, if the response to the questionnaire Q exhibits that

“I prefer x to y”, then the translation to a response to the questionnaire

R contains the statement “I find x to be at least as good as y, but I

don’t find y to be at least as good as x” and thus exhibits the same

meaning. Similarly, the translation of a response to Q that exhibits “I

am indifferent between x and y” is translated into a response to R that

contains the statement “I find x to be at least as good as y, and I find

y to be at least as good as x” and thus exhibits the same meaning.

The following observations provide the proof that Translation is in-

deed a one-to-one correspondence between the set of preferences, as given

by definition 1, and the set of preferences as given by definition 2.

By the assumption on Q of a no order effect, for any two alternatives

x and y, one and only one of the following three answers could have been
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received for both Q(x, y) and Q(y, x): x ≻ y, I, and y ≻ x. Thus, the

responses to R(x, y) and R(y, x) are well defined.

Next we verify that the response to R that we have constructed with

the table is indeed a preference relation (by the second definition).

Completeness: In each of the three rows, the answers to at least one

of the questions R(x, y) and R(y, x) is affirmative.

Transitivity: Assume that the answers to R(x, y) and R(y, z) are af-

firmative. This implies that the answer to Q(x, y) is either x ≻ y or I,

and the answer to Q(y, z) is either y ≻ z or I. Transitivity of Q implies

that the answer to Q(x, z) must be x ≻ z or I, and therefore the answer

to R(x, z) must be affirmative.

To see that Translation is indeed a one-to-one function, note that for

any two different responses to the questionnaire Q there must be a ques-

tion Q(x, y) for which the responses differ; therefore, the corresponding

responses to either R(x, y) or R(y, x) must differ.

It remains to be shown that the range of the Translation function

includes all possible preferences as defined by the second definition. Let

% be preferences in the traditional sense (a response to R). We have to

specify a function f , a response to Q, which is converted by Translation

to %. Read from right to left, the table provides us with such a func-

tion f .

By the completeness of %, for any two elements x and y, one of the

entries in the right-hand column is applicable (the fourth option, that

the two answers to R(x, y) and R(y, x) are No, is excluded), and thus the

response to Q is well defined and by definition satisfies no order effect.

We still have to check that f satisfies the transitivity condition. If

f(x, y) = x ≻ y and f(y, z) = y ≻ z, then x % y and not y % x and y % z

and not z % y. By transitivity of %, x % z. In addition, not z % x since

if z % x, then the transitivity of % would imply z % y. If f(x, y) = I

and f(y, z) = I, then x % y, y % x, y % z, and z % y. By transitivity of

%, both x % z and z % x, and thus f(x, z) = I.

Summary

I could have replaced the entire lecture with the following two sentences:

“Preferences onX are a binary relation% on a setX satisfying complete-

ness and transitivity. Notate x ≻ y when both x % y and not y % x, and

x ∼ y when x % y and y % x”. However, the role of this chapter was not

just to introduce a formal definition of preferences but also to conduct

a modeling exercise and to make two methodological points:
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1. When we introduce two formalizations of the same verbal concept,

we have to make sure that they indeed carry the same meaning.

2. When we construct a formal concept, we make assumptions beyond

those explicitly mentioned. Being aware of the implicit assumptions

is important for understanding the concept and is useful in coming

up with ideas for alternative formalizations.

Bibliographic Notes

Fishburn (1970) contains a comprehensive treatment of preference relations.



Problem Set 1

Problem 1. (Easy)
Let % be a preference relation on a set X. Define I(x) to be the set of all

y ∈ X for which y ∼ x.

Show that the set (of sets!) {I(x)|x ∈ X} is a partition of X, that is,

• For all x and y, either I(x) = I(y) or I(x)∩ I(y) = ∅.
• For every x ∈ X, there is y ∈ X such that x ∈ I(y).

Problem 2. (Standard)
Kreps (1990) introduces another formal definition for preferences. His primi-

tive is a binary relation P interpreted as “strictly preferred”. He requires P

to satisfy:

• Asymmetry : For no x and y do we have both xPy and yPx.

• Negative Transitivity : For all x, y, and z ∈ X, if xPy, then for any z

either xPz or zPy (or both).

Explain the sense in which Kreps’s formalization is equivalent to the tradi-

tional definition.

Problem 3. (Difficult.Based on Kannai and Peleg (1984).)

Let Z be a finite set and let X be the set of all nonempty subsets of Z. Let

% be a preference relation on X (not Z). An element A ∈ X is interpreted

as a “menu”, that is, “the option to choose an alternative from the set A”.

Consider the following two properties of preference relations on X:

1. If A % B and C is a set disjoint to both A and B, then A ∪ C % B ∪ C,

and

if A ≻ B and C is a set disjoint to both A and B, then A ∪ C ≻ B ∪ C.

2. If x ∈ Z and {x} ≻ {y} for all y ∈ A, then A ∪ {x} ≻ A, and

if x ∈ Z and {y} ≻ {x} for all y ∈ A, then A ≻ A ∪ {x}.

a. Discuss the plausibility of the properties in the context of interpreting

% as the attitude of the individual toward sets from which he will have

to make a choice at a “second stage”.

b. Provide an example of a preference relation that (i) Satisfies the two

properties. (ii) Satisfies the first but not the second property. (iii) Sat-

isfies the second but not the first property.
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c. Show that if there are x, y, and z ∈ Z such that {x} ≻ {y} ≻ {z}, then
there is no preference relation satisfying both properties.

Problem 4. (Moderately difficult)

Let ≻ be an asymmetric binary relation on a finite set X that does not have

cycles. Show (by induction on the size of X) that ≻ can be extended to a

complete ordering (i.e., a complete, asymmetric, and transitive binary rela-

tion).

Problem 5. (Difficult)

You have read an article in a “prestigious” journal about a decision maker

(DM) whose mental attitude toward elements in a finite set X is represented

by a binary relation ≻, which is asymmetric and transitive but not necessarily

complete. The incompleteness is the result of an assumption that a DM is

sometimes unable to compare between alternatives.

Another, presumably stronger, assumption made in the article is that the

DM uses the following procedure: he has n criteria in mind, each represented

by an ordering (asymmetric, transitive, and complete) ≻i (i = 1, . . . , n). The

DM decides that x ≻ y if and only if x ≻i y for every i.

1. Verify that the relation ≻ generated by this procedure is asymmetric and

transitive. Try to convince a reader of the paper that this is an attractive

assumption by giving a “real life” example in which it is “reasonable” to

assume that a DM uses such a procedure in order to compare between

alternatives.

It can be claimed that the additional assumption regarding the procedure that

generates ≻ is not a “serious” one since given any asymmetric and transitive

relation, ≻, one can find a set of complete orderings ≻1, . . . ,≻n such that

x ≻ y iff x ≻i y for every i.

2. Demonstrate this claim for the relation on the set X = {a, b, c} according

to which only a ≻ b and the comparison between [b and c] and [a and c]

are not determined.

3. (Main part of the question) Prove this claim for the general case. Guid-

ance (for c): given an asymmetric and transitive relation ≻ on an arbi-

trary X, define a set of complete orderings {≻i} and prove that x ≻ y

iff for every i, x ≻i y.

Problem 6. (Fun)
Listen to the illusion called the Shepard Scale. (You can find it on the Internet.

Currently, it is available at http://www.youtube.com/watch?v=boJD gTLavA

and http://en.wikipedia.org/wiki/Shepard tone.)

Can you think of any economic analogies?



LECTURE 2

Utility

The Concept of Utility Representation

Think of examples of preferences. In the case of a small number of

alternatives, we often describe a preference relation as a list arranged

from best to worst. In some cases, the alternatives are grouped into

a small number of categories, and we describe the preferences on X by

specifying the preferences on the set of categories. But, in my experience,

most of the examples that come to mind are similar to: “I prefer the

taller basketball player”, “I prefer the more expensive present”, “I prefer

a teacher who gives higher grades”, “I prefer the person who weighs less”.

Common to all these examples is that they can naturally be specified by

a statement of the form “x % y if V (x) ≥ V (y)” (or V (x) ≤ V (y)), where

V : X → R is a function that attaches a real number to each element in

the set of alternativesX. For example, the preferences stated by “I prefer

the taller basketball player” can be expressed formally by: X is the set

of all conceivable basketball players, and V (x) is the height of player x.

Note that the statement x % y if V (x) ≥ V (y) always defines a pref-

erence relation because the relation ≥ on R satisfies completeness and

transitivity.

Even when the description of a preference relation does not involve a

numerical evaluation, we are interested in an equivalent numerical repre-

sentation. We say that the function U : X → R represents the preference

% if for all x and y ∈ X , x % y if and only if U(x) ≥ U(y). If the func-

tion U represents the preference relation %, we refer to it as a utility

function, and we say that % has a utility representation.

It is possible to avoid the notion of a utility representation and to

“do economics” with the notion of preferences. Nevertheless, we usually

use utility functions rather than preferences as a means of describing

an economic agent’s attitude toward alternatives, probably because we

find it more convenient to talk about the maximization of a numerical

function than of a preference relation.
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Note that when defining a preference relation using a utility function,

the function has an intuitive meaning that carries with it additional

information. In contrast, when the utility function is formed in order

to represent an existing preference relation, the utility function has no

meaning other than that of representing a preference relation. Abso-

lute numbers are meaningless in the latter case; only relative order has

meaning. Indeed, if a preference relation has a utility representation,

then it has an infinite number of such representations, as the following

simple claim shows:

Claim:

If U represents %, then for any strictly increasing function f : R → R,

the function V (x) = f(U(x)) represents % as well.

Proof:

a % b

iff U(a) ≥ U(b) (since U represents %)

iff f(U(a)) ≥ f(U(b)) (since f is strictly increasing)

iff V (a) ≥ V (b).

Existence of a Utility Representation

If any preference relation could be represented by a utility function, then

it would “grant a license” to use utility functions rather than preference

relations with no loss of generality. Utility theory investigates the possi-

bility of using a numerical function to represent a preference relation and

the possibility of numerical representations carrying additional meanings

(e.g., a is preferred to b more than c is preferred to d).

We will now examine the basic question of “utility theory”: Under

what assumptions do utility representations exist?

Our first observation is quite trivial. When the set X is finite, there

is always a utility representation. The detailed proof is presented here

mainly to get into the habit of analytical precision. We start with a

lemma regarding the existence of minimal elements (an element a ∈ X

is minimal if a - x for any x ∈ X).

Lemma:

In any finite set A ⊆ X , there is a minimal element (similarly, there is

also a maximal element).
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Proof:

By induction on the size of A. If A is a singleton, then by completeness

its only element is minimal. For the inductive step, let A be of cardinality

n+ 1 and let x ∈ A. The set A−{x} is of cardinality n and by the

inductive assumption has a minimal element denoted by y. If x % y,

then y is minimal in A. If y % x, then by transitivity z % x for all

z ∈ A−{x}, and thus x is minimal.

Claim:

If % is a preference relation on a finite set X , then % has a utility

representation with values being natural numbers.

Proof:

We will construct a sequence of sets inductively. Let X1 be the subset

of elements that are minimal in X . By the above lemma, X1 is not

empty. Assume we have constructed the sets X1, . . . , Xk. If X = X1 ∪
X2 ∪ . . . ∪Xk, we are done. If not, define Xk+1 to be the set of minimal

elements inX −X1 −X2 − · · · −Xk. By the lemmaXk+1 6= ∅. Because
X is finite, we must be done after at most |X | steps. Define U(x) = k if

x ∈ Xk. Thus, U(x) is the step number at which x is “eliminated”. To

verify that U represents %, let a ≻ b. Then a /∈ X1 ∪X2 ∪ · · ·XU(b) and

thus U(a) > U(b). If a ∼ b, then clearly U(a) = U(b).

Without any further assumptions on the preferences, the existence

of a utility representation is guaranteed when the set X is countable

(recall that X is countable and infinite if there is a one-to-one function

from the natural numbers onto X , namely, it is possible to specify an

enumeration of all its members {xn}n=1,2,...).

Claim:

If X is countable, then any preference relation on X has a utility repre-

sentation with a range (−1, 1).

Proof:

Let {xn} be an enumeration of all elements in X . We will construct

the utility function inductively. Set U(x1) = 0. Assume that you have

completed the definition of the values U(x1), . . . , U(xn−1) so that xk %

xl iff U(xk) ≥ U(xl). If xn is indifferent to xk for some k < n, then assign
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U(xn) = U(xk). If not, by transitivity, all numbers in the nonempty set

{U(xk)| xk ≺ xn} ∪ {−1} are below all numbers in the nonempty set

{U(xk)| xn ≺ xk} ∪ {1}. Choose U(xn) to be between the two sets.

This guarantees that for any k < n we have xn % xk iff U(xn) ≥ U(xk).

Thus, the function we defined on {x1, . . . , xn} represents the preferences

on those elements.

To complete the proof that U represents %, take any two elements, x

and y ∈ X . For some k and l we have x = xk and y = xl. The above

applied to n = max{k, l} yields xk % xl iff U(xk) ≥ U(xl).

Lexicographic Preferences

Lexicographic preferences are the outcome of applying the following pro-

cedure for determining the ranking of any two elements in a set X . The

individual has in mind a sequence of criteria that could be used to com-

pare pairs of elements in X . The criteria are applied in a fixed order

until a criterion is reached that succeeds in distinguishing between the

two elements, in that it determines the preferred alternative. Formally,

let (%k)k=1,...,K be a K-tuple of preferences over the set X . The lexico-

graphic preferences induced by those preferences are defined by x %L y

if (1) there is k∗ such that for all k < k∗ we have x ∼k y and x ≻k∗ y or

(2) x ∼k y for all k. Verify that %L is a preference relation.

Example:

Let X be the unit square, that is, X = [0, 1]× [0, 1]. Let x %k y if xk ≥
yk. The lexicographic preferences %L induced from %1 and %2 are:

(a1, a2) %L (b1, b2) if a1 > b1 or both a1 = b1 and a2 ≥ b2. (Thus, in

this example, the left component is the primary criterion, whereas the

right component is the secondary criterion.)

We will now show that the preferences %L do not have a utility rep-

resentation. The lack of a utility representation excludes lexicographic

preferences from the scope of standard economic models, although they

are derived from a simple and commonly used procedure.

Claim:

The lexicographic preference relation %L on [0, 1]× [0, 1], induced from

the relations x %k y if xk ≥ yk (k = 1, 2), does not have a utility repre-

sentation.
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Figure 2.1
Two definitions of continuity of preferences.

Proof:

Assume by contradiction that the function u : X → R represents%L . For

any a ∈ [0, 1], (a, 1) ≻L (a, 0), we thus have u(a, 1) > u(a, 0). Let q(a) be

a rational number in the nonempty interval Ia = (u(a, 0), u(a, 1)). The

function q is a function from [0, 1] into the set of rational numbers. It is

a one-to-one function since if b > a, then (b, 0) ≻L (a, 1) and therefore

u(b, 0) > u(a, 1). It follows that the intervals Ia and Ib are disjoint and

thus q(a) 6= q(b). But the cardinality of the rational numbers is lower

than that of the continuum, a contradiction.

Continuity of Preferences

In economics we often take the set X to be an infinite subset of a Eu-

clidean space. The following is a condition that will guarantee the ex-

istence of a utility representation in such a case. The basic intuition,

captured by the notion of a continuous preference relation, is that if a is

preferred to b, then “small” deviations from a or from b will not reverse

the ordering.

In what follows we will refer to a ball around a in X with radius r > 0,

denoted as Ball(a, r), as the set of all points in X that are distanced

less than r from a.

Definition C1:

A preference relation % on X is continuous if whenever a ≻ b (namely,

it is not true that b % a), there are balls (neighborhoods in the relevant

topology) Ba and Bb around a and b, respectively, such that for all

x ∈ Ba and y ∈ Bb, x ≻ y. (See fig. 2.1.)
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Definition C2:

A preference relation % on X is continuous if the graph of % (i.e., the

set {(x, y)|x % y} ⊆ X ×X) is a closed set (with the product topology);

that is, if {(an, bn)} is a sequence of pairs of elements in X satisfying

an % bn for all n and an → a and bn → b, then a % b. (See fig. 2.1.)

Claim:

The preference relation % on X satisfies C1 if and only if it satisfies C2.

Proof:

Assume that % on X is continuous according to C1. Let {(an, bn)} be a

sequence of pairs satisfying an % bn for all n and an → a and bn → b. If

it is not true that a % b (i.e., b ≻ a), then there exist two balls Ba and

Bb around a and b, respectively, such that for all y ∈ Bb and x ∈ Ba,

y ≻ x. There is an N large enough such that for all n > N , both bn ∈ Bb

and an ∈ Ba. Therefore, for all n > N , we have bn ≻ an, which is a

contradiction.

Assume that % is continuous according to C2. Let a ≻ b. Assume

by contradiction that for all n there exist an ∈ Ball(a, 1/n) and bn ∈
Ball(b, 1/n) such that bn % an. The sequence (bn, an) converges to (b, a);

by the second definition, (b, a) is within the graph of %, that is, b % a,

which is a contradiction.

Remarks

1. If % on X is represented by a continuous function U , then % is

continuous. To see this, note that if a ≻ b, then U(a) > U(b). Let

ε = (U(a)− U(b))/2. By the continuity of U , there is a δ > 0 such

that for all x distanced less than δ from a, U(x) > U(a)− ε, and

for all y distanced less than δ from b, U(y) < U(b) + ε. Thus, for

x and y within the balls of radius δ around a and b, respectively,

x ≻ y.

2. The lexicographic preferences that were used in the counterexample

to the existence of a utility representation are not continuous. This

is because (1, 1) ≻ (1, 0), but in any ball around (1, 1) there are

points inferior to (1, 0).

3. Note that the second definition of continuity can be applied to any

binary relation over a topological space, not just to a preference

relation. For example, the relation = on the real numbers (R1) is

continuous, whereas the relation 6= is not.
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Debreu’s Theorem

Debreu’s theorem, which states that continuous preferences have a con-

tinuous utility representation, is one of the classic results in economic

theory. For a complete proof of Debreu’s theorem, see Debreu (1954,

1960). Here we prove only that continuity guarantees the existence of a

utility representation.

Lemma:

If % is a continuous preference relation on a convex set X ⊆ R
n, and if

x ≻ y, then there exists z in X such that x ≻ z ≻ y.

Proof:

Assume not. Let I be the interval that connects x and y. By the

convexity of X , I ⊆ X . Construct inductively two sequences of points in

I, {xt} and {yt}, in the following way. First define x0 = x and y0 = y.

Assume that the two points, xt and yt are defined, belong to I, and

satisfy xt % x and y % yt. Consider the middle point between xt and

yt and denote it by m. According to the assumption, either m % x or

y % m. In the former case define xt+1 = m and yt+1 = yt, and in the

latter case define xt+1 = xt and yt+1 = m. The sequences {xt} and {yt}
are converging, and they must converge to the same point z because the

distance between xt and yt converges to zero. By the continuity of %, we

have z % x and y % z and thus, by transitivity, y % x, which contradicts

the assumption that x ≻ y.

Comment on the Proof

Another proof could be given for the more general case, in which the as-

sumption that the set X is convex is replaced by the weaker assumption

that it is a connected subset of Rn. (Remember that a connected set

cannot be covered by two nonempty disjoint open sets.) If there is no z

such that x ≻ z ≻ y, then X is the union of two disjoint sets {a|a ≻ y}
and {a|x ≻ a}, which are open by the continuity of the preference rela-

tion, which contradicts the connectedness of X .

We say that the set Y is dense in X if every open set B ⊂ X contains

an element in Y . Any set X ⊆ R
m has a countable dense subset. To see

this, note that the standard topology in R
m has a countable base. That

is, any open set is the union of subsets of the countable collection of open

sets: {Ball(a, 1/n)| all the components of a ∈ R
m are rational numbers;
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n is a natural number}. For every set Ball(q, 1/n) that intersects X ,

pick a point yq,n ∈ X ∩Ball(q, 1/n). Let Y be the set containing all the

points {yq,n}. This is a countable dense set in X .

Proposition (Debreu):

Assume that X is a convex subset of Rn. If % is a continuous preference

relation on X , then % has a continuous utility representation.

Proof:

(My thanks to Oren Danieli and Luke Levy-Moore for assistance in

formulating this proof.)

For the case that the relation is the total indifference %, the proof is

trivial. From here on, assume that % is not the total indifference.

Note that X has a countable dense set.

Lemma 1:

Let Y be dense in X . Then, for every x, y ∈ X , if x ≻ y then there exists

z ∈ Y such that x ≻ z ≻ y.

Proof:

By a previous Lemma there exists z ∈ X such that x ≻ z ≻ y. By con-

tinuity, there is a ball around z such that any point in the ball is sand-

wiched between x and y and, by the denseness of Y , the ball contains

an element of Y .

Lemma 2:

Let Y be dense in X and let E be the set of % -maxima and % -minima

in X . Then, Y − E is dense in X − E.

Proof:

Consider a ball B such that B ∩X − E 6= ∅ and let x be an element

in this set. By the denseness of Y , there exists y ∈ B ∩ Y . Thus, y ∈
B ∩ Y − E unless y ∈ E. If y is a maximum point (and similarly if y is a

minimum point) then B ∩ {z | y ≻ z ≻ x} is open and non-empty (there

exists z ∈ B in the interval that connects x and y such that y ≻ z ≻ x)

and thus contains a point in Y − E.
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Lemma 3:

Let Y be a countably dense set in X − E. Then, % has a utility repre-

sentation on Y , u with a range that contains exactly all dyadic rational

numbers in (0, 1) (which can be expressed as k/2l).

Proof:

Let Y = {yn}. Construct u by induction as follows: Start with u(y1) =

1/2. Let P (yn) = {y1, .., yn−1}, i.e., the set of elements that precedes

yn. If yn ∼ ym for some ym ∈ P (yn) let u(yn) = u(ym). If yn ≻ ym
for any ym ∈ B(yn), set u(yn) = (1 + u(yk))/2, where yk is maximal in

P (yn). Treat inferior elements in a similar manner. Otherwise, there are

yi, yj ∈ P (yn) such that yi is the minimal among the elements in P (yn)

which are preferred to yn and yj is the maximal among the elements that

are inferior to yn. Let, u(yn) = (u(yi) + u(yj))/2. Note that by Lemma

1, the continuity and the denseness of Y , there will always eventually

be one element in the series that is above all the elements in P (yn), one

that is between any two elements in the sequence and one that is below

all the elements of P (yn).

It follows from Lemma 1 that the range of u is exactly all dyadic

numbers in (0, 1).

Proof of Debreu’s proposition:

By Lemma 2 there exists a countable set Y dense in X − E. Let u be the

function defined on Y according to Lemma 3. It can be extended to X

by: (i) assigning the value 1 to all maxima points in X and the value 0 to

all minima points and (ii) defining u(x) = sup{u(y) | x ≻ y and y ∈ Y }
for all x /∈ Y ∪ E. This function represents the preference relation since

by definition if x ∼ z we have u(x) = u(z) and if x ≻ z there are y1 and y2
in Y such that x ≻ y1 ≻ y2 ≻ z and thus u(x) ≥ u(y1) > u(y2) ≥ u(z).

In order to demonstrate continuity, consider a point x /∈ E (a similar

treatment applies to extreme points). Let ε > 0. By Lemma 3 there are

y1 and y2 in Y such that u(x)− ε < u(y1) < u(x) < u(y2) < u(x) + ε.

By twice applying the definition of the continuity of % , we obtain a

ball B around x that is between y1 and y2 with respect to the preference

relation. By definition elements in this ball will receive u values between

u(y1) and u(y2) and thus are not distanced more than ε from u(x).
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Bibliographic Notes

Fishburn (1970) covers the material in this lecture very well. The exam-

ple of lexicographic preferences originated in Debreu (1959) (see also

Debreu (1960), in particular chapter 2, which is available online at

http://cowles.econ.yale.edu/P/cp/p00b/p0097.pdf.)
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Problem 1. (Easy)
The purpose of this problem is to make sure that you fully understand the

basic concepts of utility representation and continuous preferences.

a. Is the statement “if both U and V represent %, then there is a strictly

monotonic function f : R → R such that V (x) = f(U(x))” correct?

b. Can a continuous preference relation be represented by a discontinuous

utility function?

c. Show that in the case of X = R, the preference relation that is repre-

sented by the discontinuous utility function u(x) = [x] (the largest inte-

ger n such that x ≥ n) is not a continuous relation.

d. Show that the two definitions of a continuous preference relation (C1

and C2) are equivalent to

Definition C3: For any x ∈ X, the upper and lower contours {y| y %

x} and {y| x % y} are closed sets in X,

and to

Definition C4: For any x ∈ X, the sets {y| y ≻ x} and {y| x ≻ y}
are open sets in X.

Problem 2. (Moderately difficult)

Give an example of preferences over a countable set in which the preferences

cannot be represented by a utility function that returns only integers as values.

Problem 3. (Easy)
Let % be continuous preferences on a set X ⊆ R

n that contains the interval

connecting the points x and z. Show that if y ∈ X and x % y % z, then there

is a point m on the interval connecting x and z such that y ∼ m.

Problem 4. (Moderately difficult)

Consider the sequence of preference relations (%n)n=1,2,..., defined on R
2
+

where %n is represented by the utility function un(x1, x2) = xn
1 + xn

2 . We

will say that the sequence %n converges to the preferences %∗ if for every x

and y, such that x ≻∗ y, there is an N such that for every n > N we have

x ≻n y. Show that the sequence of preference relations %n converges to the

preferences ≻∗, which are represented by the function max{x1, x2}.
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Problem 5. (Moderately difficult)

Let X be a finite set and let (%,≻≻) be a pair where % is a preference

relation and ≻≻ is a transitive subrelation of ≻ (by subrelation, we mean that

x ≻≻ y implies x ≻ y.)

We can think about the pair as representing the responses to the question-

naire A, where A(x, y) is the following question:

How do you compare x and y? Tick one of the following five options:

� I very much prefer x over y (x ≻≻ y).

� I prefer x over y (x ≻ y).

� I am indifferent (I).

� I prefer y over x (y ≻ x).

� I very much prefer y over x (y ≻≻ x).

Assume that the pair satisfies extended transitivity:

If x ≻≻ y and y % z, or if x % y and y ≻≻ z, then x ≻≻ z.

We say that a pair (%,≻≻) is represented by a function u if:

u(x) = u(y) iff x ∼ y,

u(x)− u(y) > 0 iff x ≻ y, and

u(x)− u(y) > 1 iff x ≻≻ y.

Show that every extended preference (%,≻≻) can be represented by a func-

tion u.

Problem 6. (Moderately difficult)

The following is a typical example of a utility representation theorem:

Let X = R
2
+. Assume that a preference relation % satisfies the following three

properties:

ADD : (a1, a2) % (b1, b2) implies that (a1 + t, a2 + s) % (b1 + t, b2 + s) for all t

and s.

SMON : If a1 ≥ b1 and a2 ≥ b2, then (a1, a2) % (b1, b2); in addition, if either

a1 > b1 or a2 > b2, then (a1, a2) ≻ (b1, b2).

CON : Continuity.

a. Show that, if % has a linear representation (i.e., % is represented by a

utility function u(x1, x2) = αx1 + βx2 with α > 0 and β > 0), then %

satisfies ADD, SMON, and CON.

b. Show that for any pair of the three properties there is a preference rela-

tion that does not satisfy the third property.

c. (This part is difficult) Show that if % satisfies the three properties, then

it has a linear representation.

d. (This part is also difficult) Characterize the preference relations that

satisfy ADD, SMON, and an additional property MUL:

MUL: (a1, a2) % (b1, b2) implies that (λa1, λa2) % (λb1, λb2) for any pos-

itive λ.
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Problem 7. (Moderately difficult)

Utility is a numerical representation of preferences. One can think about the

numerical representation of other abstract concepts. Here, you will try to come

up with a possible numerical representation of the concept “approximately the

same” (see Luce (1956) and Rubinstein (1988)). For simplicity, let X be the

interval [0, 1].

Consider the following six properties of the binary relation S:

(S-1) For any a ∈ X , aSa.

(S-2) For all a, b ∈ X , if aSb, then bSa.

(S-3) Continuity (the graph of the relation S in X ×X is a closed

set).

(S-4) Betweenness: If d ≥ c ≥ b ≥ a and dSa, then also cSb.

(S-5) For any a ∈ X , there is an open interval around a such that xSa

for every x in the interval.

(S-6) Denote M(a) = max{x|xSa} and m(a) = min{x|aSx}. Then,

M and m are (weakly) increasing functions and are strictly increas-

ing whenever they do not have the values 0 or 1.

a. Do these assumptions capture your intuition about the concept “approx-

imately the same”?

b. Show that the relation Sε, defined by aSεb if |b− a| ≤ ε (for positive ε),

satisfies all assumptions.

c. (Difficult) Let S be a binary relation that satisfies the above six proper-

ties and let ε be a strictly positive number. Show that there is a strictly

increasing and continuous function H : X → R such that aSb if and only

if |H(a)−H(b)| ≤ ε .



LECTURE 3

Choice

Choice Functions

Until now we have avoided any reference to behavior. We have talked

about preferences as a summary of the decision maker’s mental attitude

toward a set of alternatives. But economics is about action, and therefore

we now move on to modeling “agent behavior”. By a description of

agent behavior we will refer not only to his actual choices, made when

he confronts a certain problem, but to a full description of his behavior

in all scenarios we imagine he might confront in a certain context.

Consider a grand set X of possible alternatives. We view a choice

problem as a nonempty subset of X , and we refer to a choice from

A ⊆ X as specifying one of A’s members.

Modeling a choice scenario as a set of alternatives implies assumptions

of rationality according to which the agent’s choice does not depend on

the way the alternatives are presented. For example, if the alternatives

appear in a list, he ignores the order in which they are presented and

the number of times an alternative appears in the list. If there is an

alternative with a default status, he ignores that as well. As a rational

agent he considers only the set of alternatives available to him.

In some contexts, not all choice problems are relevant. Therefore we

allow that the agent’s behavior be defined only on a set D of subsets of

X . We will refer to a pair (X,D) as a context.

Example:

1. Imagine that we are interested in a student’s behavior regarding his

selection from the set of universities to which he has been admitted. Let

X = {x1, . . . , xN} be the set of all universities with which the student is

familiar. A choice problem A is interpreted as the set of universities to

which he has been admitted. If the fact that the student was admitted

to some subset of universities does not imply his admission outcome for

other universities, then D contains the 2N − 1 nonempty subsets of X .

But if, for example, the universities are listed according to difficulty in
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being admitted (x1 being the most difficult) and if the fact that the stu-

dent is admitted to xk means that he is admitted to all less “prestigious”

universities, that is, to all xl with l > k, then D will consist of the N

sets A1, . . . , AN where Ak = {xk, . . . , xN}.
2. Imagine a scenario in which a decision maker is choosing whether

to remain with the status quo s or choose an element in some set Y .

We formalize such a scenario by defining X = Y ∪ {s} and identifying

the domain of the choice function D as the set of all subsets of X that

contain s.

We think about an agent’s behavior as a hypothetical response to a

questionnaire that contains questions of the following type, one for each

A ∈ D:

Q(A): Assume you must choose from a set of alternatives A. Which

alternative do you choose?

A permissible response to this questionnaire requires that the agent

select a unique element in A for every question Q(A). We implicitly

assume that the agent cannot give any other answer such as “I choose

either a or b”; “the probability of my choosing a ∈ A is p(a)”; or “I don’t

know”.

Formally, given a context (X,D), a choice function C assigns to each

set A ∈ D a unique element of A with the interpretation that C(A) is

the chosen element from the set A.

Our understanding is that a decision maker behaving in accordance

with the function C will choose C(A) if he has to make a choice from a set

A. This does not mean that we can actually observe the choice function.

At most we might observe some particular choices made by the decision

maker in some instances. Thus, a choice function is a description of

hypothetical behavior.

Rational Choice Functions

It is typically assumed in economics that choice is an outcome of “ratio-

nal deliberation”. Namely, the decision maker has in mind a preference

relation% on the setX and, given any choice problem A inD, he chooses

an element in A that is % optimal. Assuming that it is well defined, we

define the induced choice function C% as the function that assigns to

every nonempty set A ∈ D the %-best element of A. Note that the pref-

erence relation is fixed, that is, it is independent of the choice set being

considered.
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Figure 3.1
Violation of condition α.

Rationalizing

Economists were often criticized for making the assumption that decision

makers maximize a preference relation. The most common response to

this criticism is that we don’t really need this assumption. All we need

to assume is that the decision maker’s behavior can be described as if

he were maximizing some preference relation.

Let us state this “economic defense” more precisely. We will say that

a choice function C can be rationalized if there is a preference relation

% on X so that C = C% (i.e., C(A) = C%(A) for any A in the domain

of C).

We will now identify a condition under which a choice function can

indeed be presented as if derived from some preference relation (i.e., can

be rationalized).

Condition α:

We say that C satisfies condition α if for any two problems A,B ∈ D, if

A ⊂ B and C(B) ∈ A, then C(A) = C(B). (See fig. 3.1.)

Note that if % is a preference relation on X , then C% (defined on a

set of subsets of X that have a single most preferred element) satisfies

condition α.

As an example of a choice procedure that does not satisfy condition

α, consider the second-best procedure: the decision maker has in mind

an ordering % of X (i.e., a complete, asymmetric and transitive binary

relation) and for any given choice problem set A chooses the element

from A, which is the %-maximal from the nonoptimal alternatives. If

A contains all the elements in B besides the %-maximal, then C(B) ∈
A ⊂ B but C(A) 6= C(B).
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We will now show that condition α is a sufficient condition for a choice

function to be formulated as if the decision maker is maximizing some

preference relation.

Proposition:

Assume that C is a choice function with a domain containing at least

all subsets of X of size 2 or 3. If C satisfies condition α, then there is a

preference % on X so that C = C%.

Proof:

Define % by x % y if x = C({x, y}).
Let us first verify that the relation % is a preference relation.

Completeness : Follows from the fact that C({x, y}) is always well

defined.

Transitivity: If x % y and y % z, then C({x, y}) = x and C({y, z}) =
y. If C({x, z}) 6= x, then C({x, z}) = z. By condition α and C({x, z}) =
z , C({x, y, z}) 6= x. By condition α and C({x, y}) = x, C({x, y, z}) 6= y,

and by condition α and C({y, z}) = y, C({x, y, z}) 6= z. A contradiction

to C({x, y, z}) ∈ {x, y, z}.
We still have to show that C(B) = C%(B). Assume that C(B) = x

and C%(B) 6= x. That is, there is y ∈ B so that y ≻ x . By definition of

%, this means C({x, y}) = y, contradicting condition α.

Following is a different version of the above proposition.

Proposition:

Let C be a choice function with a domain D satisfying that if A,B ∈ D,

then A ∪B ∈ D. If C satisfies condition α, then there is a preference

relation % on X such that C = C%.

Proof:

Define a binary relation as x % y if there is a set A ∈ D such that y ∈ A

and c(A) = x. Note that % is not necessarily complete. However, it does

satisfy transitivity: If x % y and y % z, then there is A ∈ D containing y

such that C(A) = x and there is B ∈ D containing z such that C(B) = y.

The set A ∪B is a member of D. By condition α, if C(A ∪B) ∈ B, then

it must be C(B) but then c(A) = C(B) = y. Thus, C(A ∪B) ∈ A and,

again by condition α, C(A ∪B) = C(A) = x and thus x % z.

A well-known proposition in Set Theory (see Problem 4 in Problem

Set 1) guarantees that the relation % extends to a preference relation
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%∗. By definition, c(A) % x for all x ∈ A and thus it also follows that

c(A) %∗ x for all x ∈ A, which proves that C%∗ = C.

Dutch Book Arguments

Some of the justifications for the assumption that choice is determined

by “rational deliberation” are normative, that is, they reflect a percep-

tion that people should be rational in this sense and, if they are not, they

should convert to reasoning of this type. One interesting class of argu-

ments supporting this approach is referred to in the literature as “Dutch

book arguments”. The claim is that an economic agent who behaves ac-

cording to a choice function that is not induced from maximization of a

preference relation will not survive.

The following is a “sad” story about a monkey in a forest with three

trees, a , b, and c. The monkey is about to pick a tree to sleep in. Assume

that the monkey can assess only two alternatives at a time and that his

choice function is C({a, b}) = b, C({b, c}) = c, C({a, c}) = a. Obviously,

his choice function cannot be derived from a preference relation over the

set of trees. Assume that whenever he is on tree x it comes to his

mind occasionally to jump to one of the other trees; namely, he makes

a choice from a set {x, y} where y is one of the two other trees. This

induces the monkey to perpetually jump from one tree to another – not

a particularly desirable mode of behavior in the jungle.

Another argument – which is more appropriate to human beings –

is called the “money pump” argument. Assume that a decision maker

behaves like the monkey with respect to three alternatives a, b, and c.

Assume that, for all x and y, the choice C(x, y) = y is strong enough so

that whenever he is about to choose alternative x and somebody gives

him the option to also choose y, he is ready to pay one cent for the

opportunity to do so. Now, imagine a manipulator who presents the

agent with the choice problem {a, b, c}. Whenever the decision maker

is about to make the choice a, the manipulator allows him to revise his

choice to b for one cent. Similarly, every time he is about to choose b

or c, the manipulator sells him for one cent the opportunity to choose c

or a accordingly. The decision maker will cycle through the intentions

to choose a, b, and c until his pockets are emptied or until he learns his

lesson and changes his behavior.

The above arguments are open to criticism. In particular, the elimina-

tion of patterns of behavior that are inconsistent with rationality require

an environment in which the economic agent is indeed confronted with
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the above sequence of choice problems. The arguments are presented

here as interesting ideas and not necessarily as convincing arguments

for rationality.

What Is an Alternative

Some of the cases where rationality is violated can be attributed to the

incorrect specification of the space of alternatives. Consider the following

example taken from Luce and Raiffa (1957): a diner in a restaurant

chooses chicken from the menu steak tartare, chicken but chooses steak

tartare from the menu steak tartare, chicken, frog legs. At first glance

it seems that he is not rational (since his choice conflicts with condition

α). Assume that the motivation for the choice is that the existence of

frog legs is an indication of the quality of the chef. If the dish frog legs

is on the menu, the cook must then be a real expert, and the decision

maker is happy ordering steak tartare, which requires expertise to make.

If the menu lacks frog legs, the decision maker does not want to take the

risk of choosing steak tartare.

Rationality is “restored” if we make the distinction between “steak

tartare served in a restaurant where frog legs are also on the menu (and

the cook must then be a real chef)” and “steak tartare in a restaurant

where frog legs are not served (and the cook is likely a novice)”. Such a

distinction makes sense because the steak tartare is not the same in the

two choice sets.

Note that if we define an alternative to be (a,A), where a is a physical

description and A is the choice problem, any choice function C can be

rationalized by a preference relation satisfying (C(A), A) % (a,A) for

every a ∈ A.

The lesson to be learned from the above discussion is that care must

be taken in specifying the term “alternative”. An alternative a must

have the same meaning for every choice problem A which contains a.

Choice Functions as Internal Equilibria

The choice function definition we have been using requires that a sin-

gle element be assigned to each choice problem. If the decision maker

follows the rational man procedure using a preference relation with in-

differences, the previously defined induced choice function C%(A) might

be undefined because for some choice problems there would be more
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than one optimal element. This is one of the reasons that in some cases

we use the alternative following concept to model behavior.

A choice correspondence C is required to assign to every nonempty

A ∈ D a nonempty subset of A, that is, ∅ 6= C(A) ⊆ A. According to

our interpretation of a choice problem, a decision maker has to select a

unique element from every choice set. Thus, C(A) cannot be interpreted

as the choice made by the decision maker when he has to make a choice

from A. The revised interpretation of C(A) is the set of all elements in

A that are satisfactory in the sense that if the decision maker is about

to make a decision and choose a ∈ C(A), he has no desire to move away

from it. In other words, the induced choice correspondence reflects an

“internal equilibrium”: if the decision maker facing A considers an alter-

native outside C(A), he will continue searching for another alternative.

If he happens to consider an alternative inside C(A), he will take it.

A related interpretation of C(A) involves viewing it as the set of all

elements in A that may be chosen under any of many possible particular

circumstances not included in the description of the set A. Formally, let

(A, f) be an extended choice set where f is the frame that accompanies

the set A (like the default alternative or the order of the alternatives).

Let c(A, f) be the choice of the decision maker from the choice set A

given the frame f . The (extended) choice function c induces a choice

correspondence by C(A) = {x|x = c(A, f) for some f}.
Given a preference relation % we define the induced choice correspon-

dence (assuming it is never empty) as C%(A) = {x ∈ A | x % y for all

y ∈ A}.
When x, y ∈ A and x ∈ C(A), we say that x is revealed to be at least

as good as y. If, in addition, y /∈ C(A), we say that x is revealed to be

strictly better than y. Condition α is now replaced by condition WA,

which requires that if x is revealed to be at least as good as y, then y is

not revealed to be strictly better than x.

The Weak Axiom of Revealed Preference (WA):

We say that C satisfies WA if whenever x, y ∈ A ∩B, x ∈ C(A), and

y ∈ C(B), it is also true that x ∈ C(B) (fig. 3.2).

The Weak Axiom trivially implies two properties: Condition α: If

a ∈ A ⊂ B and a ∈ C(B), then a ∈ C(A). Condition β: If a, b ∈ A ⊂ B,

a ∈ C(A), and b ∈ C(B), then a ∈ C(B).

Notice that if C(A) contains all elements that are maximal accord-

ing to some preference relation, then C satisfies WA. Also, verify that

conditions α and β are equivalent to WA for any choice correspondence
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Figure 3.2
Violation of the weak axiom.

with a domain satisfying that if A and B are included in the domain,

then so is their intersection. Note also that for the next proposition, we

could make do with a weaker version of WA, which makes the same re-

quirement only for any two sets A ⊂ B where A is a set of two elements.

Proposition:

Assume that C is a choice correspondence with a domain that includes

at least all subsets of size 2 or 3. Assume that C satisfies WA. Then,

there is a preference % so that C = C%.

Proof:

Define x % y if x ∈ C({x, y}). We will now show that the relation is a

preference:

Completeness : Follows from C({x, y}) 6= ∅.
Transitivity: If x% y and y % z, then x ∈ C({x, y}) and y ∈ C({y, z}).

Therefore, by condition β, if y ∈ C({x, y, z}), then x ∈ C({x, y, z}), and
if z ∈ C({x, y, z}), then y ∈ C({x, y, z}). Thus, in any case, x ∈ C({x, y, z}).
By condition α, x ∈ C({x, z}) and thus x % z.

It remains to be shown that C(B) = C%(B).

Assume that x ∈ C(B). By condition α for every y ∈ B we have

x ∈ C({x, y}) and thus x % y. It follows that x ∈ C%(B).

Assume that x ∈ C%(B). Let y ∈ C(B). If y 6= x then x ∈ C({x, y})
and by condition β we have x ∈ C(B).

The Satisficing Procedure

The fact that we can present any choice function satisfying condition α

(or WA) as an outcome of the optimization of some preference relation
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provides support for the view that the scope of microeconomic models

is wider than simply models in which agents carry out explicit optimiza-

tion. But have we indeed expanded the scope of economic models?

Consider the following “decision scheme”, named satisficing by Her-

bert Simon. Let v : X → R be a valuation of the elements in X , and

let v∗ ∈ R be a threshold of satisfaction. Let O be an ordering of the

alternatives in X . Given a set A, the decision maker arranges the ele-

ments of this set in a list L(A,O) according to the ordering O. He then

chooses the first element in L(A,O) that has a v-value at least as large

as v∗. If there is no such element in A, the decision maker chooses the

last element in L(A,O).

Let us show that the choice function induced by this procedure satisfies

condition α. Assume that a is chosen from B and is also a member of

A ⊂ B. The list L(A,O) is obtained from L(B,O) by eliminating all

elements in B −A. If v(a) ≥ v∗, then a is the first satisfactory element

in L(B,O) and is also the first satisfactory element in L(A,O). Thus,

a is chosen from A. If all elements in B are unsatisfactory, then a must

be the last element in L(B,O). Since A is a subset of B, all elements

in A are unsatisfactory and a is the last element in L(A,O). Thus, a is

chosen from A.

A direct proof that the procedure is rationalized can be obtained by

explicitly constructing an ordering that rationalizes the satisficing pro-

cedure. Let % be the ordering that places on top the elements that

satsifice, (namely, the members of {x|v(x) ≥ v∗}) ordered according to

O. The relation % puts the other alternatives at the bottom, ordered

according to the reversed ordering O. For any set A, maximizing % will

yield the first element (according to O) which is satisficing and if there

isn’t one then maximization will choose the last element in A (according

to O).

Note, however, that even a “small” variation in this scheme can lead

to a variation of the procedure such that it no longer satisfies condition

α. For example:

Satisficing using two orderings : Let X be a population of university

graduates who are potential candidates for a job. Given a set of actual

candidates, count their number. If the number is smaller than 5, order

them alphabetically. If the number of candidates is above 5, order them

by their social security number. Whatever ordering is used, choose the

first candidate whose undergraduate average is above 85. If there are

none, choose the last student on the list.
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Condition α is not satisfied. It may be that a is the first candidate

with a satisfactory grade in a long list of students ordered by their

social security numbers. Still, a might not be the first candidate with a

satisfactory grade on a list of only three of the candidates appearing on

the original list when they are ordered alphabetically.

To summarize, the satisficing procedure, though it is stated in a way

that seems unrelated to the maximization of a preference relation or

utility function, can be described as if the decision maker maximizes a

preference relation. I know of no other examples of interesting general

schemes for choice procedures that satisfy condition α other than the

“rational man” and the satisficing procedures. However, later on, when

we discuss consumer theory, we will come across several other appealing

examples of demand functions that can be rationalized, though they

appear to be unrelated to the maximization of a preference relation.

Psychological Motives Not Included within
the Framework

The more modern attack on the standard approach to modeling eco-

nomic agents comes from psychologists, notably from Amos Tversky

and Daniel Kahneman. They have provided us with beautiful examples

demonstrating not only that rationality is often violated but that there

are systematic reasons for the violation resulting from certain elements

within our decision procedures. Here are a few examples of this kind

that I find particularly relevant.

Framing

The following experiment (conducted by Tversky and Kahneman (1986))

demonstrates that the way in which alternatives are framed may affect

decision makers’ choices. Subjects were asked to imagine being con-

fronted by the following choice problem:

An outbreak of disease is expected to cause 600 deaths in the United

States. Two mutually exclusive programs are expected to yield the fol-

lowing results:

a. 400 people will die.

b. With probability 1/3, 0 people will die, and with probability 2/3,

600 people will die.
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In the original experiment, a different group of subjects was given the

same background information and asked to choose from the following

alternatives:

c. 200 people will be saved.

d. With probability 1/3, all 600 will be saved, and with probability

2/3, none will be saved.

Whereas 78% of the first group chose b, only 28% of the second group

chose d. These are “problematic” results since by any reasonable crite-

rion a and c are identical alternatives, as are b and d. Thus, the choice

from {a, b} should be consistent with the choice from {c, d}.
Both questions were presented in the above order to 1, 200 students

taking game theory courses with the result that 73% chose b and 49%

chose d. It seems plausible that many students kept in mind their answer

to the first question while responding to the second one, and therefore

the level of inconsistency was reduced. Nonetheless, a large proportion

of students gave different answers to the two problems, which makes the

findings even more problematic.

Overall, the results expose the sensitivity of choice to the framing of

the alternatives. What is more basic to rational decision making than

taking the same choice when only the manner in which the problems are

stated is different?

Simplifying the Choice Problem and the Use of Similarities

The following experiment was also conducted by Tversky and Kahne-

man. One group of subjects was presented with the following choice

problem:

Choose one of the two roulette games a or b. Your prize is the one

corresponding to the outcome of the chosen roulette game as specified

in the following tables:

(a)

Color White Red Green Yellow

Chance % 90 6 1 3

Prize $ 0 45 30 −15

(b)

Color White Red Green Yellow

Chance % 90 7 1 2

Prize $ 0 45 −10 −15

A different group of subjects was presented the same background in-

formation and asked to choose between:
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(c)

Color White Red Green Blue Yellow

Chance % 90 6 1 1 2

Prize $ 0 45 30 −15 −15

and

(d)

Color White Red Green Blue Yellow

Chance % 90 6 1 1 2

Prize $ 0 45 45 −10 −15

In the original experiment, 58% of the subjects in the first group chose

a, whereas nobody in the second group chose c. When the two problems

were presented, one after the other, to about 1, 350 students, 52% chose

a and 7% chose c. Interestingly, the median response time among the

students who answered a was 53 seconds, whereas the median response

time of the students who answered b was 90 seconds.

The results demonstrate a common procedure people practice when

confronted with a complicated choice problem. We often transfer the

complicated problem into a simpler one by “canceling” similar elements.

Although d clearly dominates c, the comparison between a and b is not

as easy. Many subjects “cancel” the probabilities of White, Yellow, and

Red and are left with comparing the prizes of Green, a process that leads

them to choose a.

Incidentally, several times in the past when I presented these choice

problems in class, I have had students (some of the best students, in fact)

who chose c. They explained that they identified the second problem

with the first and used the procedural rule: “I chose a from {a, b}. The
alternatives c and d are identical to the alternatives a and b, respectively.

It is only natural then, that I choose c from {c, d}”. This observation

brings to our attention the fact that the model of rational man does not

allow dependence of choice on the previous choices made by the decision

maker.

Reason-Based Choice

Making choices sometimes involves finding reasons to pick one alterna-

tive over the others. When the deliberation involves the use of rea-

sons strongly associated with the problem at hand (“internal reasons”),

we often find it difficult to reconcile the choice with the rational man

paradigm.

Imagine, for example, a European student who would choose Prince-

ton if allowed to choose from Princeton, LSE and would choose LSE if
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he had to choose from Princeton, Chicago, LSE. His explanation is that

he prefers an American university so long as he does not have to choose

between American schools – a choice he deems harder. Having to choose

from {Princeton, Chicago, LSE}, he finds it difficult deciding between

Princeton and Chicago and therefore chooses not to cross the Atlantic.

His choice does not satisfy condition α, not because of a careless specifi-

cation of the alternatives (as in the restaurant’s menu example discussed

previously), but because his reasoning involves an attempt to avoid the

difficulty of making a decision.

A better example was suggested to me by a student Federico Filippini:

“Imagine there’s a handsome guy called Albert, who is looking for a date

to take to a party. Albert knows two girls that are crazy about him, both

of whom would love to go to the party. The two girls are called Mary

and Laura. Of the two, Albert prefers Mary. Now imagine that Mary

has a sister, and this sister is also crazy about Albert. Albert must now

choose between the three girls, Mary, Mary’s sister, and Laura. With

this third option, I bet that if Albert is rational, he will be taking Laura

to the party.”

Another example follows Huber, Payne, and Puto (1982):

Let a = (a1, a2) be “a holiday package of a1 days in Paris and a2
days in London”. Choose one of the four vectors a = (7, 4), b = (4, 7),

c = (6, 3), and d = (3, 6).

All subjects in the experiment agreed that a day in Paris and a day

in London are desirable goods. Some of the subjects were requested to

choose between the three alternatives a, b, and c; others had to choose

between a, b, and d. The subjects exhibited a clear tendency toward

choosing a out of the set {a, b, c} and choosing b out of the set {a, b, d}.
A related experiment is reported in Shafir, Simonson, and Tversky

(1993). A group of subjects was asked to imagine having to choose be-

tween a camera priced $170 and a better camera, by the same producer,

which costs $240. Another group of subjects was asked to imagine hav-

ing to choose between three cameras – the two described above and a

third, much more sophisticated camera, priced at $470. The addition

of the third alternative significantly increased the proportion of sub-

jects who chose the $240 camera. The commonsense explanation for

this choice is that subjects faced a conflict between two desires, to buy

a better camera and to pay less. They resolved the conflict by choosing

the “compromise alternative”.

To conclude, decision makers look for reasons to prefer one alternative

over the other. Typically, making decisions by using “external reasons”
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(which do not refer to the properties of the choice set) will not cause

violations of rationality. However, applying “internal reasons” such as “I

prefer the alternative a over the alternative b since a clearly dominates

the other alternative c while b does not” might cause conflicts with

condition α.

Mental Accounting

The following intuitive example is taken from Kahneman and Tversky

(1984). Members of one group of subjects were presented with the fol-

lowing question:

1. Imagine that you have decided to see a play and paid the admission

price of $10 per ticket. As you enter the theater, you discover that you

have lost the ticket. The seat was not marked and the ticket cannot be

recovered. Would you pay $10 for another ticket?

Members of another group were asked to answer the following ques-

tion:

2. Imagine that you have decided to see a play where the admission is

$10 per ticket. As you arrive at the theater, you discover that you have

lost a $10 bill. Would you still pay $10 for a ticket for the play?

If the rational man cares only about seeing the play and his wealth,

he should realize that there is no difference between the consequence

of replying Yes to question 1 and replying Yes to question 2 (in both

cases he will own a ticket and will be poorer by $20). Similarly, there

is no difference between the consequence of replying No to question 1

and replying No to question 2. Thus, the rational man should give

the same answer to both questions. Nonetheless, only 46% said they

would buy another ticket after they had lost the first one, whereas 88%

said they would buy a ticket after losing the banknote. In the data

I collected (among 1,200 subjects) the gap is much smaller: 64% and

80%, accordingly. It is likely that in this case subjects have conducted

a calculation where they compared the “mental price” of a ticket to its

subjective value. Many of those who decided not to buy another ticket

after losing the first one attributed a price of $20 to the ticket rather

than $10. This example demonstrates that decision makers may conduct

“mental calculations” that are inconsistent with rationality.

Modeling Choice Procedures

There is a large body of evidence showing that decision makers systemat-

ically use procedures of choice that violate the classical assumptions and
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that the rational man paradigm is lacking. The accumulated evidence

has had an effect on the development of economic theory, and in recent

years we have seen the introduction of more and more economic models

in which economic agents are assumed to follow alternative procedures

of choice. In this section, we focus on one particular line of research that

attempts to incorporate such decision makers into economic models.

Classical models have characterized economic agents using a choice

function. The statement c(A) = a means that the decision maker se-

lects a when choosing from the set of alternatives A. We are about to

enrich the concept of a choice problem such that it will include not only

the set of alternatives but additional information as well. This addi-

tional information is considered to be irrelevant to the interests of the

decision maker but may nevertheless affect his choice. Here, we will

be dealing with a case in which the additional information consists of

a default option. The statement c(A, a) = b means that when facing

the choice problem A with a default alternative a the decision maker

chooses the alternative b. Experimental evidence and introspection tell

us that a default option is often viewed positively by decision makers, a

phenomenon known as the status quo bias, which will play a role in the

following discussion.

LetX be a finite set of alternatives. Define an extended choice function

to be a function that assigns a unique element in A to every pair (A, a)

where A ⊆ X and a ∈ A.

Following are some examples of extended choice functions. The rich-

ness of the concept is demonstrated by the examples.

1. The decision maker has in mind a vector of orderings (≻i), which

are interpreted to be criteria, and an additional ordering ≻ inter-

preted to be the real preference relation of the decision maker. The

alternative C(A, a) is the ≻-best element in the set of alternatives

which are as good as a by all criteria (i.e.,{x| x %i a for all i}).
2. Let d be a distance function on X . The decision maker has in mind

a preference relation. The element C(A, a) is the best alternative

that is not too far from a (i.e., lies in {x | d(x, a) ≤ d∗} for some

d∗).

3. The decision maker has in mind a preference relation % on X . The

element C(A, a) is an alternative in A which is the alphabetically

first alternative after a which is %-better than the default alterna-

tive a (and in the absence of such an alternative he sticks with the

default).
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4. Buridan’s donkey: The decision maker has two criteria in mind. If

there is a unique alternative which is “Pareto optimal” and “Pareto

dominates” the default, it is chosen. If not, then the decision maker

stays with the default option (since he cannot make up his mind fac-

ing a dilemma) (see http://en.wikipedia.org/wiki/Buridan’s ass).

5. A default bias: The decision maker is characterized by a utility

function u and a “bias function” β, which assigns a non-negative

number to each alternative. The function u is interpreted as repre-

senting the “true” preferences. The number β(x) is interpreted as

the bonus attached to x when it is a default alternative. Given an

extended choice problem (A, a), the procedure denoted byDBPu,β ,

selects:

DBPu,β(A, a)=







x ∈ A− {a} if u(x)>u(a) + β(a) and u(x)>u(y)

for any y ∈ A− {a, x}
a if u(a) + β(a)>u(x), ∀x∈A− {a}

.

Our aim is to characterize the set of extended choice functions that

can be described as DBPu,β for some u and β. We will adopt two

assumptions:

The Weak Axiom (WA)

We say that an extended choice function c satisfies the Weak Axiom if

there are no sets A and B, a, b ∈ A ∩B, a 6= b and x, y /∈ {a, b} (x and

y are not necessarily distinct) such that:

1. c(A, a) = a and c(B, a) = b or

2. c(A, x) = a and c(B, y) = b.

The Weak Axiom states that:

1. If a is revealed to be better than b in a choice problem where a is

the default, then there cannot be any choice problem in which b is

revealed to be better than a when a is the default.

2. If a is revealed to be better than b in a choice problem where neither

a nor b is a default, there cannot be any choice problem in which

b is revealed to be better than a when again neither a nor b is the

default.

Comment:

WA implies that for every a there is a preference relation ≻a such that

c(A, a) is the ≻a-maximal element in A. To see this let

Ya = {x| x 6= a and there exists a set B such that c(B, a) = x}.
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Consider the choice function on the grand set Ya defined by D(Y ) =

c(Y ∪ {a}, a) for any Y ⊆ Ya. By applying WA regarding the extended

choice function c, the choice function D on Ya satisfies condition α, and

thus there is an ordering ≻a on Ya such that D(Y ) is the ≻a-maximum

in Y . Extend ≻a so that a will be just below all the elements in Ya
and above all elements outside Ya, which can be ordered in any way, to

obtain the conclusion.

Default Tendency (DT)

If c(A, x) = a, then c(A, a) = a.

The second assumption states that if the decision maker chooses a from

a set A when x 6= a is the default, he does not change his mind if x is

replaced by a as the default alternative.

Proposition:

An extended choice function c satisfies WA and DT if and only if it is a

default-bias procedure.

Proof:

Consider a default-bias procedure c characterized by the functions u and

β. It satisfies:

DT: if c(A, x) = a and x 6= a, then u(a) > u(y) for any y 6= a in A.

Thus, also u(a) + β(a) > u(y) for any y 6= a in A and c(A, a) = a.

WA: for any two sets A,B, a, b ∈ A ∩B, a 6= b, 1. if c(A, a) = a and

c(B, a) = b, then we would have both u(a) + β(a) > u(b) and u(b) >

u(a) + β(a); and

2. if c(A, x) = a and c(B, y) = b (x, y /∈ {a, b}), then we would have

both u(a) > u(b) and u(b) > u(a).

In the other direction, let c be an extended choice function satisfying

WA and DT. Define a relation ≻ on X × {0, 1} as follows:

• For any pair (A, x) for which c(A, x) = x, define (x, 1) ≻ (y, 0) for

all y ∈ A− {x}.
• For any pair (A, x) for which c(A, x) = y 6= x, define (y, 0) ≻ (x, 1)

and (y, 0) ≻ (z, 0) for all z ∈ A− {x, y}.
• Extend the relation so that (x, 1) ≻ (x, 0) for all x ∈ X .

The relation is not necessarily complete or transitive, but by WA it is

asymmetric. We will see that ≻ can be extended to a full ordering over

X × {0, 1} denoted by ≻∗. Using problem 4 in Problem Set 1, we only

need to show that the relation does not have cycles.
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Assume that ≻ has a cycle and consider a shortest cycle. By WA

there is no cycle of length two, and thus the shortest cycle has to be at

least of length three. Steps (a) and (b) establish that it is impossible

that the shortest cycle will contain a consecutive pair (x, 0) ≻ (y, 0).

a. Assume that the cycle contains a consecutive segment (x, 0) ≻
(y, 0) ≻ (z, 1).

Assume z = x. Let A be the set containing x and y and let a be a

third alternative in A such that c(A, a) = x. Then by DT c(A, x) =

x and (x, 1) ≻ (y, 0) contradicting WA. If z 6= x, then there is a set

A such that c(A, z) = y. Since (x, 0) ≻ (y, 0), c(A ∪ (x}, z) = x and

(x, 0) ≻ (z, 1). Thus, we can shorten the cycle.

b. Assume that the cycle contains a consecutive segment of the type

(x, 0) ≻ (y, 0) ≻ (z, 0). By WA, the three elements are distinct.

Since (y, 0) ≻ (z, 0), there exists a set A containing y and z and

a ∈ A such that c(A, a) = y. If a 6= x, then c(A ∪ {x}, a) = x and

(x, 0) ≻ (z, 0), allowing us to shorten the cycle. If a = x (i.e., if

c(A, x) = y), then (x, 0) ≻ (y, 0) ≻ (x, 1), thus contradicting DT.

It remains to show that it is impossible for the shortest cycle to contain

a consecutive segment of the following types:

c. (x, 0) ≻ (y, 1) ≻ (z, 0) and y 6= z . If this were the case, then c({x, y, z}, y) =
x and (x, 0) ≻ (z, 0), thus allowing us to shorten the cycle.

d. (x, 0) ≻ (y, 1) ≻ (y, 0) ≻ (z, 1). By DT z 6= x and by definition z 6=
y. Consider c{{x, y, z}, z}. By WA and (y, 0) ≻ (z, 1) it cannot be

z. If it is x, then (x, 0) ≻ (y, 0) and we can shorten the cycle. If it

is y, then (y, 0) ≻ (x, 0) and we can shorten the cycle.

We can conclude that ≻ does not have a cycle.

Now, let v be a utility function representing ≻∗. Define u(x) = v(x, 0)

and β(x) = v(x, 1)− v(x, 0) to obtain the result.

1. If c(A, a) = a, then (a, 1) ≻ (x, 0) for all x ∈ A− {a) and thus u(a) +

β(a) > u(x) for all x, that is, c(A, a) = DBPu,β(A, a).

2. If c(A, a) = x, then (x, 0) ≻ (a, 1) and (x, 0) ≻ (y, 0) for all y ∈
A− {a, x} and therefore u(x) > u(a) + β(a) and u(x) > u(y) for

all y ∈ A− {a, x}. Thus, c(A, a) = DBPu,β(A, a).

Comments on the Significance of Axiomatization

1. There is something aesthetically attractive about the axiomatiza-

tion, however, I doubt that such an axiomatization is necessary in
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order for an economist to develop a model in which the procedure

will appear. As with other conventions in the profession, this prac-

tice appears to be a barrier to entry that places an unnecessary

burden on researchers.

2. A necessary condition for an axiomatization of this type to be of

importance is (in my opinion) that we can come up with exam-

ples of sensible procedures of choice that satisfy the axioms and

are not specified explicitly in the language of the procedure we are

axiomatizing. Can you find such a procedure for the above axiom-

atization? I am unable to. Indeed, many of the axiomatizations in

this field lack such examples, and thus, in spite of their aesthetic

value (and although I have done some axiomatizations myself), I

find them to be futile exercises.
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Problem 1. (Easy)
The following are descriptions of decision-making procedures. Discuss whether

the procedures can be described in the framework of the choice model dis-

cussed in this lecture and whether they are compatible with the “rational

man” paradigm.

a. The decision maker chooses an alternative in order to maximize another

person’s suffering.

b. The decision maker asks his two children to rank the alternatives and

then chooses the alternative that is the best on average.

c. The decision maker has an ideal point in mind and chooses the alternative

that is closest to it.

d. The decision maker looks for the alternative that appears most often in

the choice set.

e. The decision maker has an ordering in mind and always chooses the

median element.

Problem 2. (Moderately difficult)

A choice correspondence C satisfies the path independence property if for every

set A and a partition of A into A1 and A2 (A1, A2 6= ∅, A = A1 ∪A2 and

A1 ∩A2 = ∅) we have C(A) = C(C(A1) ∪ C(A2)). (Of course this definition

applies also for choice functions).

a. Show that the rational decision maker satisfies path independence.

b. Find examples of choice procedures that do not satisfy this property.

c. Show that if a choice function satisfies path independence, then it satis-

fies condition alpha.

d. Find an example of a choice correspondence satisfying path independence

that cannot be rationalized.

Problem 3. (Easy)
Let X be a finite set. Check whether the following three choice correspon-

dences satisfy WA:

C(A) = {x ∈ A| the number of y ∈ X for which V (x) ≥ V (y) is at least

|X|/2}, and if the set is empty, then C(A) = A.

D(A) = {x ∈ A| the number of y ∈ A for which V (x) ≥ V (y) is at least

|A|/2}.
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E(A) = {x ∈ A|x ≻1 y for every y ∈ A or x ≻2 y for every y ∈ A} where

≻1 and ≻2 are two orderings over X.

Problem 4. (Moderately difficult)

Consider the following choice procedure: A decision maker has a strict ordering

% over the set X and assigns to each x ∈ X a natural number class(x) to be

interpreted as the “class” of x. Given a choice problem A, he chooses the best

element in A from those belonging to the most common class in A (i.e., the

class that appears in A most often). If there is more than one most common

class, he picks the best element from the members of A that belong to a most

common class with the highest class number.

a. Is the procedure consistent with the “rational man” paradigm?

b. Define the relation: xPy if x is chosen from {x, y}. Show that the

relation P is a strict ordering (complete, asymmetric, and transitive).

Problem 5. (Moderately difficult. Based on Kalai, Rubinstein, and Spiegler

(2002).)

Consider the following two choice procedures. Explain the procedures and try

to persuade a skeptic that they “make sense”. Determine for each of them

whether they are consistent with the rational man model.

a. The primitives of the procedure are two numerical (one-to-one) functions

u and v defined on X and a number v∗. For any given choice problem A,

let a∗ ∈ A be the maximizer of u over A and let b∗ be the maximizer of v

over A. The decision maker chooses a∗ if v(a∗) ≥ v∗ and b∗ if v(a∗) < v∗.

b. The primitives of the procedure are two numerical (one-to-one) functions

u and v defined on X and a number u∗. For any given choice problem

A, the decision maker chooses the element a∗ ∈ A that maximizes u if

u(a∗) ≥ u∗, and the element b∗ ∈ A that maximizes v if u(a∗) < u∗.

Problem 6. (Moderately difficult. Based on Rubinstein and Salant (2006a).)

The standard economic choice model assumes that choice is made from a set.

Let us construct a model where the choice is assumed to be made from a list.

(Note that the list < a, b > is distinct from < a, a, b > and < b, a >.)

Let X be a finite grand set. A list is a nonempty finite vector of elements

in X. In this problem, consider a choice function C to be a function that

assigns a single element from {a1, . . . , aK} to each vector L =< a1, . . . , aK >.

Let < L1, . . . , Lm > be the concatenation of the m lists L1, . . . , Lm (note that

if the length of Li is ki, the length of the concatenation is Σi=1,...,mki). We

say that L′ extends the list L if there is a list M such that L′ =< L,M >.

We say that a choice function C satisfies Property I if for all L1, . . . , Lm,

C(< L1, . . . , Lm >) = C(< C(L1), . . . , C(Lm) >).
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a. Interpret Property I . Give two examples of choice functions that satisfy

I and two examples that do not.

b. Define formally the following two properties of a choice function:

Order Invariance: A change in the order of the elements in the list does

not alter the choice.

Duplication Invariance: Deleting an element that appears elsewhere in

the list does not change the choice.

Show that Duplication Invariance implies Order Invariance.

c. Characterize the choice functions that satisfy Duplication Invariance,

and property I .

Assume now that at the back of the decision maker’s mind there is a value

function u defined on the set X (such that u(x) 6= u(y) for all x 6= y). For any

choice function C, define vC(L) = u(C(L)).

We say that C accommodates a longer list if, whenever L′ extends L,

vC(L
′) ≥ vC(L) and there is a pair of lists L′ and L such that L′ extends

L and vC(L
′) > vC(L).

d. Give two interesting examples of choice functions that accommodate a

longer list.

e. Give two interesting examples of choice functions that satisfy property

I but do not accommodate a longer list.

Problem 7. (Difficult. Based on Rubinstein and Salant (2006a).)

Let X be a finite set. We say that a choice function c is lexicographically ra-

tional if there exists a profile of preference relations {≻a}a∈X (not necessarily

distinct) and an ordering O over X such that for every set A ⊂ X, c(A) is the

≻a-maximal element in A, where a is the O-maximal element in A.

A decision maker who follows this procedure is attracted by the most no-

table element in the set (as described by O). If a is that element, he applies

the ordering ≻a and chooses the ≻a-best element in the set.

We say that c satisfies the reference point property if, for every set A, there

exists a ∈ A such that if a ∈ A′′ ⊂ A′ ⊂ A and c(A′) ∈ A′′, then c(A′′) = c(A′).

a. Show that a choice function c is lexicographically rational if and only if

it satisfies the reference point property.

b. Try to come up with a procedure satisfying the reference point axiom

that is not stated explicitly in the language of the lexicographically ra-

tional choice function (no idea about the answer).

Problem 8. (Difficult. Based on Cherepanov, Fedderson, and Sandroni (2008).)

Consider a decision maker who has in mind a set of rationales and an asym-

metric complete relation over a finite set X. Given A ⊂ X, he chooses the

best alternative in that he can rationalize.
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Formally, we say that a choice function c is rationalized if there is an asym-

metric complete relation ≻ (not necessarily transitive!) and a set of partial

orderings (asymmetric and transitive) {≻k}k=1...K (called rationales) such

that c(A) is the ≻ -maximal alternative from among those alternatives found

to be maximal in A by at least one rationale (given a binary relation ≻ we say

that x is ≻ -maximal in A if x ≻ y for all y ∈ A). Assume that the relations

are such that the procedure always leads to a solution.

We say that a choice function c satisfies The Weak Weak Axiom of Re-

vealed Preference (WWARP) if for all {x, y} ⊂ B1 ⊂ B2 (x 6= y) and c{x, y} =

c(B2) = x, then c(B1) 6= y.

a. Show that a choice function satisfies WWARP if and only if it is ratio-

nalized. For the proof, construct rationales, one for each choice problem.

b. What do you think about the axiomatization?

Consider the “warm-glow” procedure: The decision maker has two orderings

in mind: one moral %M and one selfish %S. He chooses the most moral

alternative m as long as he doesn’t “lose” too much by not choosing the most

selfish alternative. Formally, for every alternative s there is some alternative

l(s) such that if the most selfish alternative is s, then he is willing to choose

m as long as m %S l(s). If l(s) ≻S m, he chooses s.

The function l satisfies (i)s %S l(s) and (ii)s %S s′ implies l(s) %S l(s′).

c. Show that WWARP is satisfied by this procedure.

d. Show directly that the “warm-glow” procedure is rationalized (in the

sense of the definition in this problem).
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Consumer Preferences

The Consumer’s World

Up to this point we have dealt with the basic economic model of rational

choice. In this lecture we will discuss a special case of the rational man

paradigm: the consumer. A consumer is an economic agent who makes

choices between available combinations of commodities. As usual, I have

a certain image in mind: a lady goes to the marketplace with money in

hand and comes back with a bundle of commodities.

As before, we will begin with a discussion of consumer preferences and

utility and only then discuss consumer choice. Our first step is to move

from an abstract treatment of the set X to a more detailed structure.

We takeX to be RK
+ = {x = (x1, . . . , xK)| for all k, xk ≥ 0}. An element

of X is called a bundle. A bundle x is interpreted as a combination of

K commodities where xk is the quantity of commodity k.

Given this special interpretation of X , we impose some conditions on

the preferences in addition to those assumed for preferences in general.

The additional three conditions use the structure of the space X : mono-

tonicity uses the orderings on the axis (the ability to compare bundles

by the amount of any particular commodity); continuity uses the topo-

logical structure (the ability to talk about closeness); convexity uses the

algebraic structure (the ability to speak of the sum of two bundles and

the multiplication of a bundle by a scalar). It will be useful to demon-

strate properties of the consumer’s preferences by referring to the map

of indifference curves, where an indifference curve is a set of the type

{y|y ∼ x} for some bundle x (see problem 1 in Problem Set 1).

Monotonicity

Monotonicity is a property that gives commodities the meaning of “goods”.

It is the condition that more is better. Increasing the amount of some

commodities cannot hurt, and increasing the amount of all commodities

is strictly desired. Formally,
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Monotonicity

The relation % satisfies monotonicity at the bundle y if for all x ∈ X ,

if xk ≥ yk for all k, then x % y, and

if xk > yk for all k, then x ≻ y.

The relation % satisfies monotonicity if it satisfies monotonicity at every

y ∈ X .

In some cases, we will further assume that the consumer is strictly

happier with any additional quantity of any commodity.

Strong Monotonicity

The relation % satisfies strong monotonicity at the bundle y if for all

x ∈ X

if xk ≥ yk for all k and x 6= y, then x ≻ y.

The relation % satisfies strong monotonicity if it satisfies strong mono-

tonicity at every y ∈ X .

Of course, in the case that preferences are represented by a utility

function, preferences satisfying monotonicity (or strong monotonicity)

are represented by monotonic increasing (or strong monotonic increas-

ing) utility functions.

Examples:

• The preferences represented by min{x1, x2} satisfy monotonicity

but not strong monotonicity.

• The preferences represented by x1 + x2 satisfy strong monoton-

icity.

• Denote by d(x, y) =
√

∑

(xk − yk)2 the standard distance func-

tion on the Euclidean space. A property related to monotonicity

that is sometimes used in the literature is called nonsatiation. A

preference is said to be nonsatiated at the bundle y if for any ε > 0

there is some x ∈ X that is less than ε away from y so that x ≻ y.

The preference relation represented by u(x) = −d(x, x∗) does not
satisfy monotonicity but is nonsatiated at every bundle except x∗.

Every preference relation that is monotonic at a bundle y is also

nonsatiated at y, but the reverse is, of course, not true.
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Figure 4.1
Construction of the utility function.

Continuity

We will use the topological structure of RK
+ (with the standard distance

function d, defined above) to apply the definition of continuity discussed

in Lecture 2. We say that the preferences % satisfy continuity if for all

a, b ∈ X , a ≻ b implies that there is an ε > 0 such that x ≻ y for any x

and y such that d(x, a) < ε and d(y, b) < ε.

Existence of a Utility Representation

Debreu’s theorem guarantees that any continuous preference relation is

represented by some (continuous) utility function. If we assume mono-

tonicity as well, we then have a simple and elegant proof:

Claim:

Any consumer preference relation satisfying monotonicity and continuity

can be represented by a utility function.

Proof:

Let us first show that for every bundle x, there is a bundle on the main

diagonal (having equal quantities of all commodities), such that the con-

sumer is indifferent between that bundle and the bundle x. (See fig. 4.1.)

The bundle x is at least as good as the bundle 0 = (0, . . . , 0). On the
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other hand, the bundle M = (maxk{xk}, . . . ,maxk{xk}) is at least as

good as x. Both 0 and M are on the main diagonal. By continuity,

there is a bundle on the main diagonal that is indifferent to x (see Prob-

lem Set 2). By monotonicity this bundle is unique; we will denote it by

(t(x), . . . , t(x)). Let u(x) = t(x). To see that the function u represents

the preferences, note that by transitivity of the preferences x % y iff

(t(x), . . . , t(x)) % (t(y), . . . , t(y)), and by monotonicity this is true iff

t(x) ≥ t(y).

Convexity

Consider, for example, a scenario in which the alternatives are candi-

dates for some political post. The candidates are positioned in a left-

right array as follows:

—–a—-b——c——d——-e—-.

Under normal circumstances, if we know that a voter prefers b to d,

then we tend to conclude that:

• he prefers c to d, but not necessarily a to d (the candidate a may

be too extreme).

• he prefers d to e (namely, we do not find it plausible that he views

moving both right and left as improvements upon d).

The notion of convex preferences captures two similar intuitions that

are suitable for situations where there exists a “geography” of the set of

alternatives in the sense that we can talk about one alternative being

between two others:

• If x is preferred to y, then going part of the way from y to x is

also an improvement upon y.

• If z is between x and y, then it is impossible that both x and y

are better than z.

Convexity is appropriate for a situation in which the argument “if a

move is an improvement, so is any move part of the way” is legitimate,

whereas the argument “if a move is harmful, then so is a move part of

the way” is not.

Following are two formalizations of these two intuitions.

Convexity 1:

The preference relation % satisfies convexity 1 if x % y and α ∈ (0, 1)

implies that αx + (1− α)y % y (fig. 4.2).
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Figure 4.2
Two definitions of convexity.

Convexity 2:

The preference relation % satisfies convexity 2 if for all x, y, and z such

that z = αx+ (1− α)y for some α ∈ (0, 1), z % x or z % y.

Another definition of convexity, which uses the notion of a convex set,

follows. Recall that a set A is convex if for all a, b ∈ A and for all

λ ∈ [0, 1], λa+ (1 − λ)b ∈ A.

Convexity 3:

The preference relation % satisfies convexity 3 if for all y the set

AsGoodAs(y) = {z ∈ X |z % y} is convex (fig. 4.2).

This captures the intuition that if both z1 and z2 are better than y,

then the average of z1 and z2 is definitely better than y.

We proceed to show that the three definitions are equivalent.

Claim:

If the preference relation % satisfies one of the conditions convexity 1,

convexity 2, or convexity 3, it satisfies the other two.

Proof:

Assume that % satisfies convexity 1 and let x, y, z ∈ X such that z =

αx+ (1− α)y for some α ∈ (0, 1). Without loss of generality, assume

x % y. By convexity 1 we have z % y. Thus, % satisfies convexity 2.
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Assume that % satisfies convexity 2 and let z, z′ ∈ AsGoodAs(y).

Then, by convexity 2, αz + (1 − α)z′ is at least as good as either z

or z′ (or both). In any case, by transitivity, αz + (1− α)z′ % y, that is,

αz + (1− α)z′ ∈ AsGoodAs(y), and thus % satisfies convexity 3.

Assume that % satisfies convexity 3. If x % y, then both x and y are

in AsGoodAs(y) and thus αx + (1− α)y ∈ AsGoodAs(y), which means

that αx + (1− α)y % y. Thus, % satisfies convexity 1.

Convexity also has a stronger version:

Strict Convexity

The preference relation % satisfies strict convexity if a % y, b % y, a 6= b,

and λ ∈ (0, 1) imply that λa+ (1− λ)b ≻ y.

Examples:

The preferences represented by
√
x1 +

√
x2 satisfy strict convexity. The

preference relations represented by min{x1, x2} and x1 + x2 satisfy con-

vexity but not strict convexity. The lexicographic preferences satisfy

strict convexity. The preferences represented by x21 + x22 do not satisfy

convexity.

We now look at the properties of the utility representations of convex

preferences.

Quasi-Concavity

A function u is quasi-concave if for all y the set {x|u(x) ≥ u(y)} is con-

vex.

The notion of quasi-concavity is similar to concavity in that for any

function f that is either quasi-concave or concave, the set {x|f(x) ≥
f(y)} is convex for any y. (Recall that u is concave if for all x, y, and

λ ∈ [0, 1] we have u(λx+ (1− λ)y) ≥ λu(x) + (1− λ)u(y).)

Obviously, if a preference relation is represented by a utility function,

then it is convex iff the utility function is quasi-concave. However, the

convexity of % does not imply that a utility function representing %

is concave. Furthermore, there are examples of continuous and convex

preferences that do not have a utility representation by any concave

function. Consider the relation on the set R defined by x % y if x ≥ y

or y < 0.
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Figure 4.3
Homothetic preferences.

Special Classes of Preferences

Usually in economics, we discuss a consumer with some variations of

monotonicity, continuity, and convexity. We will refer to such a con-

sumer as a “classical consumer”. Often, we assume that the consumer

possesses preferences belonging to a narrower class, characterized by ad-

ditional special properties. Following are some examples of “popular”

classes of preference relations discussed in the literature.

The Class of Homothetic Preferences

A preference % is homothetic if x % y implies αx % αy for all α ≥ 0.

(See fig. 4.3.)

The preferences represented by Πk=1,...,Kx
βk

k , where βk is positive,

are homothetic. More generally, any preference relation represented by

a utility function u that is homogeneous of any degree λ (that is u(αx) =

αλu(x)) is homothetic. This is because x % y iff u(x) ≥ u(y) iff αλu(x) ≥
αλu(y) iff u(αx) ≥ u(αy) iff αx % αy. Lexicographic preferences are also

homothetic.

Claim:

Any homothetic, continuous, and monotonic preference relation on the

commodity bundle space can be represented by a continuous utility func-

tion that is homogeneous of degree one.
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Figure 4.4
Quasi-linear (in good 1) preferences.

Proof:

We have already proved that any bundle x has a unique bundle (t(x),

. . . , t(x)) on the main diagonal so that x ∼ (t(x), . . . , t(x)), and that the

function u(x) = t(x) represents %. By the assumption that the prefer-

ences are homothetic, αx ∼ (αt(x), . . . , αt(x)) and thus u(αx) = αt(x) =

αu(x). The proof that u is continuous is left as an exercise.

The Class of Quasi-Linear Preferences

A preference is quasi-linear in commodity 1 (referred to as the “nu-

meraire”) if x % y implies (x+ εe1) % (y + εe1) (where e1 = (1, 0, . . . , 0)

and ε > 0). (See fig. 4.4.)

The indifference curves of preferences that are quasi-linear in com-

modity 1 are parallel to each other (relative to the first commodity

axis). That is, if I is an indifference curve, then the set Iε = {x| there
exists y ∈ I such that x = y + (ε, 0, . . . , 0)} is an indifference curve as

well. Any preference relation represented by x1 + v(x2, . . . , xK) for some

function v is quasi-linear in commodity 1. Furthermore:

Claim:

Any continuous preference relation satisfying strong monotonicity (at

least in commodity 1) and quasi-linearity in commodity 1 can be repre-

sented by a utility function of the form x1 + v(x2, . . . , xK).

For the proof we need the following lemma:
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Lemma:

Let % be a preference relation that is monotonic, continuous, quasi-

linear, and strongly monotonic in commodity 1. Then, for every

(x2, . . . , xK) there is a number v(x2, . . . , xK) such that (0, x2, . . . , xK) ∼
(v(x2, . . . , xK), 0, . . . , 0).

Proof of the Lemma

The general proof is left to the problem set, but here let’s prove the case

of K = 2.

Let T = {t | (0, t) ≻ (x1, 0) for all x1}. Assume T 6= ∅ and denote

m = inf T . We distinguish between two cases:

(i) m ∈ T . Then m > 0 and (1,m) ≻ (0,m). By continuity, there

is an ǫ > 0 such that (1,m− ǫ) ≻ (0,m), and thus (1,m− ǫ) ≻ (x1 +

1, 0) for all x1. Since m = inf T , then there exists an x∗1 such that

(x∗1, 0) % (0,m− ǫ), and by the quasi-linearity in commodity 1, (x∗1 +

1, 0) % (1,m− ǫ), a contradiction.

(ii) m /∈ T . Then (x∗1, 0) ∼ (0,m) for some x∗1. By the strong mono-

tonicity of commodity 1, (x∗1 + 1, 0) ≻ (0,m). By continuity, there is an

ǫ > 0 such that (x∗1 + 1, 0) ≻ (0, x2), for any m+ ǫ ≥ x2 ≥ m, contra-

dicting m = inf T .

Consequently, T = ∅, and for every x2 there is an x1 such that (x1, 0)%

(0, x2) % (0, 0), and thus by continuity (v(x2), 0) ∼ (0, x2) for some num-

ber v(x2). This completes the proof of the lemma.

Note that the above claim is incorrect without the quasi-linearity as-

sumption. The utility function u(x1, x2) = x2 − 1/(x1 + 1) represents

strongly monotonic and continuous preferences for which m = 1.

Proof of the Claim

By the lemma, for every (x2, . . . , xK) there is a number v(x2, . . . , xK)

so that (v(x2, . . . , xK), 0, . . . , 0) ∼ (0, x2, . . . , xK). By the quasi-linearity

in commodity 1, (x1 + v(x2, . . . , xK), 0, . . . , 0) ∼ (x1, x2, . . . , xK), and

thus by strong monotonicity in the first commodity, the function x1 +

v(x2, . . . , xK) represents %.

Thus, we used the quasi linearity for two purposes. First, we showed

that for every bundle x there is a quantity of the first good u(x) such

that x ∼ (u(x), 0, . . . , 0). By the strong monotonicity in the first com-

modity this allows us to use u(x) as a utility function representing the

consumer’s preferences. Second, the quasi linearity is used to show that

this function u has the structure of x1 + v(x2, . . . , xK).
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The above claim shows that any continuous preference relation that

is quasi-linear in the first commodity is consistent with a procedure

according to which the consumer asks himself what is the value (in

terms of the first commodity) of the combination of goods 2 . . . k, and

that evaluation is independent of the quantity of the first commodity.

Claim:

Any continuous preference relation % on R
K
+ satisfying strong mono-

tonicity and quasi-linearity in all commodities can be represented by a

utility function of the form
∑K

k=1 αkxk.

Here I present two proofs for the case of K = 2 only. The general

proof for any K is left for the problem set.

Proof 1:

Using the previous claim, we have that the preference relation over the

bundle space is represented by the function u(x1, x2) = x1 + v(x2) where

(0, x2) ∼ (v(x2), 0). Let (0, 1) ∼ (c, 0).

It is sufficient to show that v(x2) = cx2.

Assume that for some x2 we have v(x2) > cx2 (a similar argument

applies for the case v(x2) < cx2). Choose two integers S and T such

that v(x2)/c > S/T > x2.

Let us note that if (a, 0) ∼ (0, b), then all points (ka, lb) for which

k + l = n (k, l and n are non-negative integers) reside on the same indif-

ference curve. The proof is by induction on n. By definition it is true for

n = 1. The inductive assumption is that ((n− 1)a, 0) ∼ ((n− 2)a, b) ∼
. . . ∼ (a, (n− 2)b) ∼ (0, (n− 1)b). By the quasi-linearity in commodity

1, (na, 0) ∼ ((n− 1)a, b) ∼ . . . ∼ (a, (n− 1)b) and by the quasi-linearity

in commodity 2 also (a, (n− 1)b) ∼ (0, nb).

Thus, (0, T x2) ∼ (Tv(x2), 0) and (0, S) ∼ (Sc, 0). However, since

S > Tx2, we have (0, T x2) ≺ (0, S), and since Tv(x2) > Sc, we have

(Tv(x2), 0) ≻ (Sc, 0), which is a contradiction.

Proof 2:

We will see that v(a+ b) = v(a) + v(b) for all a and b. By definition

of v, (0, a) ∼ (v(a), 0) and (0, b) ∼ (v(b), 0). By the quasi-linearity in

good 1, (v(b), a) ∼ (v(a) + v(b), 0) and by the quasi-linearity of good 2,

(0, a+ b) ∼ (v(b), a). Thus, (0, a+ b) ∼ (v(a) + v(b), 0) and v(a+ b) =

v(a) + v(b).
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Let v(1) = c. Then for any natural numbersm and n we have v(m/n) =

cm/n. Since v(0) = 0 and v is an increasing function, it must be that

v(x) = cx for all x.

(The equation v(a+ b) = v(a) + v(b) is called Cauchy’s functional equa-

tion, and without further assumptions, like monotonicity, there are non-

linear functions that satisfy it.)

Differentiable Preferences (and the Use of Derivatives in
Economic Theory)

We often assume in microeconomics that utility functions are differ-

entiable and thus use standard calculus to analyze the consumer. In this

course I (almost) avoid calculus. This is part of a deliberate attempt to

steer you away from a “mechanistic” approach to economic theory.

Can we give the differentiability of a utility function an “economic”

interpretation? In this section a nonconventional definition of differen-

tiable preferences is introduced. Basically, differentiability of preferences

will be taken as the requirement that the directions for improvement can

be calculated by “personal local prices”.

Let us confine ourselves to preferences satisfying monotonicity and

convexity. For any vector x we say that the vector z ∈ R
K is an improve-

ment if x+ z ≻ x. We say that d ∈ R
K is an improvement direction at

x if any small move from x in the direction of d is an improvement,

that is, there is some λ∗ such that for all λ∗ > λ > 0 the vector λd is an

improvement.

Let D(x) be the set of all improvement directions at x. Note that:

1. If d ∈ D(x), then λd ∈ D(x).

2. If the preferences are strictly convex, then any improvement is also

an improvement direction.

3. If the preferences satisfy strong monotonicity, continuity, and con-

vexity, then any improvement is also an improvement direction.

To see it, assume x+ d ≻ x. Take λ∗ = 1. For any 1 > λ > 0

we will show that x+ λd = λ(x + d) + (1− λ)x ≻ x. By con-

tinuity, there is a vector z ≻ x with zk ≤ (x+ d)k for all k and

with strict inequality for every k for which (x + d)k > 0. For all k

we have (x+ λd)k ≥ (λz + (1− λ)x)k and x+ λd 6= λz + (1− λ)x.

By strong monotonicity, x+ λd ≻ λz + (1 − λ)x. Finally, by con-

vexity, λz + (1− λ)x % x. Thus, x+ λd ≻ x.

4. Given monotonicity, if dk > 0 for all k, then d ∈ D(x).
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Figure 4.5
Differentiable preferences.

We say that a consumer’s preferences% are differentiable at the bundle

x if there is a vector v(x) of K nonnegative numbers so that D(x) =

{d ∈ R
K |dv(x) > 0} (dv(x) is the inner product of the two vectors d

and v(x)). The vector of numbers (v1(x), . . . , vK(x)) is interpreted as

the vector of “subjective values” of the commodities. Starting from x,

any small move in a direction that is evaluated by this vector as positive

is an improvement. We say that % is differentiable if it is differentiable

at any bundle x (see fig. 4.5).

Examples:

• The preferences represented by 2x1 + 3x2 are differentiable. At

each point x, v(x) = (2, 3).

• The preferences represented by min{x1, . . . , xK} are differentiable

only at points where there is a unique commodity k for which xk <

xl for all l 6= k (verify). For example, at x = (5, 3, 8, 6), v(x) =

(0, 1, 0, 0).

Let us see now that when the preferences % are represented by a util-

ity function u that is differentiable with positive partial derivative and

quasi-concave, the preferences are differentiable. Most examples of util-

ity functions that are used in the economic literature are differentiable.
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Let us add some notation. Given a differentiable utility function u, let

du/dxk(x) be the partial derivative of u with respect to the commodity

k at point x. Let ∇u(x), the gradient, be the vector of these partial

derivatives. Recall that the meaning of differentiability of u at a point

x is that the rate of change of u when moving from x at any direction d

is d · ∇u(x). That is, limǫ→0
u(x+ǫd)−u(x)

ǫ = d · ∇u(x).
Now, let v(x) =∇u(x).Wewill show thatD(x) = {d ∈ R

K | dv(x)> 0}.
We first show that D(x) ⊆ {d ∈ R

K | dv(x) > 0}. By contradiction,

let d ∈ D(x) where d · v(x) ≤ 0. Without loss of generality, let x+ d ≻ x,

since otherwise d can be rescaled. By continuity, there is d′ 6= d, d′k ≤ dk
for all k, such that x+ d′ ≻ x. By convexity and strong monotonicity

of the preferences (which followed from the quasi-concavity and posi-

tive partial derivatives of u) d′ ∈ D(x). However, d′ · v(x) < 0 and thus

by the differentiability of u, for δ small enough, u(x+ δd′) < u(x). A

contradiction.

The other direction, D(x) ⊇ {d ∈ R
K | dv(x) > 0}, follows immedi-

ately from the differentiability of u since dv(x) > 0 implies u(x+ ǫd) >

u(x) for ǫ small enough. That is, d ∈ D(x).

Bibliographic Notes

The material in this lecture up to the discussion of differentiability is

fairly standard and closely parallels that found in Arrow and Hahn

(1971).
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Problem 1. (Easy)
Consider the preference relations on the interval [0, 1] that are continuous.

What can you say about those preferences which are also strictly convex?

Problem 2. (Standard)
Show that if the preferences % satisfy continuity and monotonicity, then the

function u(x), defined by x ∼ (u(x), . . . , u(x)), is continuous.

Problem 3. (Standard)
In a world with two commodities, consider the following condition:

The preference relation % satisfies convexity 4 if for all x and ε > 0

(x1, x2) ∼ (x1 − ε, x2 + δ1) ∼ (x1 − 2ε, x2 + δ1 + δ2) implies δ2 ≥ δ1.

Interpret convexity 4 and show that for strong monotonic and continuous

preferences, it is equivalent to the convexity of the preference relation.

Problem 4. (Standard)
Complete the proof (for all K) of the claim that any continuous preference

relation satisfying strong monotonicity and quasi-linearity in all commodities

can be represented by a utility function of the form
∑K

k=1 αkxk where αk > 0

for all k.

Problem 5. (Difficult)

Show that for any consumer’s preference relation % satisfying continuity,

monotonicity, strong monotonicity with respect to commodity 1, and quasi-

linearity with respect to commodity 1, there exists a number v(x) such that

x ∼ (v(x), 0, . . . , 0) for every vector x.

Problem 6. (Easy)
We say that a preference relation satisfies separability if it can be represented

by an additive utility function, that is, a function of the type u(x) = Σkvk(xk).

a. Show that such preferences satisfy condition S: for any subset of com-

modities J , and for any bundles a, b, c, d, we have:

(aJ , c−J ) % (bJ , c−J ) ⇔ (aJ , d−J) % (bJ , d−J) ,
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where (xJ , y−J) is the vector that takes the components of x for any

k ∈ J and takes the components of y for any k /∈ J .

b. Show that for K = 2 such preferences satisfy the “Hexagon-condition”:

If (a, b) % (c, d) and (c, e) % (f, b), then (a, e) % (f, d).

c. Give an example of a continuous preference relation that satisfies condi-

tion S and does not satisfy separability.

Problem 7. (Difficult)

a. Show that the preferences represented by the utility functionmin{x1, . . . , xK}
are not differentiable.

b. Check the differentiability of the lexicographic preferences in R
2.

c. Assume that % is monotonic, convex, and differentiable such that for

every x we have D(x) = {d|(x+ d) ≻ x}. What can you say about %?

d. Assume that % is a monotonic, convex, and differentiable preference

relation. Let E(x) = {d ∈ R
K | there exists ε∗ > 0 such that x+ εd ≺ x

for all ε ≤ ε∗}. Show that {−d| d ∈ D(x)} ⊆ E(x) but not necessarily

{−d| d ∈ D(x)} = E(x).

e. Consider the consumer’s preferences in a world with two commodities

defined by:

u(x1, x2) =

{

x1 + x2 if x1 + x2 ≤ 1

1 + 2x1 + x2 if x1 + x2 > 1
.

Show that these preferences are not continuous but nevertheless are dif-

ferentiable according to our definition.



LECTURE 5

Demand: Consumer Choice

The Rational Consumer’s Choice from a Budget Set

In Lecture 4 we discussed the consumer’s preferences. In this lecture we

adopt the “rational man” paradigm in discussing consumer choice.

Given a consumer’s preference relation % on X = R
K
+ , we can talk

about his choice from an arbitrary set of bundles. However, since we

are laying the foundation for “price models”, we are interested in the

consumer’s choice in a particular class of choice problems called budget

sets. A budget set is a set of bundles that can be represented asB(p, w) =

{x ∈ X |px ≤ w}, where p is a vector of positive numbers (interpreted

as prices) and w is a positive number (interpreted as the consumer’s

wealth).

Obviously, any set B(p, w) is compact (it is closed since it is defined

by weak inequalities, and bounded since for any x ∈ B(p, w) and for all

k, 0 ≤ xk ≤ w/pk). It is also convex since if x, y ∈ B(p, w), then px ≤ w,

py ≤ w, xk ≥ 0, and yk ≥ 0 for all k. Thus, for all α ∈ [0, 1], p[αx+ (1−
α)y] = αpx+ (1− α)py ≤ w and αxk + (1− α)yk ≥ 0 for all k, that is,

αx+ (1− α)y ∈ B(p, w).

We will refer to the problem of finding the %-best bundle in B(p, w)

as the consumer problem.

Claim:

If % is a continuous relation, then all consumer problems have a solution.

Proof:

If% is continuous, then it can be represented by a continuous utility func-

tion u. By the definition of the term “utility representation”, finding an

% optimal bundle is equivalent to solving the problem maxx∈B(p,w) u(x).

Because the budget set is compact and u is continuous, the problem has

a solution.
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To emphasize that a utility representation is not necessary for the cur-

rent analysis and that we could make do with the concept of preferences,

let us go through a direct proof of the previous claim, that avoids the

notion of utility.

Direct Proof:

For any x ∈ B(p, w), define the set Inferior(x) = {y ∈ X |x ≻ y}. By

the continuity of the preferences, every such set is open. Assume there

is no solution to the consumer problem of maximizing % on B(p, w).

Then, every z ∈ B(p, w) is a member of some set Inferior(x), that is, the

collection of sets {Inferior(x) | x ∈ B(p, w)} covers B(p, w). A collection

of open sets that covers a compact set has a finite subset of sets that

covers it. Thus, there is a finite collection Inferior(x1 ), . . . , Inferior(xn)

that covers B(p, w). Letting xj be the optimal bundle within the finite

set {x1 , . . . , xn}, we obtain that xj is an optimal bundle in B(p, w), a

contradiction.

Claim:

1. If % is convex, then the set of solutions for a choice from B(p, w)

(or any other convex set) is convex.

2. If % is strictly convex, then every consumer problem has at most

one solution.

Proof:

1. Assume that both x and y maximize % given B(p, w). By the con-

vexity of the budget set B(p, w), we have αx+ (1− α)y ∈ B(p, w),

and by the convexity of the preferences, αx+ (1 − α)y % x % z

for all z ∈ B(p, w). Thus, αx+ (1− α)y is also a solution to the

consumer problem.

2. Assume that both x and y (where x 6= y) are solutions to the con-

sumer problemB(p, w). Then x ∼ y (both are solutions to the same

maximization problem) and αx + (1 − α)y ∈ B(p, w) (the budget

set is convex). By the strict convexity of %, αx+ (1 − α)y ≻ x,

which is a contradiction of x being a maximal bundle in B(p, w).
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(a) (b)

Figure 5.1
(a) x∗ is a solution to the consumer problem B(p,w). (b) x∗ is not a solution
to the consumer problem B(p,w).

The Consumer Problem with Differentiable Preferences

When the preferences are differentiable, we are provided with a “useful”

condition for characterizing the optimal solution: the “value per dollar”

at the point x∗ of the k’th commodity (which is consumed) must be as

large as the “value per dollar” of any other commodity.

Claim:

Assume that the consumer’s preferences are differentiable with v1(x
∗),

. . . , vK(x∗) the “subjective value numbers” (see the definition of differ-

entiable preferences in Lecture 4). If x∗ is an optimal bundle in the

consumer problem and k is a consumed commodity (i.e., x∗k > 0), then

it must be that vk(x
∗)/pk ≥ vj(x

∗)/pj for all other j.

Proof:

Assume that x∗ is a solution to the consumer problem B(p, w) and that

x∗k > 0 and vj(x
∗)/pj > vk(x

∗)/pk (see fig. 5.1). A “move” in the di-

rection of reducing the consumption of the k’th commodity by 1 and

increasing the consumption of the j’th commodity by pk/pj is an im-

provement since vj(x
∗)pk/pj − vk(x

∗) > 0. As x∗k > 0, we can find ε > 0

small enough such that decreasing k’s quantity by ε and increasing j’s

quantity by εpk/pj is feasible. This brings the consumer to a strictly

better bundle, contradicting the assumption that x∗ is a solution to the

consumer problem.
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Conclusion:

If x∗ is a solution to the consumer problem B(p, w) and both x∗k > 0

and x∗j > 0, then the ratio vk(x
∗)/vj(x

∗) must be equal to the price

ratio pk/pj.

From the above you can derive the “classic” necessary conditions on

the consumer’s maximization when the preferences are represented by a

differentiable utility function u, with positive partial derivatives, using

the equality vk(x
∗) = ∂u/∂xk(x

∗).

In order to establish sufficient conditions for maximization, we require

also that the preferences be convex.

Claim:

If % is strongly monotonic, convex, continuous, and differentiable, and

if at x∗

• px∗ = w,

• for all k such that x∗k > 0, and for any commodity j, vk(x
∗)/pk ≥

vj(x
∗)/pj,

then x∗ is a solution to the consumer problem.

Proof:

If x∗ is not a solution, then there is a bundle y such that py ≤ px∗ and

y ≻ x∗.

Let µ = vk(x
∗)/pk for all k with x∗k > 0. Now,

0 ≥ p(y − x∗) =
∑

pk(yk − x∗k) ≥
∑

vk(x
∗)(yk − x∗k)/µ

since: (1) y is feasible, (2) for a good k with x∗k > 0 we have pk =

vk(x
∗)/µ, and (3) for a good k with x∗k = 0, (yk − x∗k) ≥ 0 and pk ≥

vk(x
∗)/µ. Thus, 0 ≥ v(x∗)(y − x∗), in contradiction to (y − x∗) being

an improvement direction.

The Demand Function

We have arrived at an important stage on the way to developing a market

model in which we derive demand from preferences. Assume that the

consumer’s preferences are such that for any B(p, w), the consumer’s

problem has a unique solution. Let us denote this solution by x(p, w).

The function x(p, w) is called the demand function. The domain of the

demand function is RK+1
++ , whereas its range is RK

+ .
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Example:

Consider a consumer in a world with two commodities having the fol-

lowing lexicographic preference relation, attaching the first priority to

the sum of the quantities of the goods and the second priority to the

quantity of commodity 1:

x % y if x1 + x2 > y1 + y2 or both x1 + x2 = y1 + y2 and x1 ≥ y1.

This preference relation is strictly convex but not continuous. It in-

duces the following noncontinuous demand function:

x((p1, p2), w) =

{

(0, w/p2) if p2 < p1
(w/p1, 0) if p2 ≥ p1

.

We now turn to studying some properties of the demand function.

Claim:

x(p, w) = x(λp, λw) (i.e., the demand function is homogeneous of degree

zero).

Proof:

This follows (with no assumptions about the preference relations) from

the basic equality B(λp, λw) = B(p, w) and the assumption that the

behavior of the consumer is “a choice from a set”.

This claim should not be interpreted as implying that “uniform infla-

tion does not matter”. We assumed, rather than concluded, that choice

is made from a set independently of the way that the choice set is framed.

Our model of choice is static and the consumer is assumed not to be af-

fected in one decision from his choice in a previous decision. Inflation

will affect behavior in a model where this strong assumption is relaxed.

Claim (Walras’s Law):

If the preferences are monotonic, then any solution x to the consumer

problemB(p, w) is located on its budget curve (and, thus, px(p, w) = w).

Proof:

If not, then px<w. There is an ε > 0 such that p(x1 + ε, . . . , xK+ε)<w.

By monotonicity, (x1 + ε, . . . , xK + ε) ≻ x, thus contradicting the as-

sumption that x is optimal in B(p, w).

Claim:

If % is a continuous preference relation, then the demand function is

continuous in prices and in wealth.
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Proof:

Once again, we could use the fact that the preferences have a continu-

ous utility representation and apply a standard “maximum theorem”.

(Let f(x) be a continuous function over X . Let A be a subset of

some Euclidean space and B a function that attaches to every a in A a

compact subset of X such that its graph, {(a, x)| x ∈ B(a)}, is closed.

Then the graph of the correspondence h from A into X , defined by

h(a) = {x ∈ B(a) | f(x) ≥ f(y) for all y ∈ B(a)}, is closed.) However, I

prefer to present another direct proof, that does not use the notion of a

utility function:

Assume not. Then, there is a sequence of price and wealth vectors

(pn, wn) converging to (p∗, w∗) such that x(p∗, w∗) = x∗, and x(pn, wn)

does not converge to x∗. Thus, we can assume that (pn, wn) is a sequence

converging to (p∗, w∗) such that for all n the distance d(x(pn, wn), x∗) >

ε for some positive ε.

All numbers pnk are greater than some positive number pmin and all

numbers wn are less than some wmax. Therefore, all vectors x(pn, wn)

belong to some compact set (the hypercube of bundles with no quan-

tity above wmax/pmin), and thus, without loss of generality (choosing a

subsequence if necessary), we can assume that x(pn, wn) → y∗ for some

y∗ 6= x∗.

Since pnx(pn, wn) ≤ wn for all n, it must be that p∗y∗ ≤ w∗, that is,

y∗ ∈ B(p∗, w∗). Since x∗ is the unique solution for B(p∗, w∗), we have

x∗ ≻ y∗. By the continuity of the preferences, there are neighborhoods

Bx∗ and By∗ of x∗ and y∗ in which the strict preference is preserved.

For sufficiently large n, x(pn, wn) is in By∗ . Choose a bundle z∗ in

the neighborhood Bx∗ so that p∗z∗ < w∗. For all sufficiently large n,

pnz∗ < wn; however, z∗ ≻ x(pn, wn), which is a contradiction.

Comment:

The above proposition applies to the case in which for every budget set

there is a unique bundle maximizing the consumer’s preferences. The

maximum theorem applied to the case in which some budget set has

more than one maximizer states: if % is a continuous preference, then

the set {(x, p, w) | x % y for every y ∈ B(p, w)} is closed.

Rationalizable Demand Functions

As in the general discussion of choice, we will now examine whether

choice procedures are consistent with the rational man model. We can

think of various possible definitions of rationalization.
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One approach is to look for a preference relation (without imposing

any restrictions that fit the context of the consumer) such that the cho-

sen element from any budget set is the unique bundle maximizing the

preference relation in that budget set. Thus, we say that the preferences

% fully rationalize the demand function x if for any (p, w) the bundle

x(p, w) is the unique % maximal bundle within B(p, w).

Alternatively, we could say that “being rationalizable” means that

there are preferences such that the consumer’s behavior is consistent

with maximizing those preferences, that is, for any (p, w) the bundle

x(p, w) is a % maximal bundle (not necessarily unique) within B(p, w).

This definition is “empty” since any demand function is consistent with

maximizing the “total indifference” preference. This is why we usually

say that the preferences % rationalize the demand function x if they are

monotonic, and for any (p, w), the bundle x(p, w) is a % maximal bundle

within B(p, w).

Of course, if behavior satisfies homogeneity of degree zero andWalras’s

law, it is still not necessarily rationalizable in any of those senses:

Example 1:

Consider the demand function of a consumer who spends all his wealth

on the “more expensive” good:

x((p1, p2), w) =

{

(0, w/p2) if p2 ≥ p1

(w/p1, 0) if p2 < p1
.

This demand function is not entirely inconceivable, and yet it is not

rationalizable. To see this, assume that it is fully rationalizable or

rationalizable by %. Consider the two budget sets B((1, 2), 1) and

B((2, 1), 1). Since x((1, 2), 1) = (0, 1/2) and (1/2, 0) is an internal bun-

dle in B((1, 2), 1), by any of the two definitions of rationalizability it

must be that (0, 1/2) ≻ (1/2, 0). Similarly, x((2, 1), 1) = (1/2, 0) and

(0, 1/2) is an internal bundle in B((2, 1), 1). Thus, (0, 1/2)≺ (1/2, 0), a

contradiction.

Example 2:

A consumer chooses a bundle (z, z, . . . , z), where z satisfies zΣpk = w.

This behavior is fully rationalized by any preferences according to

which the consumer strictly prefers any bundle on the main diagonal

over any bundle that is not (because, for example, he cares primarily

about purchasing equal quantities from all sellers of the K goods), while

on the main diagonal his preferences are according to “the more the
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better”. These preferences rationalize his behavior in the first sense but

are not monotonic.

This demand function is also fully rationalized by the monotonic pref-

erences represented by the utility function u(x1, . . . , xK) = min{x1, . . . , xK}.

Example 3:

Consider a consumer who spends αk of his wealth on commodity k

(where αk ≥ 0 and ΣK
k=1αk = 1). This rule of behavior is not formulated

as a maximization of some preference relation. It can however be fully

rationalized by the preference relation represented by the Cobb-Douglas

utility function u(x) = ΠK
k=1x

αk

k , a differentiable function with strictly

positive derivatives in all interior points. A solution x∗ to the consumer

problem B(p, w) must satisfy x∗k > 0 for all k (notice that u(x) = 0 when

xk = 0 for some k). Given the differentiability of the preferences, a nec-

essary condition for the optimality of x∗ is that vk(x
∗)/pk = vl(x

∗)/pl
for all k and l where vk(x

∗) = du/dxk(x
∗) = αku(x

∗)/x∗k for all k. It

follows that pkx
∗
k/plx

∗
l = αk/αl for all k and l and thus x∗k = αkw/pk

for all k.

Example 4:

LetK = 2. Consider the behavior of a consumer who allocates his wealth

between commodities 1 and 2 in the proportion p2/p1 (the cheaper

the good, the higher the share of the wealth devoted to it). Thus,

x1p1/x2p2 = p2/p1 and xi(p, w) = (pj/(pi + pj))w/pi. This demand func-

tion satisfies Walras’s law as well as homogeneity of degree zero.

To see that this demand function is fully rationalizable, note that

xi/xj = p2j/p
2
i (for all i and j) and thus p1/p2 =

√
x2/

√
x1. The quasi-

concave function
√
x1 +

√
x2 satisfies the condition that the ratio of its

partial derivatives is equal to
√
x2/

√
x1. Thus, for any (p, w), the bundle

x(p, w) is the solution to the maximization of
√
x1 +

√
x2 in B(p, w).

The Weak and Strong Axioms of Revealed Preferences

We now look for general conditions that will guarantee that a demand

function x(p, w) can be fully rationalized. A similar discussion could ap-

ply to another (probably more common in the textbooks) definition of

rationalizability that requires that the bundle x(p, w) maximizes a mono-

tonic preference relation over B(p, w). Of course, as we have seen, one

does not necessarily need these general conditions to determine whether
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a particular demand function is rationalizable. Guessing is often an

excellent strategy.

In the general discussion of choice functions, we saw that condition

α was necessary and sufficient for a choice function to be derived from

some preference relation. In the proof, we constructed a preference re-

lation out of the choices of the decision maker from sets containing two

elements. However, in the context of a consumer, finite sets are not

within the scope of the choice function.

As in Lecture 3 we will use the concept of “revealed preferences”.

Define x ≻ y if there is (p, w) so that both x and y are in B(p, w) and

x = x(p, w). In such a case we will say that x is revealed to be better

than y. As in Lecture 3 we will say that a preference relation % satisfies

the Weak Axiom of Revealed Preferences if it is impossible that x is

revealed to be better than y and y is revealed to be better than x. In

the context of the consumer model, the Weak Axiom can be written as:

if x(p, w) 6= x(p′, w′) and px(p′, w′) ≤ w, then p′x(p, w) > w′.

The Weak Axiom says that the defined binary relation ≻ is asym-

metric. However, the relation is not necessarily complete: there can be

two bundles x and y such that for any B(p, w) containing both bundles,

x(p, w) is neither x nor y. Furthermore, in the general discussion, we

guaranteed transitivity by looking at the union of a set in which a was

revealed to be better than b and a set in which b was revealed to be as

good as c. However, when the sets are budget sets, their union is not

necessarily a budget set. (See fig. 5.2.)

Apparently the Weak Axiom is not a sufficient condition for extending

the binary relation ≻, as defined above, into a complete and transitive

relation (an example with three goods from Hicks (1956) is discussed

in Mas-Colell et al. (1995)). A necessary and sufficient condition for a

demand function x satisfying Walras’s law and homogeneity of degree

zero to be rationalized is the following:

Strong Axiom of Revealed Preference:

The Strong Axiom is a property of the demand function, which states

that the relation ≻, derived from the demand function as before, is

acyclical. This leaves open the question of whether ≻ can be extended

into preferences. (Note that its transitive closure still may not be a

complete relation.) The fact that it is possible to extend the relation

≻ into a full-fledged preference relation is a well-known result in Set

Theory. In any case, the Strong Axiom is somewhat cumbersome, and
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(a) (b)

Figure 5.2
(a) Satisfies the weak axiom. (b) Does not satisfy the weak axiom.

using it to determine whether a certain demand function is rationalizable

may not be a trivial task.

Comment:

As mentioned before, the more standard definition of rationalizabil-

ity requires finding monotonic preferences % such that for any (p, w),

x(p, w) % y for all y ∈ B(p, w). Proceeding to elicit preferences from the

demand function, we infer from the existence of a budget set B(p, w) for

which x = x(p, w) and y ∈ B(p, w) only that x is weakly preferred to y.

If, however, also py < w, we infer further that x is strongly preferred to

y.

Decreasing Demand

A theoretical model is usually evaluated by the reasonableness of its

implications. If we find that a model yields an absurd conclusion, we

reconsider its assumptions. However, we should also be alert when we

find that a model fails to yield highly intuitive properties, indicating

that we may have assumed “too little”.

In the context of the consumer model, we might wonder whether the

intuition that demand for a good falls when its price increases is valid.

We shall now see that the standard assumptions of rational consumer

behavior do not guarantee that demand is decreasing. The following is
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Figure 5.3
An example in which demand increases with price.

an example of a preference relation that induces demand that is nonde-

creasing in the price of one of the commodities.

An Example in Which Demand for a Good May Increase with Price

Consider the preferences represented by the following utility function:

u(x1, x2) =

{

x1 + x2 if x1 + x2 < 1

x1 + 4x2 if x1 + x2 ≥ 1
.

These preferences might reflect reasoning of the following type: “In

the bundle x there are x1 + x2 units of vitamin A and x1 + 4x2 units

of vitamin B. My first priority is to get enough vitamin A. However,

once I satisfy my need for 1 unit of vitamin A, I move on to my second

priority, which is to consume as much as possible of vitamin B”. (See

fig. 5.3.)

Consider x((p1, 2), 1). Changing p1 is like rotating the budget lines

around the pivot bundle (0, 1/2). At a high price p1 (as long as p1 > 2),

the consumer demands (0, 1/2). If the price is reduced to within the

range 2 > p1 ≥ 1, the consumer chooses the bundle (1/p1, 0). So far,

the demand for the first commodity indeed increased when its price

fell. However, in the range 1 > p1 > 1/2 we encounter an anomaly:

the consumer buys as much as possible from the second good subject

to the “constraint” that the sum of the goods is at least 1, that is,

x((p1, 2), 1) = (1/(2− p1), (1 − p1)/(2− p1)).

The above preference relation is monotonic but not continuous. How-

ever, we can construct a close continuous preference that leads to de-

mand that is increasing in p1 in a similar domain. For δ > 0, let αδ(t)

be a continuous and increasing function on [1− δ, 1] where δ > 0, so
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Figure 5.4
A compensated price change from (p,w) to (p′, w′).

that αδ(t) = 0 for all t ≤ 1− δ and αδ(t) = 1 for all t ≥ 1. The utility

function

uδ(x) = αδ(x1 + x2)(x1 + 4x2) + (1− αδ(x1 + x2))(x1 + x2)

is continuous and monotonic. For δ close to 0, the function uδ = u except

in a narrow area below the set of bundles for which x1 + x2 = 1.

Now, when p1 = 2/3, the demand for the first commodity is 3/4,

whereas when p1 = 1, the demand is at least 1− 2δ. Thus, for a small

enough δ the increase in p1 involves an increase in the demand.

“The Law of Demand”

We are interested in comparing demand in different environments. We

have just seen that the classic assumptions about the consumer do not

allow us to draw a clear conclusion regarding the relation between a

consumer’s demand when facing B(p, w) and his demand when facing

B(p+ (0, . . . , ε, . . . , 0), w).

A clear conclusion can be drawn when we compare the consumer’s de-

mand when he faces the budget set B(p, w) to his demand when facing

B(p′, x(p, w)p′). In this comparison we imagine the price vector chang-

ing from p to an arbitrary p′ and wealth changing in such a way that the

consumer has exactly the resources allowing him to consume the same

bundle he consumed at (p, w). (See fig. 5.4.) It follows from the follow-
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ing claim that the compensated demand function y(p′) = x(p′, p′x(p, w))

satisfies the law of demand, that is, yk is decreasing in pk.

Claim:

Let x be a demand function satisfying Walras’s law and WA. If w′ =

p′x(p, w), then either x(p′, w′) = x(p, w) or [p′ − p][x(p′, w′)− x(p, w)] <

0.

Proof:

Assume that x(p′, w′) 6= x(p, w). By Walras’s law and the assumption

that w′ = p′x(p, w):

[p′ − p][x(p′, w′)− x(p, w)]

= p′x(p′, w′)− p′x(p, w) − px(p′, w′) + px(p, w)

= w′ − w′ − px(p′, w′) + w = w − px(p′, w′)

By WA the right-hand side of the equation is less than 0.

Bibliographic Notes

The material in this lecture is fairly standard and closely parallels that

found in Arrow and Hahn (1971) and Varian (1984).
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Problem 1. (Easy)
Show that if a consumer has a homothetic preference relation, then his demand

function is homogeneous of degree one in w.

Problem 2. (Easy)
Consider a consumer in a world with K = 2, who has a preference relation

that is monotonic, continuous, strictly convex, and quasi-linear in the first

commodity. How does the demand for the first commodity change with w?

Problem 3. (Moderately Difficult)

Define a Demand Correspondence, X(p,w) : RK+1
++ → R

K
+ , to be the set of all

solutions to the consumer’s problem in B(p,w).

a. Calculate X(p,w) for the case of K = 2 and preferences represented by

x1 + x2.

b. Let % be a continuous preference relation (not necessarily convex). Show

that X(p,w) is upper semi-continuous.

(A correspondence F : A → B is said to be upper semi-continuous if

for every converging sequence an ∈ A with lim an ∈ A, and for every

converging sequence bn ∈ B such that lim bn exists and bn ∈ F (an), it

holds that lim bn ∈ F (lim an).)

Problem 4. (Moderately difficult)

Determine whether the following consumer behavior patterns are fully ratio-

nalized (assume K = 2):

a. The consumer consumes up to the quantity 1 of commodity 1 and spends

his excess wealth on commodity 2.

b. The consumer chooses the bundle (x1, x2) which satisfies x1/x2 = p1/p2
and costs w. (Does the utility function u(x) = x2

1 + x2
2 rationalize the

consumer’s behavior?)

Problem 5. (Moderately difficult)

In this question, we consider a consumer who behaves differently from the

classic consumer we talked about in the lecture. Once again we consider

a world with K commodities. The consumer’s choice will be from budget

sets. The consumer has in mind a preference relation that satisfies continuity,
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monotonicity, and strict convexity; for simplicity, assume it is represented by

a utility function u.

The consumer maximizes utility up to utility level u0. If the budget set

allows him to obtain this level of utility, he chooses the bundle in the budget

set with the highest quantity of commodity 1 subject to the constraint that

his utility is at least u0.

a. Formulate the consumer’s problem.

b. Show that the consumer’s procedure yields a unique bundle.

c. Is this demand procedure rationalizable?

d. Does the demand function satisfy Walras’s law?

e. Show that in the domain of (p,w) for which there is a feasible bundle

yielding utility of at least u0 the consumer’s demand function for com-

modity 1 is decreasing in p1 and increasing in w.

f. Is the demand function continuous?

Problem 6. (Moderately difficult)

It’s a common practice in economics to view aggregate demand as being de-

rived from the behavior of a “representative consumer”. Give two examples of

“well-behaved” consumer preference relations that can induce average behav-

ior that is not consistent with maximization by a “representative consumer”.

(That is, construct two “consumers”, 1 and 2, who choose the bundles x1

and x2 out of the budget set A and the bundles y1 and y2 out of the budget

set B so that the choice of the bundle (x1 + x2)/2 from A and of the bundle

(y1 + y2)/2 from B is inconsistent with the model of the rational consumer.)

Problem 7. (Moderately difficult)

A commodity k is Giffen if the demand for the k′th good is increasing in pk.

A commodity k is inferior if the demand for the commodity decreases with

wealth. Show that if there is a vector (p,w) such that the demand for the k′th

commodity is rising after its price has increased, then there is a vector (p′, w′)

such that the demand of the k′th commodity is falling after the income has

increased (Giffen implies inferior).



LECTURE 6

More Economic Agents: a Consumer
Choosing Budget Sets, a Dual
Consumer and a Producer

A Consumer Choosing Budget Sets

Let X be a set of alternatives and D a set of non-empty subsets of

X . An element A in D is interpreted as a choice problem. We are

interested in the decision maker’s preference relation over D. Assuming

that the decision maker has a preference relation % defined over X , one

approach to building a preference relation over D is as follows: When

assessing a choice problem in D, the decision maker asks himself which

alternative he would choose from this set. He prefers a set A over a set

B if the alternative he would choose from A is preferable (according to

the basic preference %) over what he would choose from B. This leads

to the following definition of %∗, a relation which we will refer to as the

indirect preferences induced from %:

A %∗ B if C%(A) % C%(B).

Obviously, %∗ is a preference relation. If u represents % and the choice

function is well defined, then v(A) = u(C%(A)) represents %∗. We will

refer to v as the indirect utility function.

The notion of indirect preferences ignores many considerations that

might be taken into account when comparing choice sets. For example:

“I prefer A− {b} to A even though I intend to choose a in any case since

I am afraid to make a mistake by choosing b”, “I will choose a from A

and from A− {b}; however, since I don’t want to have to reject b, I

prefer A− {b} to A”or ”I prefer A− {b} to A because I would choose b

from A and I want to commit myself to not making that choice”.

Note that in some cases (depending on the set D) one can reconstruct

the choice function C%(A) from the indirect preferences %∗. For exam-

ple, if a ∈ A and A ≻∗ A− {a}, then one can conclude that C%(A) = a.
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We now return to the consumer who is choosing bundles from budget

sets. For simplicity, assume that he has a preference relation% satisfying

the classical assumptions (monotonicity, continuity and convexity) and

that demand, x(p, w), is always well-defined. The indirect preferences

on budget sets might be relevant in decision situations, such as choosing

a place to live or comparing different tax systems (which affect wealth

and prices).

A budget set is characterized by the K + 1 parameters (p, w). Thus,

the above approach leads to the following definition of the indirect pref-

erences %∗ on the set RK+1
++ :

(p, w) %∗ (p′, w′) if x(p, w) % x(p′, w′).

In this context, the indirect preference relation excludes from the dis-

cussion considerations such as “I prefer to live in an area where alcohol

is very expensive even though I don’t drink”.

Following are some properties of indirect preferences:

1. Invariance to presentation: (λp, λw) ∼∗ (p, w) for all p, w, λ > 0.

This follows from x(λp, λw) = x(p, w).

2. Monotonicity: The indirect preferences are weakly decreasing in pk
and strictly increasing in w. Shrinking the choice set is never ben-

eficial under this approach and additional wealth makes it possible

to consume bundles containing more of all commodities.

3. Continuity: If (p, w) ≻∗ (p′, w′), then y = x(p, w) ≻ x(p′, w′) = y′.

By continuity, there are neighborhoods By and By′ around y and y′

respectively, such that for any z ∈ By and z′ ∈ By′ we have z ≻ z′.

By continuity of the demand function, there is a neighborhood

around (p, w) in which demand is within By and there is a neigh-

borhood around (p′, w′) in which demand in within By′ . For any

two budget sets in these two neighborhoods, ≻∗ is preserved.

4. “Concavity“: If (p1, w1) %∗ (p2, w2), then (p1, w1) %∗ (λp1 + (1−
λ)p2, λw1 + (1− λ)w2) for all 1 ≥ λ ≥ 0 (see fig. 6.1). Let z be

the best bundle in the budget set B(λp1 + (1 − λ)p2, λw1 + (1−
λ)w2). Then (λp1 + (1− λ)p2)z ≤ λw1 + (1− λ)w2 and therefore

p1z ≤ w1 or p2z ≤ w2. Thus, z ∈ B(p1, w1) or z ∈ B(p2, w2) and

then x(p1, w1) % z or x(p2, w2) % z. From x(p1, w1) % x(p2, w2), it

follows that x(p1, w1) % z.
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Figure 6.1
The indirect utility function is quasi-convex.

Roy’s Identity

We will now look at a method of deriving the consumer demand function

from indirect preferences. Notice that in the single commodity case, each

%∗-indifference curve is a ray. If we assume monotonicity of %, the slope

of an indifference curve through (p1, w) is w/p1, which is x1(p1, w).

Moving to a more general K -commodity space, we will see that

given the slope of the indifference curve through (p∗, w∗), we can re-

cover the demand at (p∗, w∗). The key observation is that the set

{(p, w) | px(p∗, w∗) = w} is tangent to the indifference curve of the indi-

rect preferences through (p∗, w∗). When there is a unique tangent to the

indifference curve of the indirect preferences at (p∗, w∗), knowing this

tangent allows us to recover x(p∗, w∗).

Claim:

Assume that the demand function satisfies Walras’ law. Then:

1. The hyperplane H = {(p, w) | px(p∗, w∗) = w} is tangent to the

%∗-indifference curve at (p∗, w∗).

2. Roy’s identity: When the (indirect) preferences %∗ are represented

by a differentiable (indirect) utility function v,

−[∂v/∂pk(p
∗, w∗)]/[∂v/∂w(p∗, w∗)] = xk(p

∗, w∗).
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Proof:

1. Clearly (p∗, w∗) ∈ H . For any (p, w) ∈ H , the bundle x(p∗, w∗) ∈
B(p, w). Hence, x(p, w) % x(p∗, w∗) and thus (p, w) %∗ (p∗, w∗).

2. H = {(p, w)| (x(p∗, w∗),−1)(p, w) = 0} and since w∗ = p∗x(p∗, w∗),

we have:

H = {(p, w)| (x(p∗, w∗),−1)(p− p∗, w − w∗) = 0}

and H is a tangent to the indifference curve through (p∗, w∗).

Since v is differentiable, the unique tangent to the indifference curve

through (p∗, w∗) is also characterized by the hyperplane that is

perpendicular to the gradient (the vector of partial derivatives):

T = {(p, w)| (∂v/∂p1(p
∗, w∗), . . . , ∂v/∂pK(p∗, w∗),

∂v/∂w(p∗, w∗))(p− p∗, w − w∗) = 0}.

Thus, T = H and

(∂v/∂p1(p
∗, w∗), . . . , ∂v/∂pK(p∗, w∗), ∂v/∂w(p∗, w∗))

is proportional to the vector

(x1(p
∗, w∗), . . . , xK(p∗, w∗),−1).

and Roy’s identity follows.

A Dual Consumer

The Prime Consumer

Let us first consider a consumer who possesses a preference relation

% (satisfying the classical assumptions, monotonicity, continuity and

convexity) and an initial bundle z. When facing the price vector p, he

can trade z for any bundle x, such that px ≤ pz. We refer to the problem

of choosing a %-best bundle from the set {x | px ≤ pz} as the consumer’s

prime problem and denote it by P (p, z). The problem has a solution and

when the solution is unique, we denote it by x(p, z).

A Dual Turtle

Consider the following two sentences:

1. The maximal distance a turtle can travel in 1 day is 1 km.

2. The minimal time it takes a turtle to travel 1 km is 1 day.
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In conversation, these two sentences would seem to be equivalent. In

fact this equivalence relies on two “hidden” assumptions:

a. For (1) to imply (2), we need to assume that the turtle travels a

positive distance in any period of time. Contrast this with the case

in which the turtle’s speed is 2 km/day, but after half a day it must

rest for half a day. In this case, the maximal distance it can travel

in 1 day is 1 km, though it is able to travel this distance in only

half a day.

b. For (2) to imply (1), we need to assume that the turtle cannot

“jump”a positive distance in zero time. Contrast this with the

case in which the turtle’s speed is 1 km/day, but after a day of

traveling it can “jump”1 km. Thus, it can travel 2 km in 1 day (and

if you don’t believe that a turtle can jump, think about a ”frequent

consumer” scheme in which the number of points ”jumps” after the

consumer reaches a certain point level).

We will now show that the above assumptions are sufficient for the

equivalence of (1) and (2). Formally, let M(t) be the maximal distance

the turtle can travel in time t and assume that M is strictly increasing

and continuous. We can then show that the statement “the maximal

distance a turtle can travel in t∗ is x∗” is equivalent to the statement

“the minimal time it takes a turtle to travel x∗ is t∗”.

If the maximal distance that the turtle can travel within t∗ is x∗ and

if it covers the distance x∗ in t < t∗, then by the strict monotonicity of

M the turtle can cover a distance larger than x∗ in t∗, a contradiction.

If it takes t∗ for the turtle to cover the distance x∗ and if it travels

the distance x > x∗ in t∗, then by the continuity of M the turtle will

already be beyond the distance x∗ at some t < t∗, a contradiction.

The Dual Consumer

Consider now a special type of consumer who has in mind a bundle z and

(given a price vector p) he wishes to consume the cheapest bundle which

for him is at least as good as z. We refer to the problemminx{px | x % z}
as the dual problem and denote it by D(p, z). Assuming that a solution

exists and is unique (which occurs, for example, when preferences are

strictly convex and continuous), we denote the solution as h(p, z) and

refer to it as the Hicksian demand function. The function e(p, z) =

ph(p, z) is called the expenditure function. (Note the analogy between

the expenditure function and the consumer’s indirect utility function.)
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Following are some properties of the Hicksian demand function and

the expenditure function:

1. h(p, z) = h(λp, z) and e(λp, z) = λe(p, z).

This follows from the fact that a bundle minimizes the function

λpx in a set if and only if it minimizes the function px over that

same set.

2. The Hicksian demand for the k’th commodity is decreasing in pk.

In addition, e(p, z) is increasing in pk.

Note that ph(p′, z) ≥ ph(p, z) for every p′. This is because h(p′, z) %

z and the bundle h(p′, z) is not less expensive than h(p, z) for

the price vector p. Thus, (p′ − p)(h(p′, z)− h(p, z)) = (p′h(p′, z)−
p′h(p, z)) + (ph(p, z)− ph(p′, z)) ≤ 0 and if (p′ − p) = (0, ..., ε, ..., 0)

(with ε > 0), we obtain hk(p
′, z)− hk(p, z) ≤ 0.

Furthermore, if p′k ≥ pk for all k, then e(p
′, z) = p′h(p′, z) ≥ ph(p′, z) ≥

ph(p, z) = e(p, z).

3. h(p, z) ∼ z. If h(p, z) ≻ z, then by continuity there would be a

cheaper bundle at least as good as z near h(p, z).

4. h(p, z) and e(p, z) are continuous (verify!).

5. The expenditure function is concave in p:

Let x = h(λp1 + (1− λ)p2, z). By definition x % z. Thus, pix ≥
pih(pi, z) and e(λp1 + (1− λ)p2, z) = (λp1 + (1− λ)p2)x ≥ λe(p1, z) +

(1− λ)e(p2, z).

6. (The Dual of Roy’s identity) The hyperplaneH = {(p, e) | e = ph(p∗, z)}
is tangent to the graph of the expenditure function at p∗.

This follows from: (i) (p∗, e(p∗, z)) is in H and (ii) ph(p∗, z) ≥
ph(p, z) for all p∗.

7. (Duality) We say that x∗ is an internal equilibrium for the prime

consumer if it is a solution to the problem P (p, x∗), i.e. the con-

sumer cannot obtain a better bundle by trading x∗ at the relative

prices determined by p. Similarly, x∗ is an internal equilibrium for

the dual consumer if it is a solution to D(p, x∗), i.e. he cannot

reduce his expenses without consuming a bundle that is strictly

worse than x∗.

We will see that x∗ is an internal equilibrium for the prime con-

sumer if and only if it is an internal equilibrium for the dual con-

sumer.

Assume that x∗ is not a solution to D(p, x∗). Then, there exists

a strictly cheaper bundle x for which x % x∗. For some positive

vector ε (i.e., εk > 0 for all k), it still holds that p(x+ ε) < px∗.
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By monotonicity, x+ ε ≻ x % x∗ and thus x∗ is not a solution to

P (p, x∗).

Assume that x∗ is not a solution to the problem P (p, x∗). Then,

there exists an x such that px ≤ px∗ and x ≻ x∗. By continuity,

for some nonnegative vector ε 6= 0, x− ε is a bundle such that

x− ε ≻ x∗ and p(x− ε) < px∗ and thus x∗ is not a solution to

D(p, x∗).

A Producer

Let us turn now to the producer, an economic agent with the ability to

transform one vector of commodities into another. Note, that we use

the term “producer”rather than “firm”since we are not concerned with

the internal organization of the producer’s activity. We, first specify the

producer’s “technology”and then discuss his preferences.

Technology

Denote the commodities, which can be either inputs or outputs in the

producer’s production activity, as 1, . . . ,K. A vector z in R
K is inter-

preted as a production combination where positive components in z are

outputs and negative components are inputs. A producer’s choice set is

called a technology and reflects the production constraints.

The following restrictions are often placed on the technology space Z

(fig. 6.2):

1. 0 ∈ Z (which is interpreted to mean that the producer can remain

“idle”).

2. There is no z ∈ Z ∩RK
+ besides the vector 0 (i.e., there is no pro-

duction with no resources).

3. Free disposal : If z ∈ Z and z′ ≤ z, then z′ ∈ Z (i.e., nothing pre-

vents the producer from being inefficient in the sense that he uses

more resources than necessary to produce a particular amount of

commodities).

4. Z is a closed set.

5. Z is a convex set. (This assumption embodies decreasing marginal

productivity. Together with the assumption that 0 ∈ Z, it implies

non-increasing returns to scale: if z ∈ Z, then for all λ < 1, λz ∈
Z.)
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Figure 6.2
Technology.

In some cases we will describe the producer’s abilities using a pro-

duction function. Consider, for example, the case in which commodity

K is produced from commodities 1,2, . . . ,K − 1, that is, for all z ∈ Z,

zK ≥ 0 and for all k 6= K, zk ≤ 0. The production function specifies, for

any positive vector of inputs v ∈ R
K−1
+ , the maximum amount of com-

modity K that can be produced. If we start from technology Z, we can

derive the production function by defining f(v) = max{x| (−v, x) ∈ Z}.
If we start from the production function f , we can derive the “technol-

ogy” by defining Z(f) = {(−w, x)| x ≤ y and w ≥ v for some y = f(v) } .
If the function f is increasing, continuous and concave and satisfies the

assumption of f(0) = 0, then Z(f) satisfies the above assumptions.

Producer Behavior

We think of the producer as an agent who has a preference relation over

the space X , which contains all combinations (z, π) where z ∈ Z and π

is a number representing his profit.

For any given price vector p, the producer faces a choice set of the

type B(p) = {(z, π)| z ∈ Z and π = pz}. A rational producer maximizes

a preference relation defined over X . Given a price vector p, he chooses

z ∈ Z to maximize (according to his preferences) the vector (z, pz).
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Following are some examples of producer behavior which can easily be

rationalized using preference relations on this space. For clarity, I focus

on the case of K = 2 where commodity 1 is the input and commodity 2

is the output and y = f(a) is the producer’s production function:

1. The producer maximizes production y given the constraint π ≥ 0.

2. The producer wishes to produce at least y∗ units. Once he has

achieved that goal, he maximizes profit.

3. The producer maximizes profit, but already employs a∗1 workers

and will incur a cost c (whether in terms of money or the anguish

it causes him) for each worker he fires. Thus, his utility function

is given by π − cmax{0, a∗1 − a1}.
4. The producer is a group of workers who have formed a cooperative

and share profits equally among themselves. Thus, the group seeks

to maximize π/a1, i.e., profit per worker.

5. “green producer” will have preferences over (π, pollution(z)) where

pollution(z) is the amount of pollution, which is dependent on z.

6. The producer maximizes his profit, π. . .

Another example of plausible behavior is to maximize the ratio be-

tween profits and costs (that is π
paa

). Note however that such behavior

cannot be represented as maximization of a preference relation on X

since it depends on the breakdown of profit into revenues and costs and

not just on profit.

While the classical assumption in Economics is that a producer cares

only about increasing profits, the above examples demonstrate the rich-

ness of reasonable considerations that are ignored by making this as-

sumption.

The Supply Function of the Profit-Maximizing Producer

We now discuss the profit-maximizing producer’s behavior. The pro-

ducer’s problem is defined as maxz∈Z pz. The existence of a unique

solution to the producer’s problem requires some additional assump-

tions, e.g. that Z be bounded from above (i.e., there is some bound B

such that B ≥ zk for any z ∈ Z) and that Z be strictly convex (i.e., if z

and z′ are in Z, then the combination λz + (1− λ)z′ is an internal point

in Z for any 1 > λ > 0).

When the producer’s problem has a unique solution, we denote it by

z(p) and refer to the relation between p and z as the supply function.
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Figure 6.3
Profit maximization.

Note that it specifies both the producer’s supply of outputs and his de-

mand for inputs. We also define the profit function as π(p) = maxz∈Zpz.

Recall that when discussing the consumer, we specified his prefer-

ences and described his behavior as making a choice from a budget

set determined by prices. The consumer’s behavior (demand) deter-

mined the dependence of his consumption on prices. In the case of the

profit-maximizing producer, we specify the technology and describe his

behavior as maximizing a profit function determined by prices. The

producer’s behavior (supply) specifies the dependence of output and the

consumption of inputs on prices.

In the case of the profit-maximizing producer, preferences are linear

and the constraint is a convex set, whereas in the consumer model the

constraint is a linear inequality and preferences are convex. Structure

(i.e., continuity and convexity) is imposed on the profit-maximizing pro-

ducer’s choice set and on the consumer’s preferences. Thus, the profit-

maximizing producer’s problem is very similar to the consumer’s dual

problem (see fig. 6.3). (the former involves maximization of a linear

function while the latter involves minimization).

Following some properties of the supply and profit functions which

are analogous to those of the consumer’s dual problem:

Supply Function

1. z(λp) = z(p). (The producer’s preference relation is identical for

the price vectors p and λp.)
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2. z is continuous.

3. If z(p) 6= z(p′), we have: (p− p′)[z(p)− z(p′)] = p[z(p)− z(p′)] +

p′[z(p′)− z(p)] > 0. In particular, if (only) the k’th price increases,

then zk increases; that is, if k is an output (zk > 0), the supply

of k increases and if k is an input (zk < 0), the demand for k

decreases. Note that this result, called the law of supply, applies

to the standard supply function (unlike the law of demand, which

was applied to the compensated demand function).

Profit Function

1. π(λp) = λπ(p) (follows from z(λp) = z(p)).

2. π is continuous (follows from the continuity of the supply function).

3. π is convex (for any p,p′ and λ, if z∗ maximizes (λp+ (1− λ)p′)z,

then π(λp+ (1− λ)p′) = λpz∗ + (1 − λ)p′z∗ ≤ λπ(p) + (1− λ)π(p′)).

4. Hotelling’s lemma: For any vector p∗, π(p) ≥ pz(p∗) for all p.

Therefore, the hyperplane {(p, π) | π = pz(p∗)} is tangent to the

graph of the function π ({(p, π) | π = π(p)}) at the point (p∗, π(p∗)).
The function π is differentiable (see Kreps (2013)) and dπ/dpk(p

∗) =

zk(p
∗).

5. From Hotelling’s lemma, it follows that if π is twice continuously

differentiable, then dzj/dpk(p
∗) = dzk/dpj(p

∗).

Comment:

When we are interested in the firm’s behavior only in the output mar-

ket (and not in the input markets) we will represent the producer in a

reduced form by means of a cost function rather than a technology.

For a producer with a technology Z, where commodities 1, .., L are in-

puts and L+ 1, . . . ,K are outputs, define c(p, y) to be the minimal cost

associated with the production of the combination y ∈ R
K−L
+ given the

price vector p ∈ R
L
++ of the input commodities 1, . . . , L. In other words,

c(p, y) = mina{pa| (−a, y) ∈ Z}. (See fig. 6.4.)

Discussion

In the conventional economic approach, we allow the consumer to have

“general” preferences but restrict the producer’s goals to profit max-

imization. Thus, a consumer who consumes commodities in order to

destroy his health is within the scope of our discussion, whereas a pro-

ducer who cares about the welfare of his workers or has in mind a target
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Figure 6.4
Cost Minimization.

other than profit maximization is not. This is of course odd since there

are various plausible alternative targets for a producer. A particularly

plausible one is increasing production subject to not incurring a loss.

One could ask why producer’s objectives are usually defined so nar-

rowly relative to consumer’s preferences. Perhaps it is simply for math-

ematical convenience; it is certainly not the result of an ideological con-

spiracy. Nonetheless, is it possible that adopting profit maximization as

the ”obvious” assumption regarding producer behavior leads students to

view it as the exclusive normative criterion guiding a firm’s behavior?
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The model of the profit-maximizing producer can be found in any

microeconomics textbook. Debreu (1959) is an excellent source.

In class, I usually discuss the ILJK example that appears in Rubinstein

(2006b)



Problem Set 6

Problem 1. (Easy)
Imagine that you are reading a paper in which the author uses the indirect

utility function v(p1, p2, w) = w/p1 + w/p2. You suspect that the author’s

conclusions in the paper are the outcome of the “fact” that the function v

is inconsistent with the model of the rational consumer. Take the following

steps to make sure that this is not the case:

a. Use Roy’s identity to derive the demand function.

b. Show that if demand is derived from a smooth utility function, then the

indifference curve at the point (x1, x2) has the slope −√
x2/

√
x1.

c. Construct a utility function with the property that the ratio of the partial

derivatives at the bundle (x1, x2) is
√
x2/

√
x1.

d. Calculate the indirect utility function derived from this utility function.

Do you arrive at the original v(p1, p2, w)? If not, can the original indirect

utility function still be derived from another utility function satisfying

the property in (c)?

Problem 2. (Moderately difficult)

Show that if the preferences are monotonic, continuous, and strictly convex,

then the Hicksian demand function h(p, z) is continuous.

Problem 3. (Moderately difficult)

One way to compare budget sets is by using the indirect preferences that

involve comparing x(p,w) and x(p′, w).

Following are two other approaches to making such a comparison.

Define:

CV (p, p′, w) = w − e(p′, z) = e(p, z)− e(p′, z)

where z = x(p,w).

This is the answer to the question: What is the change in wealth that would

be equivalent, from the perspective of (p,w), to the change in price vector from

p to p′?

Define:

EV (p, p′, w) = e(p, z′)− w = e(p, z′)− e(p′, z′)

where z′ = x(p′, w).
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This is the answer to the question: What is the change in wealth that would

be equivalent, from the perspective of (p′, w), to the change in price vector

from p to p′?

Now, solve the following exercises regarding a consumer in a two-commodity

world with a utility function u:

a. For the case of preferences represented by u(x1, x2) = x1 + x2, calculate

the two consumer surplus measures.

b. Assume that the price of the second commodity is fixed and that the

price vectors differ only in the price of the first commodity. Assume

further that the first good is a normal good (the demand is increasing

with wealth). What is the relation of the two measures to the “area below

the demand function” (which is a standard third definition of consumer

surplus)?

c. Explain why the two measures are identical if the individual has quasi-

linear preferences in the second commodity and in a domain where the

two commodities are consumed in positive quantities.

Problem 4. (Moderately difficult)

a. Verify that you know the envelope theorem, which states conditions un-

der which the following is correct: consider a maximization problem

maxx{u(x, α1, . . . , αn) | g(x,α1, . . . , αn) = 0}. Let V (α1, . . . , αn) be the

value of the maximization.

Then, ∂V
∂αi

(a1, . . . , an) =
∂(u−λg)

∂αi
(x∗(a1, . . . , αn), a1, . . . , αn) where x

∗(a1, . . . , αn)

is the solution to the maximization problem, and λ is the Lagrange mul-

tiplier associated with the solution of the maximization problem.

b. Derive the Roy’s identity from the envelope theorem (hint: show that in

this context ∂V/∂αi

∂V/∂αj
(a1, . . . , an) =

∂g/∂αi

∂g/∂αj
(x∗(a1, . . . , αn), a1, . . . , αn)).

c. What makes it is easy to prove Roy’s identity without using the envelope

theorem?

The Producer:

Problem 5. (Easy)
Assume that technology Z and the production function f describe the same

producer who produces commodity K using inputs 1, . . . ,K − 1. Show that Z

is a convex set if and only if f is a concave function.

Problem 6. (Easy)
Consider a producer who uses L inputs to produce K − L outputs. Denote by

w the price vector of the L inputs. Let ak(w, y) be the demand for the k’th

input when the price vector is w and the output vector he wishes to produce

is y. Show the following:
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a. C(λw, y) = λC(w, y).

b. C is nondecreasing in any input price wk.

c. C is concave in w.

d. Shepherd’s lemma: If C is differentiable, dC/dwk(w, y) = ak(w, y) (the

k’th input commodity).

e. If C is twice continuously differentiable, then for any two commodities j

and k, dak/dwj(w, y) = daj/dwk(w, y).

Problem 7. (Moderately difficult)

Consider a firm producing one commodity using L inputs, which maximizes

production subject to the constraint of achieving a level of profit ρ (and does

not produce at all if it cannot). Show that under reasonable assumptions:

a. The firm’s problem has a unique solution for every price vector.

b. The firm’s supply function satisfies monotonicity in prices.

c. The firm’s supply function satisfies continuity in prices when ρ = 0.

d. The firm’s supply function is monotonic in ρ.

Problem 8. (Moderately difficult. Based on Radner (1993).)

It is usually assumed that the cost function C is convex in the output vector.

Much of the research on production has been aimed at investigating conditions

under which convexity is induced from more primitive assumptions about the

production process. Convexity often fails when the product is related to the

gathering of information or data processing.

Consider, for example, a firm conducting a telephone survey immediately

following a TV program. Its goal is to collect information about as many

viewers as possible within 4 units of time. The wage paid to each worker

is w (even when he is idle). In one unit of time, a worker can talk to one

respondent or be involved in the transfer of information to or from exactly

one colleague. At the end of the 4 units of time, the collected information

must be in the hands of one colleague (who will announce the results). Define

the firm’s product, calculate the cost function, and examine its convexity.

Problem 9. (Standard)
An event that could have occurred with probability 0.5 either did or did not

occur. A firm must provide a report in the form of “ the event occurred” or

“ the event did not occur”. The quality of the report (the firm’s product),

denoted by q, is the probability that the report is correct. Each of k experts

(input) prepares an independent recommendation that is correct with prob-

ability 1 > p > 0.5. The firm bases its report on the k recommendations in

order to maximize q.

a. Calculate the production function q = f(k) for (at least) k = 1, 2, 3.
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b. We say that a “ discrete” production function is concave if the sequence

of marginal product is nonincreasing. Is the firm’s production function

concave?

Assume that the firm will get a prize of M if its report is actually correct.

Assume that the wage of each worker is w.

c. Explain why it is true that if f is concave, the firm chooses k∗ so that

the k∗th worker is the last one for whom marginal revenue exceeds the

cost of a single worker.

d. Is this conclusion true in our case?

Problem 10. (Moderately difficult)

An economic agent is both a producer and a consumer. He has a0 units of good

1. He can use some of a0 to produce commodity 2. His production function f

satisfies monotonicity, continuity, and strict concavity. His preferences satisfy

monotonicity, continuity, and convexity. Given he uses a units of commodity

1 in production, he is able to consume the bundle (a0 − a, f(a)) for a ≤ a0.

The agent has in his “mind” three “centers”:

• The pricing center declares a price vector (p1, p2).

• The production center takes the price vector as given and operates

according to one of the following two rules:

Rule 1: maximizing profits, p2f(a)− p1a.

Rule 2: maximizing production subject to the constraint of not

making any losses, that is, p2f(a)− p1a ≥ 0.

The output of the production center is a consumption bundle.

• The consumption center takes (a0 − a, f(a)) as endowment and

finds the optimal consumption allocation that it can afford ac-

cording to the prices declared by the pricing center.

The prices declared by the pricing center are chosen to create harmony be-

tween the other two centers in the sense that the consumption center finds the

outcome of the production center’s activity, (a0−a, f(a)), optimal given the

announced prices.

a. Show that under Rule 1, the economic agent consumes the bundle (a0 −
a∗, f(a∗)) which maximizes his preferences.

b. What is the economic agent’s consumption with Rule 2?

c. State and prove a general conclusion about the comparison between the

behavior of two individuals, one whose production center operates with

Rule 1 and one whose production center activates Rule 2.



LECTURE 7

Expected Utility

Lotteries

When thinking about decision making, we often distinguish between ac-

tions and consequences. An action is chosen and leads to a consequence.

The rational man has preferences over the set of consequences and is

supposed to choose a feasible action that leads to the most desired con-

sequence. In our discussion of the rational man, we have so far not

distinguished between actions and consequences since it was unneces-

sary for modeling situations where each action deterministically leads to

a particular consequence.

In this lecture we will discuss a decision maker in an environment in

which the correspondence between actions and consequences is not de-

terministic but stochastic. The choice of an action is viewed as choosing

a lottery where the prizes are the consequences. We will be interested

in preferences and choices over the set of lotteries.

Let Z be a set of consequences (prizes). In this lecture we assume

that Z is a finite set. A lottery is a probability measure on Z, that

is, a lottery p is a function that assigns a nonnegative number p(z) to

each prize z, where Σz∈Zp(z) = 1. The number p(z) is taken to be the

objective probability of obtaining the prize z given the lottery p.

Denote by [z] the degenerate lottery for which [z](z) = 1. We will use

the notation αx⊕ (1− α)y to denote the lottery in which the prize x is

realized with probability α and the prize y with probability 1− α.

Denote by L(Z) the (infinite) space containing all lotteries with prizes

in Z. Given the set of consequences Z, the space of lotteries L(Z) can be

identified with a simplex in Euclidean space: {x ∈ R
Z
+| Σxz = 1} where

R
Z
+ is the set of functions from Z into R+. The extreme points of

the simplex correspond to the degenerate lotteries, where one prize is

received in probability 1. We will discuss preferences over L(Z).

An implicit assumption in the above formalism is that the decision

maker does not care about the nature of the random factors but only

about the distribution of consequences. To appreciate this point, con-
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sider a case in which the probability of rain is 1/2 and Z = {z1, z2},
where z1 = “having an umbrella” and z2 = “not having an umbrella”.

A “lottery” in which you have z1 if it is raining and z2 if it is not, should

not be considered equivalent to the “lottery” in which you have z1 if it is

not raining and z2 if it is. Thus, we have to be careful not to apply the

model in contexts where the attitude toward the consequence depends

on the event realized in each possible contingence.

Preferences

Let us think about examples of “sound” preferences over a space L(Z).

Following are some examples:

• Preference for uniformity: The decision maker prefers the lottery

that is less disperse where dispersion is measured by Σz(p(z)−
1/|Z|)2.

• Preference for most likelihood : The decision maker prefers p to q

if maxzp(z) is greater than maxzq(z).

• The size of the support : The decision maker evaluates each lot-

tery by the number of prizes that can be realized with positive

probability, that is, by the size of the support of the lottery,

supp(p) = {z|p(z) > 0}. He prefers a lottery p over a lottery q

if |supp(p)| ≤ |supp(q)|.

These three examples are degenerate in the sense that the preferences

ignored the consequences and were dependent on the probability vectors

alone. In the following examples, the preferences involve evaluation of

the prizes as well.

• Increasing the probability of a “good” outcome: The set Z is parti-

tioned into two disjoint sets G and B (good and bad), and between

two lotteries the decision maker prefers the lottery that yields

“good” prizes with higher probability.

• The worst case: The decision maker evaluates lotteries by the

worst possible case. He attaches a number v(z) to each prize z

and p % q ifmin{v(z)| p(z) > 0} ≥ min{v(z)| q(z) > 0}. This cri-
terion is often used in computer science, where one algorithm is

preferred to another if it functions better in the worst case inde-

pendently of the likelihood of the worst case occurring.

• Comparing the most likely prize: The decision maker considers

the prize in each lottery that is most likely (breaking ties in some
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arbitrary way) and compares two lotteries according to a basic

preference relation over Z.

• Lexicographic preferences : The prizes are ordered z1, . . . , zK , and

the lottery p is preferred to q if (p(z1), . . . , p(zK)) ≥L (q(z1), . . . , q(zK)).

• Expected utility: A number v(z) is attached to each prize, and a

lottery p is evaluated according to its expected v, that is, according

to Σzp(z)v(z). Thus,

p % q if U(p) = Σz∈Zp(z)v(z) ≥ U(q) = Σz∈Zq(z)v(z).

Note that the above examples constitute ingredients that could be

combined in various ways to form an even richer class of examples. For

example, one preference can be employed as long as it is “decisive”, and

a second preference can be used to break ties when it is not.

The richness of examples calls for the classification of preference re-

lations over lotteries and the study of properties that these relations

satisfy. The methodology we follow is to formally state general princi-

ples (axioms) that may apply to preferences over the space of lotteries.

Each axiom carries with it a consistency requirement or involves a pro-

cedural aspect of decision making. When a set of axioms characterizes a

family of preferences, we will consider the set of axioms as justification

for focusing on that specific family.

von Neumann and Morgenstern Axiomatization

The version of the von Neumann and Morgenstern axiomatization pre-

sented here uses two axioms, the independence and continuity axioms.

The Independence Axiom

In order to state the first axiom, we require an additional concept, called

Compound lotteries (fig. 7.1): Given a K-tuple of lotteries (pk)k=1,...,K

and aK-tuple of nonnegative numbers (αk)k=1,...,K that sum up to 1, de-

fine⊕K
k=1αkp

k to be the lottery for which (⊕K
k=1αkp

k)(z) = ΣK
k=1αkp

k(z).

Verify that ⊕K
k=1αkp

k is indeed a lottery. When only two lotteries p1

and p2 are involved, we use the notation α1p
1 ⊕ (1 − α1)p

2.

We think of ⊕K
k=1αkp

k as a compound lottery with the following two

stages:

Stage 1 : It is randomly determined which of the lotteries p1, . . . , pK

is realized; αk is the probability that pk is realized.
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Figure 7.1
The compound lottery ⊕K

k=1αkp
k.

Stage 2 : The prize received is randomly drawn from the lottery deter-

mined in stage 1.

The random factors in the two stages are taken to be independent.

When we compare two compound lotteries, αp⊕(1− α)r and αq⊕(1−
α)r, we tend to simplify the comparison and form our preference on the

basis of the comparison between p and q. This intuition is translated

into the following axiom:

Independence (I):

For any p, q, r ∈ L(Z) and any α ∈ (0, 1),

p % q iff αp⊕ (1− α)r % αq ⊕ (1− α)r.

The following property follows from I:

I
∗:

Let {pk}k=1,...,K , be a vector of lotteries, qk
∗

a lottery, and (αk)k=1,...,K

an array of nonnegative numbers such that αk∗ > 0 and
∑

k αk = 1.

Then,

⊕K
k=1αkp

k % ⊕K
k=1αkq

k when pk = qk for all k but k∗ iff pk
∗

% qk
∗

.

To see it,

⊕k=1,...,Kαkp
k = αk∗pk

∗ ⊕ (1− αk∗)(⊕k 6=k∗ [αk/(1− αk∗)]pk) %

αk∗qk
∗ ⊕ (1− αk∗)(⊕k 6=k∗ [αk/(1− αk∗)]pk) = ⊕K

k=1αkq
k iff pk

∗

% qk
∗

.

Lemma:

Let % be a preference over L(Z) satisfying Axiom I. Let x, y ∈ Z such

that [x] ≻ [y] and 1 ≥ α > β ≥ 0. Then

αx⊕ (1− α)y ≻ βx ⊕ (1− β)y.
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Proof:

If either α = 1 or β = 0, the claim is implied by I. Otherwise, by I,

αx⊕ (1−α)y ≻ [y]. Using I again we get: αx ⊕ (1−α)y ≻ (β/α)(αx ⊕
(1− α)y)⊕ (1−β/α)[y] = βx⊕ (1−β)y.

The Continuity Axiom

Once again we will employ a continuity assumption that is basically

the same as the one we employed for the consumer model. Continuity

means that the preferences are not overly sensitive to small changes in

the probabilities.

Continuity (C):

If p ≻ q, then there are neighborhoods B(p) of p and B(q) of q (when

presented as vectors in R
|Z|
+ ), such that

for all p′ ∈ B(p) and q′ ∈ B(q), p′ ≻ q′.

Verify that the continuity assumption implies the following property,

which sometimes is presented as an alternative definition of continuity:

C
∗:

If p ≻ q ≻ r, then there exists α ∈ (0, 1) such that

q ∼ [αp⊕ (1 − α)r].

Let us check whether some of the examples we discussed earlier satisfy

these two axioms.

• Expected utility: Note that the function U(p) is linear:

U(⊕K
k=1αkp

k) =
∑

z∈Z

[⊕K
k=1αkp

k](z)v(z) =
∑

z∈Z

[

K
∑

k=1

αkp
k(z)

]

v(z)

=

K
∑

k=1

αk

[

∑

z∈Z

pk(z)v(z)

]

=

K
∑

k=1

αkU(pk).

It follows that any such preference relation satisfies I. Since the

function U(p) is continuous in the probability vector, it also satis-

fies C.

• Increasing the probability of a “good” consequence: Such a prefer-

ence relation satisfies the two axioms since it can be represented

by the expectation of v where v(z) = 1 for z ∈ G and v(z) = 0 for

z ∈ B.
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• Preferences for most likelihood : This preference relation is contin-

uous (as the function max{p1, . . . , pK} that represents it is con-

tinuous in probabilities). It does not satisfy I since, for example,

although [z1] ∼ [z2], [z1] = 1/2[z1]⊕ 1/2[z1] ≻ 1/2[z1]⊕ 1/2[z2].

• Lexicographic preferences : Such a preference relation satisfies I

but not C (verify).

• The worst case: The preference relation does not satisfy C. In

the two-prize case where v(z1) > v(z2), [z1] ≻ 1/2[z1]⊕ 1/2[z2].

Viewed as points in R
2
+, we can rewrite this as (1, 0) ≻ (1/2, 1/2).

Any neighborhood of (1, 0) contains lotteries that are not strictly

preferred to (1/2, 1/2), and thus C is not satisfied. The preference

relation also does not satisfy I ([z1] ≻ [z2] but 1/2[z1]⊕ 1/2[z2] ∼
[z2].)

Utility Representation

By Debreu’s theorem we know that for any relation % defined on the

space of lotteries that satisfies C, there is a utility representation U :

L(Z) → R, continuous in the probabilities, such that p % q iff U(p) ≥
U(q). We will use the above axioms to isolate a family of preference re-

lations that have a representation by a more structured utility function.

Theorem (vNM):

Let % be a preference relation over L(Z) satisfying I and C. There are

numbers (v(z))z∈Z such that

p % q iff U(p) = Σz∈Zp(z)v(z) ≥ U(q) = Σz∈Zq(z)v(z).

Note the distinction between U(p) (the utility number of the lottery

p) and v(z) (called the Bernoulli numbers or the vNM utilities). The

function v is a utility function representing the preferences on Z and

is the building block for the construction of U(p), a utility function

representing the preferences on L(Z). We often refer to v as a vNM

utility function representing the preferences % over L(Z).

Proof:

Let M and m be a best and a worst certain lotteries in L(Z).

Consider first the case thatM ∼ m. It follows from I∗ that p ∼ m for

any p and thus p ∼ q for all p,q ∈ L(Z). Thus, any constant utility func-

tion represents%. Choosing v(z) = 0 for all z, we have Σ
z∈Z

p(z)v(z) = 0

for all p ∈ L(Z).
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Now consider the case that M ≻ m. By C∗ and the lemma, there is

a single number v(z) ∈ [0, 1] such that v(z)M ⊕ (1−v(z))m ∼ [z]. (In

particular, v(M) = 1 and v(m) = 0). By I∗ we obtain that

p ∼ (Σz∈Zp(z)v(z))M ⊕ (1− Σz∈Zp(z)v(z))m.

And by the lemma p % q iff Σz∈Zp(z)v(z) ≥ Σz∈Zq(z)v(z).

The Uniqueness of vNM Utilities

The vNM utilities are unique up to positive affine transformation (namely,

multiplication by a positive number and adding any scalar) and are not

invariant to arbitrary monotonic transformation. Consider a preference

relation % defined over L(Z) and let v(z) be the vNM utilities represent-

ing the preference relation. Of course, defining w(z) = αv(z) + β for all z

(for some α > 0 and some β), the utility functionW (p) = Σz∈Zp(z)w(z)

also represents %.

Furthermore, assume that W (p) = Σzp(z)w(z) represents the prefer-

ences % as well. We will show that w must be a positive affine transfor-

mation of v. To see this, let α > 0 and β satisfy

w(M) = αv(M) + β and w(m) = αv(m) + β

(the existence of α> 0 and β is guaranteed by v(M)>v(m) and w(M) >

w(m)). For any z ∈ Z there must be a number p such that [z] ∼ pM ⊕
(1− p)m, so it must be that

w(z) = pw(M) + (1− p)w(m)

= p[αv(M) + β] + (1− p)[αv(m) + β]

= α[pv(M) + (1− p)v(m)] + β

= αv(z) + β.

The Dutch Book Argument

There are those who consider expected utility maximization to be a

normative principle. One of the arguments made to support this view

is the following Dutch book argument. Assume that L1 ≻ L2 but that

αL⊕ (1 − α)L2 ≻ αL⊕ (1− α)L1. We can perform the following trick

on the decision maker:

1. Take αL⊕ (1− α)L1 (we can describe this as a contingency with

random event E, which we both agree has probability 1− α).
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2. Take instead αL⊕ (1 − α)L2, which you prefer (and you pay me

something . . .).

3. Let us agree to replace L2 with L1 in case E occurs (and you pay

me something now).

4. Note that you hold αL⊕ (1− α)L1.

5. Let us start from the beginning . . .

A Discussion of the Plausibility of the vNM Theory

Many experiments reveal systematic deviations from vNM assumptions.

The most famous one is the Allais paradox. One version of it (see

Kahneman and Tversky (1979)) is the following:

Choose first between

L1 = 0.25[3, 000]⊕ 0.75[0] and L2 = 0.2[4, 000]⊕ 0.8[0]

and then choose between

L3 = 1[3, 000] and L4 = 0.8[4, 000]⊕ 0.2[0].

Note that L1 = 0.25L3 ⊕ 0.75[0] and L2 = 0.25L4 ⊕ 0.75[0]. Axiom

I requires that the preference between L1 and L2 be respectively the

same as that between L3 and L4. However, in experiments a majority

of people express the preferences L1 ≺ L2 and an even larger majority

express the preferences L3 ≻ L4. This phenomenon persists even among

graduate students in economics. Among about 228 graduate students

at Princeton, Tel Aviv, and NYU, although they were asked to respond

to the above two choice problems on line one after the other, 68% chose

L2 while 78% chose L3. This means that at least 46% of the students

violated property I.

The Allais example demonstrates (again) the sensitivity of preference

to the framing of the alternatives. When the lotteries L1 and L2 are

presented as they are above, most prefer L2. But, if we present L1 and

L2 as the compound lotteries L1 = 0.25L3 ⊕ 0.75[0] and L2 = 0.25L4 ⊕
0.75[0], most subjects prefer L1 to L2.
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Comment:

In the proof of the vNM theorem we have seen that the independence

axiom implies that if one is indifferent between z and z′, one is also

indifferent between z and any lottery with z and z′ as its prizes. This is

not plausible in cases in which one takes into account the fairness of the

random process that selects the prizes. For example, consider a parent

in a situation where he has one gift and two children, M and Y (guess

why I chose these letters). His options are to choose a lottery L(p) that

will award M the gift with probability p and Y with probability 1− p.

The parent does not favor one child over the other. The vNM approach

“predicts” that he will be indifferent among all lotteries that determine

who receives the gift, while common sense tells us usually he will strictly

prefer L(1/2).

Subjective Expected Utility (de Finetti’s)

In the above discussion, a lottery was a description of the probabilities

with which each of the prizes is obtained. In many contexts, an alter-

native induces an uncertain consequence that depends on certain events

though the probabilities of those events are not given. The attitude of

the decision maker to an alternative will depend on his assessment of

the likelihoods of those events. In this section, we will demonstrate the

basic idea of eliciting probabilities from preferences.

The major work in this area is Savage’s model. However, Savage’s

axiomatization is quite complicated, and we will make do here with a

very simple model (due to de Finetti) that demonstrates an important

component of the approach.

In this model, the notion of a lottery is replaced by a notion of a bet.

Think about someone betting on a race with K horses (and, needless to

say, the set of horses represents an exhaustive list of exclusive events). A

bet is a vector (x1, . . . , xK) with the interpretation that if horse k wins

the decision maker receives $xk (xk can be any real number). Let B be

the set of all bets. Assume that the better has a preference relation on

B.

We will consider three properties of the preference relation:

• Continuity: The standard continuity property we use on the Eu-

clidean space.

• Weak Monotonicity: If xk > yk for all k, then x ≻ y.
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• Additivity: If x % y, then x+ z % y + z for all z. (Note that this

implies that if x ≻ y, then x+ z ≻ y + z for all z.)

A possible interpretation of the additivity property is as follows: As-

sume that the wealth of the decision maker has two components: One

of them, z, is independent of the choice between the different bets. The

other depends on the bet he chooses: x or y. Additivity states that the

attitude of the decision maker to the bets x and y is independent of z.

Claim:

A preference relation % satisfies Continuity, Weak Monotonicity, and

Additivity if and only if there is a probability vector (π1, . . . , πK) such

that x % y if and only if
∑

πkxk ≥∑ πkyk.

Proof:

Actually, we have already proved this claim for K = 2 (see Problem Set

2 Question 6). We will prove it now for an arbitrary K, using another

technique:

A preference relation represented by
∑

πkxk obviously satisfies all the

three properties.

In the other direction, assume that % satisfies the three properties.

First, consider the two sets U = {x| x % 0} and D = {x| 0 ≻ x}. Both

are nonempty. By continuity U is closed and D is open. Note that

if x % 0 and y % 0, then by Additivity x+ y % y % 0. Furthermore,

by Additivity if x % 0, then for all λ = m/2n we have λx % 0 and by

Continuity λx % 0 for all λ. Thus, if x % 0 and y % 0, then λx % 0,

(1− λ)y % 0, and λx+ (1 − λ)y % 0, that is, U is convex. Similarly, D

is convex. By the definition of a preference relation, the sets U and D

provide a partition of RK , that is, U ∪D = R
K and U ∩D = ∅.

Now use a separation theorem to conclude that there exists a non-zero

vector π = (π1, . . . , πK) and a number c such that U = {x|πx ≥ c} and

D = {x|πx < c}. By Weak Monotonicity, it is easy to see that c = 0,

π 6= 0, and πk ≥ 0 for all k. Thus, without loss of generality we can

assume
∑

πk = 1.

Now, x % y if and only if x− y % 0 if and only if π(x− y) ≥ 0 if and

only if πx ≥ πy.
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Problem Set 7

Problem 1. (Standard)
Consider the following preference relations that were described in the text:

“the size of the support” and “comparing the most likely prize”.

a. Check carefully whether they satisfy axioms I and C.

b. These preference relations are not immune to a certain “framing prob-

lem”. Explain.

Problem 2. (Standard. Based on Markowitz (1959).)

One way to construct preferences over lotteries with monetary prizes is by

evaluating each lottery L on the basis of two numbers: Ex(L), the expectation

of L, and var(L), L’s variance. Such a construction may or may not be

consistent with vNM assumptions.

a. Show that the function u(L) = Ex(L)− (1/4)var(L) induces a prefer-

ence relation that is not consistent with the vNM assumptions. (For ex-

ample, consider the mixtures of each of the lotteries [1] and 0.5[0] ⊕ 0.5[4]

with the lottery 0.5[0] ⊕ 0.5[2].)

b. Show that the utility function u(L) = Ex(L)− (Ex(L))2 − var(L) is

consistent with vNM assumptions.

Problem 3. (Standard)
A decision maker has a preference relation % over the space of lotteries L(Z)

having a set of prizes Z. On Sunday he learns that on Monday he will be

told whether he has to choose between L1 and L2 (probability 1 > α > 0) or

between L3 and L4 (probability 1− α). He will make his choice at that time.

Let us compare between two possible approaches the decision maker can

take.

Approach 1 : He delays his decision to Monday (“why bother with the de-

cision now when I can make up my mind tomorrow . . .”).

Approach 2 : He makes a contingent decision on Sunday regarding what

he will do on Monday, that is, he decides what to do if he faces the choice

between L1 and L2 and what to do if he faces the choice between L3 and L4

(“On Monday morning I will be so busy . . .”).

a. Formulate Approach 2 as a choice between lotteries.
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b. Show that if the preferences of the decision maker satisfy the indepen-

dence axiom, then his choice under Approach 2 will always be the same

as under Approach 1.

Problem 4. (Difficult)

A decision maker is to choose an action from a set A. The set of consequences

is Z. For every action a ∈ A the consequence z∗ is realized with probability

α, and any z ∈ Z − {z∗} is realized with probability r(a, z) = (1− α)q(a, z).

a. Assume that after making his choice he is told that z∗ will not occur and

is given a chance to change his decision. Show that if the decision maker

obeys the Bayesian updating rule and follows vNM axioms, he will not

change his decision.

b. Give an example where a decision maker who follows a nonexpected

utility preference relation or obeys a non-Bayesian updating rule is not

time consistent.

Problem 5. (Standard)
Assume there is a finite number of income levels. An income distribution

specifies the proportion of individuals at each level. Thus, an income distri-

bution has the same mathematical structure as a lottery. Consider the binary

relation “one distribution is more egalitarian than another”.

a. Why is the von Neumann–Morgenstern independence axiom inappropri-

ate for characterizing this type of relation?

b. Suggest and formulate a property that is appropriate, in your opinion,

as an axiom for this relation. Give two examples of preference relations

that satisfy this property.

Problem 6. (Difficult. Based on Miyamoto, Wakker, Bleichrodt, and Peters

(1998).)

A decision maker faces a trade-off between longevity and quality of life. His

preference relation ranks lotteries on the set of all certain outcomes of the form

(q, t) defined as “a life of quality q and length t” (where q and t are nonneg-

ative numbers). Assume that the preference relation satisfies von Neumann–

Morgenstern assumptions and that it also satisfies the following:

1. There is indifference between any two certain lotteries [(q, 0)] and [(q′, 0)].

2. Risk neutrality with respect to life duration: An uncertain lifetime of

expected duration T is equally preferred to a certain lifetime duration T

when q is held fixed.

3. Whatever quality of life, the longer the life the better.
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a. Show that the preference relation derived from maximizing the expecta-

tion of the function v(q)t, where v(q) > 0 for all q satisfies the assump-

tions.

b. Show that all preference relations satisfying the above assumptions can

be represented by an expected utility function of the form v(q)t, where

v is a positive function.

Problem 7. (Food for thought)

Consider a decision maker who systematically calculates that 2 + 3 = 6. Con-

struct a “money pump” argument against him. Discuss the argument.



LECTURE 8

Risk Aversion

Lotteries with Monetary Prizes

We proceed to a discussion of a decision maker satisfying vNM assump-

tions where the space of prizes Z is a set of real numbers and a ∈ Z is

interpreted as “receiving $a”. Note that in Lecture 7 we assumed the

set Z is finite; here, in contrast, we apply the expected utility approach

to a set that is infinite. For simplicity we will still consider only lotter-

ies with finite support. In other words, in this lecture, a lottery p is a

real function on Z such that p(z) ≥ 0 for all z ∈ Z, and there is a finite

set Y such that
∑

z∈Y p(z) = 1. It is easy to extend the axiomatization

presented in Lecture 7 for this case.

We will make special assumptions that fit the interpretation of the

members of Z as sums of money. Recall [x] denotes the lottery that yields

the prize x with certainty. We will say that % satisfies monotonicity if

a > b implies [a] ≻ [b].

From here on we focus the discussion on preference relations over

the space of lotteries for which there is a continuous function u, such

that the preference relation over lotteries is represented by the function

Eu(p) =
∑

z∈Z p(z)u(z). The function Eu assigns to the lottery p the

expectation of the random variable that receives the value u(x) with a

probability p(x).

The following argument, called the St. Petersburg Paradox, is some-

times presented as a justification for assuming that vNM utility func-

tions are bounded. Assume that a decision maker has an unbounded

vNM utility function u. Consider playing the following “trick” on him:

1. Assume he possesses wealth x0.

2. Offer him a lottery that will reduce his wealth to 0 with probability

1/2 and will increase his wealth to x1 with probability 1/2 so that

u(x0) < [u(0) + u(x1)]/2. By the unboundedness of u, there exists

such an x1.
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3. If he loses, you are happy. If he is lucky, a moment before you give

him x1, offer him a lottery that will give him x2 with probability 1/2

and 0 otherwise, where x2 is such that u(x1) < [u(0) + u(x2)]/2.

4. And so on . . .

Our (poor) decision maker will find himself with wealth 0 with proba-

bility 1!

First-Order Stochastic Domination

We say that p first-order stochastically dominates q (written as pD1q) if

p % q for any % on L(Z) satisfying vNM assumptions as well as mono-

tonicity in money. That is, pD1q if Eu(p) ≥ Eu(q) for all increasing u.

This is the simplest example of questions of the type: “Given a set of

preference relations on L(Z), for what pairs p, q ∈ L(Z) is p % q for all

% in the set?” In the problem set you will discuss another example of

this kind of question.

Obviously, pD1q if the entire support of p is to the right of the entire

support of q. But we are concerned with a more interesting condition

on a pair of lotteries p and q, one that will be not only sufficient but

also necessary for p to first-order stochastically dominate q.

For any lottery p and a number x, define G(p, x) =
∑

z≥x p(z) (the

probability that the lottery p yields a prize at least as high as x). Denote

by F (p, x) the cumulative distribution function of p, that is, F (p, x) =
∑

z≤x p(z).

Claim:

pD1q iff for all x, G(p, x) ≥ G(q, x) (alternatively, pD1q iff for all x,

F (p, x) ≤ F (q, x)). (See fig. 8.1.)

Proof:

Let x0 < x1 < x2 < . . . < xK be the prizes in the union of the supports

of p and q. First, note the following alternative expression for Eu(p):

Eu(p) =
∑

k≥0

p(xk)u(xk) = u(x0) +
∑

k≥1

G(p, xk)(u(xk)− u(xk−1)).

Now, if G(p, xk) ≥ G(q, xk) for all k, then for all increasing u,

Eu(p) = u(x0) +
∑

k≥1

G(p, xk)(u(xk)− u(xk−1)) ≥
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Figure 8.1
p first-order stochastically dominates q.

u(x0) +
∑

k≥1

G(q, xk)(u(xk)− u(xk−1)) = Eu(q).

Conversely, if there exists k∗ for which G(p, xk∗ ) < G(q, xk∗), then

we can find an increasing function u so that Eu(p) < Eu(q), by setting

u(xk∗)− u(xk∗−1) to be very large and the other increments to be very

small.

Risk Aversion

We say that % is risk averse if for any lottery p, [Ep] % p.

We will see now that for a decision maker with preferences % obeying

the vNM axioms, risk aversion is closely related to the concavity of the

vNM utility function representing %.

First recall some basic properties of concave functions (if you are not

familiar with those properties, this will be an excellent opportunity for

you to prove them yourself):

1. An increasing and concave function must be continuous (but not

necessarily differentiable).

2. The Jensen Inequality: If u is concave, then for anyfinite sequence

(αk)k=1,...,K of positive numbers that sum up to 1, u(
∑K

k=1 αkxk) ≥
∑K

k=1 αku(xk).
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3. The Three Strings Lemma: For any a < b < c we have

[u(c)− u(b)]/(c− b) ≤ [u(c)− u(a)]/(c− a) ≤ [u(b)− u(a)]/(b− a).

4. If u is twice differentiable, then for any a < c, u′(a) ≥ u′(c), and

thus u′′(x) ≤ 0 for all x.

Claim:

Let% be a preference on L(Z) represented by the vNM utility function u.

The preference relation % is risk averse iff u is concave.

Proof:

Assume that u is concave. By the Jensen Inequality, for any lottery p,

u(E(p)) ≥ Eu(p) and thus [E(p)] % p.

Assume that % is risk averse and that u represents %. For all α ∈
(0, 1) and for all x, y ∈ Z, we have by risk aversion [αx+ (1− α)y] %

αx⊕ (1− α)y and thus u(αx+ (1− α)y) ≥ αu(x) + (1− α)u(y), that

is, u is concave.

Certainty Equivalence and the Risk Premium

Let E(p) be the expectation of the lottery p, that is, E(p) =
∑

z∈Z p(z)z.

Given a preference relation % over the space L(Z), the certainty equiv-

alence of a lottery p, CE(p), is a prize satisfying [CE(p)] ∼ p. (Verify

the existence of CE(p) is guaranteed by assuming that % is monotonic

in the sense that if pD1q, then p ≻ q and continuous in the sense that

the sets {c ∈ R | [c] ≻ p} and {c ∈ R | p ≻ [c]} are open). The risk pre-

mium of p is the difference R(P ) = E(p)− CE(p). By definition, the

preferences are risk averse if and only if R(p) ≥ 0 for all p. (See fig. 8.2.)

The “More Risk Averse” Relation

We wish to formalize the statement “one decision maker is more risk

averse than another”. To understand the logic of the following defini-

tions let us start with an analogous phrase: “A is more war averse than

B”. One possible meaning of this phrase is that whenever A is ready to

go to war, B is as well. Another possible meaning is that when facing the

threat of war, A is ready to agree to a less attractive compromise than

B is. (Note that the assumption that A and B share the same concepts
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Figure 8.2
CE and risk premium.

Figure 8.3
1 is more risk averse than 2.

of “war” and “peace” is implicit in these interpretations.) The following

two definitions are analogous to these two interpretations. (See fig. 8.3.)

1. The preference relation %1 is more risk averse than %2 if, for any

lottery p and degenerate lottery c, p %1 c implies that p %2 c.

In case the preferences are monotonic, we have a second definition:
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2. The preference relation %1 is more risk averse than %2 if CE1(p) ≤
CE2(p) for all p.

In case the preferences satisfy vNM assumptions, we have a third

definition:

3. Let u1 and u2 be vNM utility functions representing %1 and %2,

respectively. The preference relation %1 is more risk averse than

%2 if the function ϕ, defined by u1(t) = ϕ(u2(t)), is concave.

Note that definition (1) is meaningful in any space of prizes (not only

those in which consequences are numerical) and for a general set of

preferences (and not only those satisfying vNM assumptions).

Claim:

If both %1 and %2 are preference relations on L(Z) represented by in-

creasing and continuous vNM utility functions, then the three definitions

are equivalent.

Proof:

• If (2), then (1).

Assume (2). If p %1 [c], then by transitivity [CE1(p)] %1 [c] and

by the monotonicity of %1 we have CE1(p) ≥ c, which implies also

that CE2(p) ≥ c, and by transitivity of %2, p %2 [c].

• If (3) then (2).

By definition, Eui(p)=ui(CEi(p)). Thus, CEi(p)=u
−1
i (Eui(p)).

If ϕ = u1u
−1
2 is concave, then by the Jensen Inequality:

u1(CE2(p)) = u1(u
−1
2 (Eu2(p)) = ϕ

(

∑

x

p(x)u2(x)

)

≥

(

∑

x

p(x)ϕu2(x)

)

=
∑

x

p(x)u1(x) = E(u1(p)) = u1(CE1(p)).

Since u1 is increasing, CE2(p) ≥ CE1(p).

• If (1), then (3).

Consider three numbers u2(x) < u2(y) < u2(z) in the range of u2
and let λ ∈ (0, 1) satisfy u2(y) = λu2(x) + (1 − λ)u2(z). Let us

prove that u1(y) ≥ λu1(x) + (1 − λ)u1(z).

If u1(y) < λu1(x) + (1− λ)u1(z), then for some µ > λ we have

u1(y) < µu1(x) + (1− µ)u1(z) and u2(y) > µu2(x) + (1− µ)u2(z),

that is, y ≺1 µx⊕ (1− µ)z and y ≻2 µx⊕ (1− µ)z, which con-
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tradicts (1). Therefore, y %1 λx ⊕ (1− λ)z and u1(y) ≥ λu1(x) +

(1 − λ)u1(z). That is, ϕ(u2(y)) ≥ λϕ(u2(x)) + (1− λ)ϕ(u2(z)).

Thus, ϕ is concave.

The Coefficient of Absolute Risk Aversion

The following is another definition of the relation “more risk averse” ap-

plied to the case in which vNM utility functions are twice differentiable:

4. Let u1 and u2 be twice differentiable vNM utility functions rep-

resenting %1 and %2, respectively. The preference relation %1 is

more risk averse than %2 if r1(x) ≥ r2(x) for all x, where ri(x) =

−u′′i (x)/u′i(x).

The number r(x) = −u′′(x)/u′(x) is called the coefficient of absolute

risk aversion of u at x. We will see that a higher coefficient of absolute

risk aversion means a more risk-averse decision maker.

To see that (3) and (4) are equivalent, note the following chain of

equivalences:

• Definition (3) (i.e., u1u
−1
2 is concave) is satisfied iff

• the function d/dt[u1(u
−1
2 (t))] is nonincreasing in t iff

• u′1(u
−1
2 (t))/u′2(u

−1
2 (t)) is nonincreasing in t (since (ϕ−1)′(t) = 1/ϕ′(ϕ−1(t)))

iff

• u′1(x)/u
′
2(x) is nonincreasing in x (since u−1

2 (t) is increasing in t)

iff

• log [(u′1/u
′
2)(x)] = log u′1(x)− log u′2(x) is nonincreasing in x iff

• the derivative of log u′1(x)− log u′2(x) is nonpositive iff

• r2(x) − r1(x) ≤ 0 for all x where ri(x) = −u′′i (x)/u′i(x) iff
• definition (4) is satisfied.

For a better understanding of the coefficient of absolute risk aversion,

it is useful to look at the preferences on the restricted domain of lot-

teries of the type (x1, x2) = px1 ⊕ (1− p)x2, where the probability p is

fixed. Denote by u a continuously differentiable vNM utility function

that represents a risk-averse preference.

Let x2 = ψ(x1) be the function describing the indifference curve through

(t, t), the point representing [t]. Thus, ψ(t) = t.

It follows from risk aversion that all lotteries with expectation t, that

is, all lotteries on the line {(x1, x2)| px1 + (1− p)x2 = t}, are not above
the indifference curve through (t, t). Thus, ψ′(t) = −p/(1− p).
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Figure 8.4
1 is more risk averse than 2.

By definition of u as a vNM utility function representing the pref-

erences over the space of lotteries, we have pu(x1) + (1 − p)u(ψ(x1)) =

u(t). Taking the derivative with respect to x1, we obtain pu′(x1) +

(1−p)u′(ψ(x1))ψ′(x1) = 0. Taking the derivative with respect to x1 once

again, we obtain

pu′′(x1) + (1−p)u′′(ψ(x1))[ψ′(x1)]
2 + (1− p)u′(ψ(x1))ψ

′′(x1) = 0.

At x1 = t we have

pu′′(t) + u′′(t)p2/(1−p) + (1−p)u′(t)ψ′′(t) = 0.

Therefore,

ψ′′(t) = −u′′(t)/u′(t)[p/(1−p)2] = r(t)[p/(1−p)2].

Note that on this restricted space of lotteries, %1 is more risk averse

than %2 in the sense of definition (1) iff the indifference curve of %1

through (t, t), denoted by ψ1, is never below the indifference curve of %2

through (t, t), denoted by ψ2. Combined with ψ′
1(t) = ψ′

2(t), we obtain

that ψ′′
1 (t) ≥ ψ′′

2 (t) and thus r2(t) ≤ r1(t). (See fig. 8.4.)

The Doctrine of Consequentialism

Conduct the following “thought experiment”:

You have $2, 000 in your bank account. You have to choose between
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1. a sure loss of $500

and

2. a lottery in which you lose $1, 000 with probability 1/2 and lose 0

with probability 1/2.

What is your choice?

Now assume that you have $1, 000 in your account and that you have

to choose between

3. a certain gain of $500

and

4. a lottery in which you win $1, 000 with probability 1/2 and win 0

with probability 1/2.

What is your choice?

Of Kahneman and Tversky (1979)’s subjects, in the first case 69%

preferred the lottery to the certain loss (i.e., they chose (2)), while in

the second case 84% preferred the certain gain of $500 (i.e., they chose

(3)). These results indicate that about half of the population exhibit

a preference for (2) over (1) and (3) over (4). Such a preference does

not conflict with expected utility theory if we interpret a prize to reflect

a “monetary change”. However, if we assume that the decision maker

takes the final wealth levels to be his prizes, we have a problem: in terms

of final wealth levels, both choice problems are between a certain $1, 500

and a lottery that yields $2, 000 or $1, 000 with probability 1/2 each.

Nevertheless, in the economic literature it is usually assumed that

a decision maker’s preferences over wealth changes are induced from

his preferences with regard to “final wealth levels”. Formally, when

starting with wealth w, denote by %w the decision maker’s preferences

over lotteries in which the prizes are interpreted as “changes” in wealth.

By the doctrine of consequentialism all relations %w are derived from

the same preference relation, %, defined over the “final wealth levels”

by p %w q iff w + p % w + q (where w + p is the lottery that awards a

prize w + x with probability p(x)). If % is represented by a vNM utility

function u, this doctrine implies that for all w, the function vw(x) =

u(w + x) is a vNM utility function representing the preferences %w.

Invariance to Wealth

We say that the preference relation % exhibits invariance to wealth (of-

ten called constant absolute risk aversion) if the induced preference re-
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lation %w is independent of w, that is, (w + L1) % (w + L2) is true or

false independent of w.

Claim:

Assume that u is a vNM utility function representing preferences %,

which are monotonic and exhibit risk aversion and invariance to wealth.

Then u must be exponential or linear.

Proof:

Let ∆ be an arbitrary positive number. Verify that it is sufficient to

prove the claim while confining ourselves to a ∆− grid prize space Z =

{x | x = n∆ for some integer n}.
For any wealth level x there is a number q ≥ 1/2 such that (1− q)(x−

∆)⊕ q(x+∆) ∼ x. By invariance to wealth, q is independent of x.

Thus, we have u(x+∆)− u(x) = ((1− q)/q)[u(x)− u(x−∆)] for all

x ∈ Z. This means that the increments in the function u, when x is in-

creased by ∆, constitute a geometric sequence with a factor of (1− q)/q

(where q might depend on ∆). If q > 1/2 and using the formula for the

sum of a geometric sequence, we conclude that the function u, defined

on the ∆− grid, must equal a− b(1−q
q )

x
∆ for some a and b. If q = 1/2,

then the function u must equal a+ b x
∆ .

Note that the comparison of the lottery [0] to the simple lotteries

involving a gain and loss of ∆ are sufficient to characterize a unique

preference relation that is consistent with: (i) the doctrine of conse-

quentialism, (ii) the assumption that the preferences regarding lotteries

over changes in wealth are independent of the initial wealth and (iii) the

expected utility assumptions regarding the space of lotteries in which

the prizes are the final wealth levels. A number of researchers have tried

to reveal the decision maker’s preferences experimentally under the as-

sumptions using the following question: “What is the probability q that

would make you indifferent between a gain of $∆ with probability q and

a loss of $∆ with probability 1− q?” The findings have varied. More-

over, asking individuals different versions of this type of question can be

expected to produce inconsistent answers.

Assuming that the function u is differentiable, we could prove the

claim in another way by looking at the preferences restricted to the

space of all lotteries of the type (x1, x2) = px1 ⊕ (1− p)x2 for some arbi-

trary fixed probability p ∈ (0, 1). Denote the indifference curve through

(t, t) by x2 = ψt(x1). Thus, [t] ∼ px1 ⊕ (1 − p)ψt(x1). Since % exhibits
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constant absolute risk aversion, it must be that [0] ∼ p(x1 − t)⊕ (1 −
p)(ψt(x1)− t) and thus ψ0(x1 − t) = ψt(x1)− t or ψt(x1) = ψ0(x1 −
t) + t. In other words, the indifference curve through (t, t) is the in-

difference curve through (0, 0) shifted in the direction of (t, t).

We derive from this that ψ′′
t (t) = ψ′′

0 (0). Since we have already shown

that ψ′′
t (t) = −[p/(1−p)2][u′′i (t)/u′i(t)], and thus there exists a constant

α such that −u′′(t)/u′(t) = α for all t. This implies that [log u′(t)]′ = −α
for all t and log u′(t) = −αt+ β for some β. It follows that u′(t) =

e−αt+β. If α = 0, the function u(t) must be linear (implying risk neu-

trality). If α 6= 0, it must be that u is an affine transformation of the

function −e−αt (with α > 0).

Critique of the Doctrine of Consequentialism

Consider a risk-averse decision maker who likes money, obeys expected

utility theory, and adheres to the doctrine of consequentialism. Ra-

bin (2000) noted that if such a decision maker turns down the lottery

L = 1/2(−10)⊕ 1/2(+11), at any wealth level between $0 and $5, 000

(a quite plausible assumption), then at the wealth level $4, 000 he must

reject the lottery 1/2(−100)⊕ 1/2(+71, 000) (a quite ridiculous conclu-

sion).

The intuition for this observation is quite simple. Since L is rejected

at w + 10, we have that u(w + 10) ≥ [u(w + 21) + u(w)]/2. Therefore,

u(w + 10)− u(w) ≥ u(w + 21)− u(w + 10) or

10

11

(

u(w + 10)− u(w)

10

)

≥ u(w + 21)− u(w + 10)

11
.

By the concavity of u the right-hand side of this equation is at least as

high as the marginal utility at w + 21, whereas the left-hand side is at

most 10/11 times the marginal utility at w. Thus the marginal utility

at w + 21 is at most 10/11 the marginal utility at w.

Thus, the sequence of marginal utilities within the domain of wealth

levels in which L is rejected falls at least in a geometric rate. This

implies that for the lottery 1/2(−D)⊕ 1/2(+G) to be accepted even for

a relatively low D, one would need a huge G.

What conclusions should we draw from this observation? In my opin-

ion, in contrast to what some scholars claim, this is not a refutation of

expected utility theory. Rabin’s argument relies on the doctrine of con-

sequentialism, which is not a part of expected utility theory. Expected

utility theory is invariant to the interpretation of the prizes. Indepen-
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dently of the theory of decision making under uncertainty that we use,

the set of prizes should be the set of consequences in the mind of the de-

cision maker. Thus, it is equally reasonable to assume the consequences

are “wealth changes” or “final wealth levels”.

I treat Rabin’s argument as further evidence of the empirically prob-

lematic nature of the doctrine of consequentialism according to which

the decision maker makes all decisions having in mind a preference re-

lation over the same set of final consequences. It also demonstrates how

carefully we should tread when trying to estimate real-life agents’ utility

functions. The practice of estimating an economic agent’s risk aversion

parameters for small lotteries might lead to misleading conclusions if

such estimates are used to characterize the decision maker’s preferences

regarding lotteries over large sums.
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Problem 1. (Standard)

a. Show that a sequence of numbers (a1, . . . , ak) satisfies that
∑

akxk ≥ 0

for all vectors (x1, . . . , xk) such that xk > 0 for all k iff ak ≥ 0 for all k.

b. Show that a sequence of numbers (a1, . . . , ak) satisfies that
∑

akxk ≥ 0

for all vectors (x1, . . . , xk) such that x1 > x2 > . . . > xK > xK+1 = 0 iff
∑l

k=1 ak ≥ 0 for all l.

Problem 2. (Standard. Based on Rothschild and Stiglitz (1970).)

We say that p second-order stochastically dominates q and denote this by pD2q

if p % q for all preferences % satisfying the vNM assumptions, monotonicity,

and risk aversion.

a. Explain why pD1q implies pD2q.

b. Let p and ε be lotteries. Define p+ ε to be the lottery that yields the

prize t with the probability Σα+β=tp(α)ε(β). Interpret p+ ε. Show that

if ε is a lottery with expectation 0, then for all p, pD2(p+ ε).

c. (More difficult) Show that pD2q if and only if for all t < K,Σt
k=0[G(p, xk+1)−

G(q, xk+1)][xk+1 − xk] ≥ 0 where x0 < . . . < xK are all the prizes in the

support of either p or q and G(p, x) = Σz≥xp(z).

Problem 3. (Standard. Based on Slovic and Lichtenstein (1968).)

Consider a phenomenon called preference reversal. Let L1 = 8/9[$4] ⊕ 1/9[$0]

and L2 = 1/9[$40] ⊕ 8/9[$0].

Discuss the phenomenon that many people prefer L1 to L2, but when asked

to evaluate the certainty equivalence of these lotteries, they attach a lower

value to L1 than to L2.

Problem 4. (Standard)
Consider a consumer’s preference relation over K-tuples describing quantities

of K uncertain assets. Denote the random return on the k’th asset by Zk.

Assume that the random variables (Z1, . . . , ZK) are independent and take

positive values with probability 1. If the consumer buys the combination of

assets (x1, . . . , xK) and if the vector of realized returns is (z1, . . . , zK), then

the consumer’s total wealth is
∑K

k=1 xkzk. Assume that the consumer satisfies

vNM assumptions, that is, there is a function v (over the sum of his returns)

so that he maximizes the expected value of v. Assume that v is increasing

and concave. The consumer preferences over the space of the lotteries induce

preferences on the space of investments. Show that the induced preferences

are monotonic and convex.
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Problem 5. (Standard. Based on Rubinstein (2002).)

Adam lives in the Garden of Eden and eats only apples. Time in the garden

is discrete (t = 1, 2, . . .) and apples are eaten only in discrete units. Adam

possesses preferences over the set of streams of apple consumption. Assume

that:

a. Adam likes to eat up to 2 apples a day and cannot bear to eat 3 apples

a day.

b. Adam is impatient. He would be delighted to increase his consumption

on day t from 0 to 1 or from 1 to 2 apples at the expense of an apple he

is promised a day later.

c. In any day in which he does not have an apple, he prefers to get 1 apple

immediately in exchange for 2 apples tomorrow.

d. Adam expects to live for 120 years.

Show that if (poor) Adam is offered a stream of 2 apples starting in day 4

for the rest of his expected life, he would be willing to exchange that offer for

1 apple right away.

Problem 6. (Moderately difficult. Based on Yaari (1987).)

In this problem you will encounter Quiggin and Yaari’s functional, one of the

main alternatives to expected utility theory.

Recall that expected utility can be written as U(p) =
∑K

k=1 p(zk)u(zk) where

z0 < z1 < . . . < zK are the prizes in the support of p. LetW (p) =
∑K

k=1 f(Gp(zk))[zk −
zk−1], where f : [0, 1] → [0, 1] is a continuous increasing function and Gp(zk) =
∑

j≥k p(zj). (p(z) is the probability that the lottery p yields z and Gp is the

“anti-distribution” of p.)

a. The literature often refers to W as the dual expected utility operator.

In what sense is W dual to U?

b. Show that W induces a preference relation on L(z) that may not satisfy

the independence axiom.

c. What are the difficulties with a functional form of the type Σzf(p(z))u(z)?

(See Handa (1977).)

Problem 7. (The two envelopes paradox)

Assume that a number 2n is chosen with probability 2n/3n+1 and the amounts

of money 2n, 2n+1 are put into two envelopes. One envelope is chosen ran-

domly and given to you, and the other is given to your friend. Whatever the

amount of money in your envelope, the expected amount in your friend’s en-

velope is larger (verify it). Thus, it is worthwhile for you to switch envelopes

with him even without opening the envelope! What do you think about this

paradoxical conclusion?
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Social Choice

Aggregation of Preference Relations

When a rational decision maker forms a preference relation, it is often

on the basis of more primitive relations. For example, the choice of a

PC may depend on considerations such as “size of memory”, “ranking

by PC magazine”, and “price”. Each of these considerations expresses

a preference relation on the set of PCs. In this lecture we look at some

of the logical properties and problems that arise in the formation of

preferences on the basis of more primitive preference relations.

Although the aggregation of preference relations can be thought of in

a context of a single individual’s decision making, the classic context in

which preference aggregation is discussed is “social choice”, where the

“will of the people” is thought of as an aggregation of the preference

relations held by members of society.

The foundations of social choice theory lie in the “Paradox of Voting”.

LetX = {a, b, c} be a set of alternatives. Consider a society that consists

of three members called 1, 2, and 3. Their rankings of X are a ≻1 b ≻1 c,

b ≻2 c ≻2 a, and c ≻3 a ≻3 b. A natural criterion for the determination

of collective opinion on the basis of individuals’ preference relations is the

majority rule. According to the majority rule, a ≻ b, b ≻ c, and c ≻ a,

which conflicts with the transitivity of the social preferences. Note that

although the majority rule does not induce a transitive social relation

for all profiles of individuals’ preference relations, transitivity might be

obtained when we restrict ourselves to a smaller domain of profiles (see

problem 3 in the problem set).

The interest in social choice in economics is motivated by the recogni-

tion that explicit methods for the aggregation of preference relations are

essential for doing any welfare economics. Social choice theory is also re-

lated to the design of voting systems, which are methods for determining

social action on the basis of individuals’ preferences.
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The Basic Model

A basic model of social choice consists of the following:

• X : a set of social alternatives.

• N : a finite set of individuals (denote the number of elements in N

by n).

• ≻i: individual i’s ordering on X (an ordering is a preference rela-

tion with no indifferences, i.e., for no x 6= y, x ∼i y).

• Profile: An n-tuple of orderings (≻1, . . . ,≻n) interpreted as a cer-

tain “state of society”.

• SWF (Social Welfare Function): A function that assigns a single

(social) preference relation (not necessarily an ordering) to every

profile.

Note that

1. The assumption that the domain of an SWF includes only strict

preferences is made only for simplicity of presentation.

2. An SWF attaches a preference relation to every possible profile and

not just to a single profile.

3. The SWF is required to produce a complete preference relation. An

alternative concept, called Social Choice Function, attaches a social

alternative, interpreted as the society’s choice, to every profile of

preference relations.

4. An SWF aggregates only ordinal preference relations. The frame-

work does not allow us to make a statement, relevant in life for

determining social preferences, such as “the society prefers a to b

since agent 1 prefers b to a but agent 2 prefers a to b much more”.

5. In this model we cannot express a consideration of the type “I

prefer what society prefers”.

6. The elements in X are social alternatives. Thus, an individual’s

preferences may exhibit considerations of fairness and concern about

other individuals’ well-being.

Examples:

Let us consider some examples of aggregation procedures.

1. F (≻1, . . . ,≻n) = %∗ for some preference relation %∗. (This is a

degenerate SWF that does not account for the individuals’ prefer-

ences.)
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2. Define x→ z if a majority of individuals prefer x to z. Order the

alternatives by the number of “victories” they score, that is, x is

socially preferred to y if |{z|x→ z}| ≥ |{z|y → z}|.
3. For X = {a, b}, a % b unless 2/3 of the individuals prefer b to a.

4. “The anti-dictator”: There is an individual i so that x is preferred

to y if and only if y ≻i x.

5. Define d(≻;≻1, . . . ,≻n) as the number of (x, y, i) for which x ≻i y

and y ≻ x. The function d can be interpreted as the sum of the

distances between the preference relation ≻ and the n preference

relations of the individuals. Choose F (≻1, . . . ,≻n) to be an order-

ing that minimizes d(≻;≻1, . . . ,≻n) (ties are broken arbitrarily).

6. Let F (≻1, . . . ,≻n) be the ordering that is the most common among

(≻1, . . . ,≻n) (with ties broken in some predetermined way).

Axioms

Once again we use the axiomatization methodology. We suggest a set

of, hopefully sound, axioms on social welfare functions and study their

implications.

Let F be an SWF. We often use % as a short form of F (≻1, . . . ,≻n).

Condition Par (Pareto):

For all x, y ∈ X and for every profile (≻i)i∈N , if x ≻i y for all i, then

x ≻ y.

The Pareto axiom requires that if all individuals prefer one alternative

over the other, then the social preferences agree with the individuals’.

Condition IIA (Independence of Irrelevant Alternatives):

For any pair x, y ∈ X and any two profiles (≻i)i∈N and (≻′
i)i∈N if for

all i, x ≻i y iff x ≻′
i y, then x % y iff x %′ y.

The IIA condition requires that if two profiles agree on the relative

rankings of two particular alternatives, then the social preferences at-

tached to the two profiles also do.

Notice that IIA allows an SWF to apply one criterion when comparing

a to b and another when comparing c to d. For example, the simple social

preference between a and b can be determined according to majority rule

whereas that between c and d requires a 2/3 majority.
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Arrow’s Impossibility Theorem

If |X | ≥ 3, then any SWF F that satisfies conditions Par and IIA is

dictatorial, that is, there is some i∗ such that F (≻1, . . . ,≻n) ≡≻i∗ .

The theorem is based on four assumptions: Par, IIA, Transitivity

(of the social preferences) and |X | ≥ 3. Before presenting the proof,

we show that the assumptions are independent. Namely, for each of

the four assumptions, we present an example of a nondictatorial SWF

which demonstrates that the theorem does not hold if that assumption

is omitted.

• Par: An anti-dictatorial SWF satisfies IIA but not Par.

• IIA: Consider the Borda rule: Let w(1) > w(2) > . . . > w(|X |)
be a fixed profile of weights. We say that i assigns to x the score

w(k) if x appears in the k’th place in ≻i. Attach to x the sum

of the weights assigned to x by the n individuals and rank the

alternatives by those sums. The Borda rule is an SWF satisfying

Par but not IIA.

• Transitivity of the Social Order: The majority rule satisfies all

assumptions but can induce a relation that is not transitive.

• |X | ≥ 3: For |X | = 2, the majority rule satisfies Par and IIA and

induces a (trivial) transitive relation.

Proof of Arrow’s Impossibility Theorem

Let F be an SWF that satisfies Par and IIA. Hereinafter, we write %

instead of F (P ) and %′ instead of F (P ′).

Step 1:

Let b be an alternative andm be an integer between 1 and n. Consider a

profile P = (≻1, . . . ,≻n) such that for all i ≤ m, b is the best alternative

according to ≻i and for all other players b is the worst. Then b is either

the unique best or the unique worst alternative of %.

Proof:

If not, then there are two other distinct alternatives a and c such that a %

b % c. Consider P ′, a modification of P , such that for every individual

where c is below a in P it will ”jump” in P ′ to be just above a (and thus

for i ≤ m c will remain below b). By Par, c ≻′ a. Since the individuals’

relative rankings of a and b and of b and c are the same in P and in P ′

then by IIA, a %′ b %′ c, a contradiction.
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Step 2:

Consider a profile P 0 where b is at the bottom of the rankings of all

individuals. By Par, b is at the bottom of F (P 0). Let Pm be a modified

profile where the alterative b is upgraded to the top of the rankings for

all i ≤ m. Since by Par, b is at the top of F (Pn), there must be some

m∗ for which b is at the bottom of F (Pm∗−1) and at the top of F (Pm∗

).

By IIA, the identity of m∗ does not depend on the orderings in P of any

two alternatives which do not involve b.

Step 3:

Let a and c be two alternatives that are not b. If P is a profile in which

a ≻m∗ c, then a ≻ c.

Proof:

Let P ′ be a modification of P where for all i < m∗ the alternative b

moves to the top, for m∗ it moves to between a and c and for all i > m∗

it moves to the bottom. Then, the profile P ′ relates to the pair b and

a in the same way as Pm∗−1 and thus a ≻′ b. The profile P ′ relates to

the pair b and c in the same way as in Pm∗

and thus b ≻′ c. It follows

that a ≻′ c and by IIA, also a ≻ c.

Step 4:

Let a be an alternatives that is not b. If P is a profile in which a ≻m∗ b

(or b ≻m∗ a) then a ≻ b (or b ≻ a).

Proof:

Let c be a third alternative. Let P ′ be a modification of P such that

c moves to the top of all rankings except that of m∗ where it moves to

between a and b. Then, by step 3, a ≻′ c and by Par, c ≻′ b. Thus,

a ≻′ b and by IIA also a ≻ b.

Related Issues

Arrow’s theorem was the starting point for a huge literature. We men-

tion three other impossibility results.

1. Monotonicity is another axiom that has been widely discussed in

the literature. Consider a “change” in a profile so that an alterna-

tive a, which individual i ranked below b, is now ranked by i above

b. Monotonicity requires that there is no alternative c such that
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this change deteriorates the ranking of a vs. c. Muller and Sat-

terthwaite (1977)’s theorem shows that the only SWF’s satisfying

Par and monotonicity are dictatorships.

2. An SWF specifies a preference relation for every profile. A so-

cial choice function attaches an alternative to every profile. The

most striking theorem proved in this framework is the Gibbard-

Satterthwaite theorem. It states that any social choice function

C satisfying the condition that it is never worthwhile for an in-

dividual to misrepresent his preferences, namely, it is never that

C(≻1, . . . ,≻′
i, . . . ,≻n) ≻i C(≻1, . . . ,≻i, . . . ,≻n), is a dictatorship.

3. A related concept is the following. Let Ch(≻1, . . . ,≻n) be a func-

tion that assigns a choice function to every profile of orderings on

X . We say that Ch satisfies unanimity if for every (≻1, . . . ,≻n) and

for any x, y ∈ A, if y ≻i x for all i, then x 6= Ch(≻1, . . . ,≻n)(A).

We say that Ch is invariant to the procedure if, for every profile

and for every choice set A, the following two “approaches” lead to

the same outcome:

a. Partition A into two sets A′ and A′′. Choose an element from

A′ and an element from A′′ and then choose one element from

the two choices.

b. Choose an element from the unpartitioned set A.

Dutta, Jackson, and Le Breton (2001) show that only dictatorships

satisfy both unanimity and invariance to the procedure.

Bibliographic Notes

This lecture focuses mainly on Arrow’s Impossibility Theorem, one of

the most famous results in economics, proved by Arrow in his Ph.D.

dissertation and published in 1951 (see the classic book Arrow (1963)).

Social choice theory is beautifully introduced in Sen (1970). Arrow’s

Impossibility theorem has many proofs. The one presented here is due

to Geanakopolos (2005). Reny (2001) provides another elementary proof

that demonstrates the strong logical link between Arrow’s theorem and

the Gibbard-Satterthwaite theorem. Problem 5 is the base for another

proof (see Kelly (1988)).
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Problem 1. (Moderately difficult. Based on May (1952).)

Assume that the set of social alternatives, X, includes only two alternatives.

Define a social welfare function to be a function that attaches a preference to

any profile of preferences (allow indifference for the SWF and the individuals’

preference relations). Consider the following axioms:

• Anonymity If σ is a permutation of N and if p = { %i }i∈N and

p′ = { %′
i }i∈N are two profiles of preferences on X so that %′

σ(i)= %i,

then % (p) = % (p′).

• Neutrality For any preference %i define (− %i) as the preference

satisfying x(− %i)y iff y %i x. Then,

% ({− %i }i∈N) = − % ({ %i }i∈N).

• Positive Responsiveness If the profile { %′
i }i∈N is identical to { %i }i∈N

with the exception that for one individual j either (x ∼j y and x ≻′
j y)

or (y ≻j x and x ∼′
j y) and if x % y, then x ≻′ y.

a. Interpret the axioms.

b. Show that the majority rule satisfies all of them.

c. Prove May’s theorem by which the majority rule is the only SWF satis-

fying the above axioms.

d. Are the above three axioms independent?

Problem 2. (Standard)
Assume that the set of alternatives, X, is the interval [0, 1] and that each

individual’s preference is single-peaked, that is, for each i there is an alternative

a∗
i such that if a∗

i ≥ b > c or c > b ≥ a∗
i , then b ≻i c.

Show that for any odd n, if we restrict the domain of preferences to single-

peaked preferences, then the majority rule induces a “ well-behaved” SWF.

Problem 3. (Moderately difficult)

Each of N individuals chooses a single object from among a set X, interpreted

as his recommendation for the social action. We are interested in functions

that aggregate the individuals’ recommendations (not preferences, just recom-

mendations!) into a social decision (i.e., F : XN → X).

Discuss the following axioms:

• Par: If all individuals recommend x∗, then the society chooses x∗.
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• I : If the same individuals support an alternative x ∈ X in two profiles

of recommendations, then x is chosen in one profile if and only if it is

chosen in the other.

a. Show that ifX includes at least three elements, then the only aggregation

method that satisfies P and I is a dictatorship.

b. Show the necessity of the three conditions P , I , and |X| ≥ 3 for this

conclusion.

Problem 4. (Moderately difficult)

Some proofs of Arrow’s theorem use the notion of decisive and almost de-

cisive coalitions.

Given the SWF we say that:

• a coalition G is decisive with respect to x,y if [for all i ∈ G, x ≻i y]

implies [x ≻ y], and

• a coalition G is almost decisive with respect to x,y if [for all i ∈ G,

x ≻i y and for all j /∈ G, y ≻j x] implies [x ≻ y].

Note that if G is decisive with respect to x,y, then it is also almost decisive

with respect to x,y, since “almost decisiveness” refers only to the subset of

profiles in which all members of G prefer x to y and all members of N −G

prefer y to x.

We say that a coalition G is decisive if it is decisive with respect to all x, y.

Let F be an SWF satisfying Par and IIA.

a. Prove the “Field Expansion Lemma”: IfG is almost decisive with respect

to x,y, then G is decisive with respect to x,z and with respect to y, z.

b. Conclude that if G is almost decisive with respect to x,y, then G is

decisive.

c. Prove the “Group Contraction Lemma”: If G is decisive and |G| ≥ 2,

then there exists G′ ⊂ G such that G′ is decisive.

d. Show that there is an individual i∗ such that {i∗} is decisive.

Problem 5. (Moderately difficult. Based on Kasher and Rubinstein (1997).)

Who is an economist? Departments of economics are often sharply divided

over this question. Investigate the approach according to which the determi-

nation of who is an economist is treated as an aggregation of the views held

by department members on this question.

LetN = {1, . . . , n} be a group of individuals (n ≥ 3). Each i ∈ N “submits”

a set Ei, a proper nonempty subset of N , which is interpreted as the set of

“real economists” in his view. An aggregation method F is a function that

assigns a proper nonempty subset of N to each profile (Ei)i=1,...,n of proper

subsets of N . F (E1, . . . , En) is interpreted as the set of all members of N who
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are considered by the group to be economists. (Note that we require that all

opinions be proper subsets of N .)

Consider the following axioms on F :

• Consensus: If j ∈ Ei for all i ∈ N , then j ∈ F (E1, . . . En), and if

j /∈ Ei for all i ∈ N , then j /∈ F (E1, . . . En).

• Independence: If (E1, . . . , EL) and (G1, . . . , Gn) are two profiles of

views so that for all i ∈ N , [j ∈ Ei iff j ∈ Gi], then [j ∈ F (E1, . . . , En)

iff j ∈ F (G1, . . . , Gn)].

a. Interpret the two axioms.

b. Find one aggregation method that satisfies Consensus but not Indepen-

dence and one that satisfies Independence but not Consensus.

c. (Difficult) Provide a proof similar to that of Arrow’s Impossibility The-

orem of the claim that the only aggregation methods that satisfy the

above two axioms are those for which there is a member i∗ such that

F (E1, . . . , En) ≡ Ei∗ .
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The following is a collection of problems based on exams I have given at

Tel-Aviv, Princeton and New York universities.

A. Choice

Problem A1. (Princeton 2000. Based on Fishburn and Rubinstein (1982).)

Let X = R
+ × {0, 1, 2, . . .}, where (x, t) is interpreted as receiving $x at

time t. A preference relation on X has the following properties:

• There is indifference between receiving $0 at time 0 and receiving

0 at any other time.

• It is better to receive any positive amount of money as soon as

possible.

• Money is desirable.

• The preference between (x, t) and (y, t+ 1) is independent of t.

• Continuity.

1. Define formally the continuity assumption for this context.

2. Show that the preference relation has a utility representation.

3. Verify that the preference relation represented by the utility func-

tion u(x)δt (with δ < 1 and u continuous, increasing and u(0) = 0)

satisfies the above properties.

4. Formulize a concept “one preference relation is more impatient than

another”.

5. Discuss the claim that preferences represented by u1(x)δ
t
1 are more

impatient than preferences represented by u2(x)δ
t
2 if and only if

δ1 < δ2.

Problem A2. (Tel Aviv 2003. Based on Gilboa and Schmeidler (1995).)

An agent must decide whether to do something, Y , or not to do it, N .

A history is a sequence of results for past events in which the agent

chose Y ; each result is either a success S or a failure F . For example,

(S, S, F, F, S) is a history with five events in which the action was carried

out. Two of them (events 3 and 4) ended in failure, whereas the rest

were successful.
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The decision rule D is a function that assigns the decision Y or N to

every possible history.

Consider the following properties of decision rules:

A1 After every history that contains only successes, the decision

rule will dictate Y , and after every history that contains only

failures, the decision rule will dictate N .

A2 If the decision rule dictates a certain action following some his-

tory, it will dictate the same action following any history that

is derived from the first history by reordering its members. For

example, D(S, F, S, F, S) = D(S, S, F, F, S).

A3 If D(h) = D(h′), then this will also be the decision following

the concatenation of h and h′. (Reminder: The concatenation

of h = (F, S) and h′ = (S, S, F ) is (F, S, S, S, F )).

1. For every i = 1, 2, 3, give an example of a decision rule that does

not fulfill property Ai but does fulfill the other two properties.

2. Give an example of a decision rule that fulfills all three properties.

3. (Difficult) Characterize the decision rules that fulfill the three prop-

erties.

Problem A3. (NYU 2005)

Let X be a finite set containing at least three elements. Let C be a

choice correspondence. Consider the following axiom:

If A,B ⊆ X , B ⊆ A, and C(A) ∩B 6= ∅, then C(B) = C(A) ∩B.

1. Show that the axiom is equivalent to the existence of a preference

relation % such that C(A) = {x ∈ A|x < a for all a ∈ A}.
2. Consider a weaker axiom:

If A,B ⊆ X , B ⊆ A, and C(A) ∩B 6= ∅, then C(B) ⊆ C(A) ∩B.

Is this sufficient for the above equivalence?

Problem A4. (NYU 2007. Based on Plott (1973).)

Let X be a set and C be a choice correspondence defined on all non-

empty subsets of X . We say that C satisfies Path Independence (PI)

if for every two disjoint sets A and B, we have C(A ∪B) = C(C(A) ∪
C(B)). We say that C satisfies Extension (E) if x ∈ A and x ∈ C({x, y})
for every y ∈ A implies that x ∈ C(A) for all sets A.

1. Interpret PI and E.

2. Show that if C satisfies both PI and E, then there exists a binary

relation % that is complete and reflexive and satisfies x ≻ y, and
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y ≻ z implies x ≻ z, such that C(A) = {x ∈ A | for no y ∈ A is

y ≻ x}.
3. Give one example of a choice correspondence satisfying PI but not

E, and one satisfying E but not PI.

Problem A5. (NYU 2008. Based on Eliaz, Richter, and Rubinstein (2011).)

Let X be a (finite) set of alternatives. Given any choice problem A

(where |A| ≥ 2), the decision maker chooses a set D(A) ⊆ A of two al-

ternatives that he wants to examine more carefully before making the

final decision.

The following are two properties of D:

A1: If a ∈ D(A) and a ∈ B ⊂ A, then a ∈ D(B).

A2: If D(A) = {x, y} and a ∈ D(A− {x}) for some a different than x

and y, then a ∈ D(A− {y}).

Solve the following four exercises. A full proof is required only for the

last exercise:

1. Find an example of a D function that satisfies both A1 and A2.

2. Find a function D that satisfies A1 and not A2.

3. Find a function D that satisfies A2 and not A1.

4. Show that for any function D satisfying A1 and A2 there exists an

ordering ≻ of the elements of X such that D(A) is the set of the

two ≻- best elements in A.

Problem A6. (Tel Aviv 2009. Inspired by Mandler, Manzini, and Mariotti

(2010).)

Consider a decision maker who is choosing an alternative from subsets

of a finite set X using the following procedure:

Following a fixed list of properties (a checklist), he examines one prop-

erty at a time and deletes from the set all the alternatives that do not

satisfy this property. When only one alternative remains, he chooses it.

1. Show that if this procedure induces a choice function, then it is

consistent with the rational man model.

2. Show that any rational decision maker can be described as if he

follows this procedure.

Problem A7. (Tel Aviv 2010)

A decision maker has a preference relation over Rn
+. A vector (x1, x2) is

interpreted as an income combination where xi is the dollar amount the
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decision maker receives at period i. Let P be the set of all preference

relations satisfying:

(i) Strong Monotonicity (SM) in x1 and x2.

(ii) Present preference (PP): (x1 + ε, x2 − ε) % (x1, x2) for all ε > 0.

Define (x1, x2)D(y1, y2) if (x1, x2) % (y1, y2) for all %∈ P .

1. Interpret the relation D. Is it a preference relation?

2. Is it true that (1, 4)D(3, 3)? What about (3, 3)D(1, 4)?

3. Find and prove a proposition of the following type: (x1, x2)D(y1, y2)

if and only if [put here a condition on (x1, x2) and (y1, y2)].

Problem A8. (NYU 2011.)

Let X be a finite set of alternatives.

A decision maker of type 1 uses the following choice procedure. He

has a subset of “satisfactory alternatives”in mind. Whenever he chooses

from a set A, then (i) if there are satisfactory elements in A, he is happy

to choose any satisfactory alternative which comes to his mind and (ii) If

there are none, he is happy with any of the non-satisfactory alternatives.

A decision maker of type 2 has in mind a set of strict orderings.

Whenever he chooses from a set A, he is happy with any alternative

that is the maxima in A of at least one ordering.

1. Define formally the two types of decision makers as choice corre-

spondences.

2. Show that any decision maker of type 1 can also be described as a

decision maker of type 2.

3. Show that there is a decision maker of type 2 who cannot be de-

scribed as a decision maker of type 1.

Problem A9. (Tel Aviv 2012. Based on de Clippel (2011).)

Consider a decision maker (DM) who has in mind two orderings on a

finite set X . The first ordering, ≻L, expresses his long-term goals, and

the second, ≻S expresses his short-term goals.

When choosing from a set A ⊆ X the DM chooses the best alter-

native according to his long-term preferences, unless there are “too

many”alternatives that are better than this alternative according his

short-term preferences. More precisely, given a choice problem A ⊆ X ,

he excludes all alternatives which are not among the k best alternatives

in A according to his short-term preferences, and out of the remaining

he chooses the best one according to ≻L.
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1. Show that the above description always defines a choice function.

2. Show that it may be that the same alternative is chosen from both

A and B, but is not chosen from A ∪B nor from A ∩B.

3. Conclude that this type of behavior conflicts with the rational man

paradigm.

Let N be a set of individuals who behave according to the above

procedure with k = 2. All individuals share the same long-term goals

but may differ in their short-term goals.

Consider a situation in which the N individuals must choose together

only one alternative from the set X and that for each alternative x ∈ X ,

there is one individual r(x) who has the right to force x. An equilibrium

is an alternative y such that no individual wants to exercise his right

to force one of the alternatives that he can force. That is, for any

agent i,the alternatives y is the one chosen by the agent from the set

{y} ∪ {x|r(x) = i}.

4. Show that if there are more individuals than alternatives then it

is possible to assign the “forcing rights”such that whatever are the

individuals’ short-term goals and whatever are the common long-

term goals, the only equilibrium is the top ≻L alternative. Explain

why this is not necessarily correct if the number of alternatives is

larger than the number of individuals.

Problem A10. (NYU 2013.)

Consider the following procedure which yields a choice function C over

subsets of a finite set X :

The decision maker has in mind a set {≻i}i=1,..n of orderings over X

and a set of weights {αi}i=1,..n. Facing a choice set A ⊆ X , the decision

maker calculates a score for each alternative x ∈ A by summing the

weights of those orderings that rank x first from among the members of

A and then chooses the alternative with the highest score.

1. Explain why a rational choice function is consistent with this pro-

cedure.

2. Give an example to show that the procedure can produce a choice

function which is not rationalizable.

3. Show that for |X | = 3 all choice functions are consistent with the

procedure.

4. Explain why it is not generally true that a choice function C which

is derived from this procedure satisfies the condition that if x =

C(A) = C(B), then x = C(A ∪B).
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5. (More Difficult) Can you find a non-trivial property that is satisfied

by choice functions which are derived from this procedure but not

by all choice functions? Is there any choice function that cannot

be explained by this procedure?

Problem A11. (NYU 2013.)

An agent makes a binary comparison of pairs of numbers. His real

interest is to maximize the sum x1 + x2. When he compares (x1, x2) and

(y1, y2) he always makes the right decision if one of the pairs dominates

the other. When this is not the case he might make a mistake. The

technology of mistakes is characterized by a function α(G,L) with the

interpretation that if the gain in one dimension is G ≥ 0 and the loss in

the other is L ≥ 0, then the probability of a mistake is α(G,L).

1. Suggest reasonable and workable assumptions for the function α

(such as α(G,L) ≤ 1/2 for all G and L).

2. Suggest a formal notion which expresses the phrase “agent 1 is

more accurate than agent 2”.

3. Show that according to the notion you defined in 2 the probability

that three binary comparisons on the triple (7, 2), (3, 10), (0, 6)

yields a cycle is smaller for the agent who is more accurate in his

choices.

4. Show that the probability of the binary comparisons yielding a

cycle on a general triple of pairs is not necessarily smaller for the

agent who is more accurate.

Problem A12. (Tel Aviv 2014.)

Consider a world in which the grand set X is the entire plane and choice

sets can only be less than 180 degree closed arcs of the unit circle. Denote

a choice set by B(α, β) where α and β, are the two angles that confine

the arc which are numbers between 0 and 360. For example, B(0, 90) is

one-quarter of a circle contained in the positive quadrant.

1. Give an example of a choice function that does not satisfy the weak

axiom of revealed preference.

2. Give an example of a choice function that satisfies the weak axiom

of revealed preference and yet is not rationalizable.

Assume now that the choice sets are only arcs in the positive quadrant

(i.e. the two angles that define the choice sets are between 0◦ and

90◦) and that the agent maximizes a monotonic, continuous and strictly

convex preference relation.
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3. Show that the agent’s choice function is well defined.

4. Explain how one could identify the agent’s choice function from

the indirect preference relation (defined over the parameters of the

choice sets).

B. The Consumer and the Producer

Problem B1. (Tel Aviv 1998)

A consumer with wealth w = 10 “must” obtain a book from one of three

stores. Denote the prices at each store as p1, p2, p3. All prices are be-

low w in the relevant range. The consumer has devised a strategy: he

compares the prices at the first two stores and purchases the book from

the first store if its price is not greater than the price at the second

store. If p1 > p2, he compares the prices of the second and third stores

and purchases the book from the second store if its price is not greater

than the price at the third store. He uses the remainder of his wealth to

purchase other goods.

1. What is this consumer’s “demand function”?

2. Does this consumer satisfy “rational man” assumptions?

3. Consider the function v(p1, p2, p3) = w − pi∗ , where i
∗ is the store

from which the consumer purchases the book if the prices are

(p1, p2, p3). What does this function represent?

4. Explain why v(·) is not monotonically decreasing in pi. Compare

with the indirect utility function of the classic consumer model.

Problem B2. (Princeton 2001)

1. Define a formal concept for “%1 and %0 are closer than %2 and

%0”.

2. Apply your definition to the class of preference relations repre-

sented by U1 = tU2 + (1− t)U0, where the function Ui represents

%i (i = 0, 1, 2).

3. Consider the above definition in the consumer context. Denote by

xik(p, w) the demand function of %i for good k. Show that %1 and

%0 may be closer than %2 and %0, and nevertheless |x1k(p, w)−
x0k(p, w)| > |x2k(p, w)− x0k(p, w)| for some commodity k, price vec-

tor p and wealth level w.
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Problem B3. (Princeton 2002)

Consider a consumer with a preference relation in a world with two

goods, X (an aggregated consumption good) and M (“membership in

a club”, for example), which can be consumed or not. In other words,

the consumption of X can be any nonnegative real number, while the

consumption of M must be either 0 or 1.

Assume that the consumer’s preferences are strictly monotonic and

continuous and satisfy the following property:

Property E : For every x, there is y such that (y, 0) ≻ (x, 1) (i.e.,

there is always some amount of the aggregated consumption good

that can compensate for the loss of membership).

1. Show that any consumer’s preference relation can be represented

by a utility function of the type:

u(x,m) =

{

x if m = 0

x+ g(x) if m = 1
.

2. (Less easy) Show that the consumer’s preference relation can also

be represented by a utility function of the type:

u(x,m) =

{

f(x) if m = 0

f(x) + v if m = 1
.

3. Explain why continuity and strong monotonicity (without property

E) are not sufficient for (1).

4. Calculate the consumer’s demand function.

5. Taking the utility function to be of the form described in (1), derive

the consumer’s indirect utility function. For the case where the

function g is differentiable, verify Roy’s identity with respect to

commodity M .

Problem B4. (Tel Aviv 2003)

Consider the following consumer problem: there are two goods, 1 and

2. The consumer has a certain endowment. His preferences satisfy

mono- tonicity and continuity. Before the consumer are two “exchange

functions”: he can exchange x units of good 1 for f(x) units of good 2,

or he can exchange y units of good 2 for g(y) units of good 1. Assume

the consumer can make only one exchange.

1. Show that if the exchange functions are continuous, then a solution

to the consumer problem exists.
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2. Explain why strong convexity of the preference relation is not suf-

ficient to guarantee a unique solution if the functions f and g are

increasing and convex.

3. Interpret the statement “the function f is increasing and convex”.

4. Suppose both functions f and g are differentiable and concave and

that the product of their derivatives at point 0 is 1. Suppose also

that the preference relation is strongly convex. Show that under

these conditions, the agent will not find two different exchanges,

one exchanging good 1 for good 2, and one exchanging good 2 for

good 1, optimal.

5. Now assume f(x) = ax and g(y) = by. Explain this assumption.

Find a condition that will ensure it is not profitable for the con-

sumer to make more than one exchange.

Problem B5. (NYU 2005)

A consumer has preferences that satisfy monotonicity, continuity, and

strict convexity, in a world of K goods. The goods are split into two

categories, 1 and 2, of K1 and K2 goods respectively (K1 +K2 = K).

The consumer receives two types of money: wi units of money of type

i, which can be exchanged only for goods in the i’th category given a

price vector pi.

Define the induced preference relation over the two-dimensional space

(w1, w2). Show that these preferences are monotonic, continuous, and

convex.

Problem B6. (NYU 2005. Inspired by Chen, Lakshminarayanan, and Santos

(2005).)

In an experiment, a monkey is given m = 12 coins, which he can ex-

change for apples or bananas. The monkey faces m consecutive choices

in which he gives a coin either to an experimenter holding a apples or

another experimenter holding b bananas.

1. Assume that the experiment is repeated with different values of a

and b and that each time the monkey trades the first 4 coins for

apples and the next 8 coins for bananas.

Show that the monkey’s behavior is consistent with the classical

assumptions of consumer behavior (namely, that his behavior can

be explained as the maximization of a monotonic, continuous, and

convex preference relation on the space of bundles).

2. Assume that it was later observed that when the monkey holds an

arbitrary number m of coins, then, irrespective of the values of a
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and b, he exchanges the first 4 coins for apples and the remaining

m− 4 coins for bananas. Is this behavior consistent with the

rational consumer model?

Problem B7. (NYU 2006)

Consider a consumer in a world of 2 commodities who has to make

choices from budget sets parametrized by (p, w), with the additional

constraint that the consumption of good 1 is limited by some external

bound c ≥ 0. That is, in his world, a choice problem is a set of the form

B(p, w, c) = {x|px ≤ w and x1 ≤ c}. Denote by x(p, w, c) the consumer’s

choice from B(p, w, c).

1. Assume that px(p, w, c) = w and x1(p, w, c) = min{0.5w/p1, c}. Show
that this behavior is consistent with the assumption that demand

is derived from a maximization of some preference relation.

2. Assume that px(p, w, c) = w and x1(p, w, c) = min{0.5c, w/p1}. Show
that this consumer’s behavior is inconsistent with preference max-

imization.

3. Assume that the consumer chooses his demand for x by maximizing

the utility function u(x). Denote the indirect utility by V (p, w, c) =

u(x(p, w, c)). Assume V is “well-behaved”. Outline the idea of how

one can derive the demand function from the function V in case

that ∂V/∂c(p, w, c) > 0.

Problem B8. (Tel Aviv 2006)

Imagine a consumer who lives in a world with K + 1 commodities and

behaves in the following manner: The consumer is characterized by a

vector D, consisting of the commodities 1, . . . ,K. If he can purchase

D, he will consume it and spend the rest of his income on commodity

K + 1. If he is unable to purchase D, he will not consume commodity

K + 1 and will purchase the bundle tD (t ≤ 1) where t is as large as he

can afford.

1. Show that there exists a monotonic and convex preference relation

that explains this pattern of behavior.

2. Show that there is no monotonic and continuous preference relation

that explains this pattern of behavior.

Problem B9. (NYU 2007)

A consumer in a world of K commodities maximizes the utility function

u(x) =
∑

k x
2
k.
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1. Calculate the consumer’s demand function (whenever it is uniquely

defined).

2. Give another preference relation (not just a monotonic transforma-

tion of u) that induces the same demand function.

3. For the original utility function u, calculate the indirect preferences

for K = 2. What is the relationship between the indirect prefer-

ences and the demand function? (It is sufficient to answer for the

domain where p1 < p2.)

4. Are the preferences in (1) differentiable (according to the definition

given in class)?

Problem B10. (NYU 2008)

A decision maker has a preference relation over the pairs (xme, xhim)

with the interpretation that xme is an amount of money he will get and

xhim is the amount of money another person will get. Assume that:

(i) for all (a, b) such that a > b, the decision maker strictly prefers

(a, b) over (b, a).

(ii) if a′ > a, then (a′, b) ≻ (a, b).

The decision maker has to allocate M between him and another person.

1. Show that these assumptions guarantee that he will never allocate

to the other person more than he gives himself.

2. Assume (i), (ii), and

(iii) The decision maker is indifferent between (a, a) and (a− ǫ, a+

4ǫ) for all a and ǫ > 0.

Show that nevertheless he might allocate the money equally.

3. Assume (i), (ii), (iii), and

(iv) The decision maker’s preferences are also differentiable (ac-

cording to the definition given in class).

Show that in this case, he will allocate to himself (strictly) more

than to the other.

Problem B11. (Tel Aviv 2010)

A basketball coach considers buying players from a set A. Given a

budget w and a price vector (pa)a∈A, the coach can purchase any set

such that the total cost of the players in it is not greater than w. Discuss

the rationality of each of the following choice procedures, defined for any

budget level w and price vector P :

(P1) The consumer has in mind a fixed list of the players in A: a1, . . . , an.

Starting at the beginning of the list, when he arrives to the i′th
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player, he adds him to the team if his budget allows him to after

his past decisions and then continues to the next player on the list

with his remaining budget. This continues until he runs out of

budget or has gone through the entire list.

(P2) He purchases the combination of players that minimize the excess

budget he is left with.

Problem B12. (NYU 2010)

A consumer in a two-commodity world operates in the following man-

ner: The consumer has a preference relation %S on R
2
+. His father has

a preference relation %F on the space of his son’s consumption bundles.

Both relations satisfy strong monotonicity, continuity, and strict con-

vexity. The father does not allow his son to purchase a bundle that is

not as good (from his perspective) as the bundle (M, 0). The son, when

choosing from a budget set, maximizes his own preferences subject to

the constraint imposed by his father. In the case that he cannot satisfy

his father’s wishes, he feels free to maximize his own preferences.

1. Prove that the behavior of the son is rationalizable.

2. Prove that the preferences that rationalize this kind of behavior

are monotonic.

3. Show that the preferences that rationalize this kind of behavior

are not necessarily continuous or convex (you can demonstrate this

diagrammatically).

4. (Bonus) Assume that the father’s instructions are that given the

budget set (p, w) the son is not to purchase any bundle that is

%F -worse than (w/p1, 0). The son seeks to maximize his prefer-

ences subject to satisfying his father’s wishes. Show that the son’s

behavior satisfies the Weak Axiom of Revealed Preferences.

Problem B13. (NYU 2012)

A consumer operates in a world with K commodities. He has in mind a

list of consumption priorities, a sequence (kn, qn) where kn ∈ {1, ...,K}
is a commodity and qn is a quantity (commodities may appear more than

once in the sequence). When facing a budget set (p, w) he purchases the

goods according to the order of priorities in the list, until his budget

is exhausted. (In the case that his money is exhausted during the n’th

stage he purchases whatever proportion of the quantity qn that he can

afford).



Review Problems 143

1. How does the demand for the k’th commodity responds to the

pk, pj (j 6= k) and w?

2. Suggest an increasing utility function which rationalizes the con-

sumer’s behavior.

3. Using the utility function you suggested in (2) prove the Roy equal-

ity for this consumer at (p, w) where the consumer exhausts his

entire budget while satisfying his n’th goal.

Problem B14. (Tel Aviv 2013)

Consider a consumer in a world with two commodities. He has two con-

tinuous strictly-increasing evaluation functions v1 and v2 with a range

[0,∞). Facing a budget set B(p1, p2, w), the consumer compares be-

tween v1(w/p1) and v2(w/p2) and spends all of his resources on the

good that yields a higher evaluation (in the case of a tie he arbitrarily

chooses one of the goods).

1. Show that this behavior is consistent with maximizing continuous,

monotonic and convex preferences over R2
+.

2. Show that this behavior is inconsistent with maximizing continu-

ous, monotonic and strictly convex preferences over R2
+.

3. Does the demand function satisfy the “law of demand” (according

to which a decrease in the price of a commodity weakly increases

the demand for it)?

Problem B15. (NYU 2013)

Imagine a consumer who operates in two stages when facing a budget set

B(p, w) in a world with the commodities 1, ...,K split into two exclusive

non-empty groups A and B:

Stage 1: He allocates w between the two groups by maximizing a

function v on the set of pairs (wA, wB).

Stage 2: He chooses an A-bundle maximizing a function uA defined

over the A-bundles given wA, and independently chooses a B-bundle

that maximizes a function uB defined over the B-bundles given wB .

1. Show that if the consumer is interested in choosing a bundle (over

the K commodities) that in the end maximizes the (ridiculous)

utility function Πk=1,..,Kx
αk

k (where αk > 0 ∀k and
∑K

k=1 αk = 1),

then he can attain this goal by following the procedure above with

some functions (v, uA, uB).

2. Show that the claim in (1) is not true in general. For example,

you might (but don’t have to) look at the case K = 4, A = {1, 2},
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B = {3, 4} and the utility function max{x1x3, x2x4}. (Note that

this is the max, not the min function.)

3. (More Difficult) Show that if the consumer follows the above pro-

cedure, then it might be that his overall choice cannot be ratio-

nalized. (For the first stage, you can choose a simple function like

v = min{wA, wB}.)

Problem B16. (NYU 2014)

A DM needs to decide how to allocate a budget between two activities: 1

and 2. A combination of activities is a pair (a1, a2) where ai is the level

of activity i. The DM’s problem is to choose a combination of activities

given a budget w and a vector of prices for the activities (p1, p2).

Two consultants, A and B, are involved in the DM’s process. Each

consultant submits to the DM a recommendation which is the outcome

of maximizing a “classical”and differentiable preference relation defined

over the set of all activity combinations. Assume that whatever the

“budget set”is, consultant A always recommends a (weakly) higher level

of activity 1 than B does. Formally, assume that at each combination of

activities (a1, a2) the “marginal rate of substitution”(the ratio of local

values) of A is strictly larger than that of B.

The DM collects the two recommendations and then:

If both recommend that the level of a certain activity i should be

higher than that of the other activity, then the DM follows the more

“moderate recommendation”, namely the one which is closer to the main

diagonal.

If consultant A recommends a higher level of activity 1 and B rec-

ommends a higher level of activity 2, then the DM spends his entire

budget such that he consumes equal levels of the two activities (i.e., a

combination on the main diagonal).

1. Assume that A aims to maximize 2a1 + a2 (and in the case of

indifference recommends only activity 1) and B seeks to maximize

a1 + 2a2 (and in the case of indifference recommends only activity

2). Is the DM’s behavior rationalizable in the sense that there

exists a convex and monotonic preference relation that rationalizes

the DM’s behavior?

2. Extend your answer to any two consultants that satisfy the ques-

tion’s assumptions.
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C. Uncertainty

Problem C1. (Princeton 1997)

A decision maker forms preferences over the setX of all possible distribu-

tions of a population over two categories (such as living in two locations).

An element in X is a vector (x1, x2) where xi ≥ 0 and x1 + x2 = 1. The

decision maker has two considerations in mind:

• He thinks that if x % y, then for any z, the mixture of α ∈ [0, 1] of

x with (1− α) of z should be at least as good as the mixture of α

of y with (1− α) of z.

• He is indifferent between a distribution that is fully concentrated

in location 1 and one that is fully concentrated in location 2.

1. Show that the only preference relation that is consistent with the

two principles is the degenerate indifference relation (x ∼ y for any

x, y ∈ X).

2. The decision maker claims that you are wrong because his prefer-

ence relation is represented by a utility function |x1 − 1/2|. Why

is he wrong?

Problem C2. (Tel Aviv 1999)

Tversky and Kahneman (1986) report the following experiment: each

participant receives a questionnaire asking him to make two choices, the

first from {a, b} and the second from {c, d}:

a. A sure profit of $240.

b. A lottery between a profit of $1, 000 with probability 25% and 0

with probability 75%.

c. A sure loss of $750.

d. A lottery between a loss of $1, 000 with probability 75% and 0 with

probability 25%.

The participant will receive the sum of the outcomes of the two lotteries

he chooses. 73% of the participants chose the combination a and d. Is

their behavior sensible?

Problem C3. (Princeton 2001)

A consumer has to make a choice of a bundle before he is informed

whether a certain event, which is expected with probability α and affects

his welfare, has happened or not. He assigns a vNM utility v(x) to the

consumption of the bundle x when the event occurs, and a vNM utility
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v′(x) to the consumption of x should the event not occur. Having to

choose a bundle, the consumer maximizes his expected utility αv(x) +

(1− α)v′(x). Both v and v′ induce preferences on the set of bundles

satisfying the standard assumptions about the consumer. Assume also

that v and v′ are concave.

1. Show that the consumer’s preference relation is convex.

2. Find a connection between the consumer’s indirect utility function

and the indirect utility functions derived from v and v′.

3. A new commodity appears on the market: “A discrete piece of

information that tells the consumer whether or not the event oc-

curred”. The commodity can be purchased prior to the consump-

tion decision. Use the indirect utility functions to characterize the

demand function for the new commodity.

Problem C4. (NYU 2006)

Consider a world with balls of K different colors. An object is called

a bag and is specified by a vector x = (x1, .., xK) (where xk is a non-

negative integer indicating the number of balls of color k). For conve-

nience, denote by n(x) =
∑

xk the number of balls in bag x.

An individual has a preference relation over bags of balls.

1. Suggest a context where it will make sense to assume that:

i. For any integer λ, x ∼ λx.

ii. If n(x) = n(y), then x % y iff x+ z % y + z.

2. Show that any preference relation that is represented by U(x) =
∑

xkvk/n(x) for some vector of numbers (v1, . . . , vk) satisfies the

two axioms.

3. Find a preference relation that satisfies the two properties that

cannot be represented in the form suggested in (2).

Problem C5. (NYU 2007)

Identify a professor’s lifetime with the interval [0, 1]. There are K + 1

academic ranks, 0, . . . ,K. All professors start at rank 0 and eventually

reach rank K. Define a career as a sequence t = (t1, . . . , tK) where t0 =

0 ≤ t1 ≤ t2 ≤ . . . ≤ tK ≤ 1 with the interpretation that tk is the time

it takes to get the k’th promotion. (Note that a professor can receive

multiple promotions at the same time.) Denote by % the professor’s

preferences on the set of all possible careers.

For any ǫ > 0 and for any career t such that tK ≤ 1− ǫ, define t+ ǫ

to be the career (t+ ǫ)k = tk + ǫ (i.e., all promotions are delayed by ǫ).
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Following are two properties of the professor’s preferences:

Monotonicity: For any two careers t and s, if tk ≤ sk for all k, then

t % s, and if tk < sk for all k, then t ≻ s.

Invariance: For every ǫ > 0 and every two careers t and s for which t+ ǫ

and s+ ǫ are well defined, t % s iff t+ ǫ % s+ ǫ.

1. Formulate the set L of careers in which a professor receives all K

promotions at the same time. Show that if % satisfies continuity

and monotonicity, then for every career t there is a career s ∈ L

such that s ∼ t.

2. Show that any preference that is represented by the function U(t)= −
∑

∆ktk (for some ∆k > 0) satisfies Monotonicity, Invariance, and

Continuity.

3. One professor evaluates a career by the maximum length of time

one has to wait for a promotion, and the smaller this number the

better. Show that these preferences cannot be represented by the

utility function described in (2).

Problem C6. (NYU 2008)

An economic agent has to choose between projects. The outcome of

each project is uncertain. It might yield a failure or one of K “types of

success”. Thus, each project z can be described by a vector of K non-

negative numbers, (z1, . . . , zK), where zk stands for the probability that

the project success will be of type k. Let Z ⊂ R
K
+ be the set of feasible

projects. Assume Z is compact and convex and satisfies “free disposal”.

The decision maker is an Expected Utility maximizer. Denote by uk
the vNM utility from the k’th type of success, and attach 0 to failure.

Thus the decision maker chooses a project (vector) z ∈ Z in order to

maximize
∑

zkuk.

1. First, formalize the decision maker’s problem. Then, formalize

(and prove) the claim: if the decision maker suddenly values type

k success higher than before, he would choose a project assigning

a higher probability to k.

2. Apparently, the decision maker realizes that there is an additional

uncertainty. The world may go “one way or another”. With prob-

ability α the vNM utility of the k’th type of success will be uk
and with probability 1− α it will be vk. Failure remains 0 in both

contingencies.

First, formalize the decision maker’s new problem. Then, formalize

(and prove) the claim: Even if the decision maker would obtain
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the same expected utility, would he have known in advance the

direction of the world, the existence of uncertainty makes him (at

least weakly) less happy.

Problem C7. (NYU 2009)

For any nonnegative integer n and a number p ∈ [0, 1], let (n, p) be the

lottery that gets the prize $n with probability p and $0 with probability

1− p. Let us call those lotteries simple lotteries. Consider preference

relations on the space of simple lotteries.

We say that such a preference relation satisfies Independence if p � q

iff αp⊕ (1− α)r � αq ⊕ (1 − α)r for any α > 0, and any simple lotteries

p, q, r for which the compound lotteries are also simple lotteries.

Consider a preference relation satisfying the Independence axiom,

strictly monotonic in money and continuous in p. Show that:

1. (n, p) is monotonic in p for n > 0, that is, for all p > p′ (n, p) ≻
(n, p′).

2. For all n there is a unique v(n) such that (1, 1) ∼ (n, 1/v(n)).

3. It can be represented with the expected utility formula: that is,

there is an increasing function v such that pv(n) is a utility function

that represents the preference relation.

Problem C8. (Tel Aviv 2012)

A decision maker has in mind a function CE, with the interpretation that

for every lottery p, CE(p) is the certainly equivalence of p. Following

are two procedures for deriving the function.

Procedure 1: The decision maker has in mind an increasing vNM

utility function u and his answer satisfies Eu(p) = u(CE(p)).

Procedure 2: The decision maker has in mind two increasing, contin-

uous and concave functions g (for gains) and l (for losses) which satisfy

g(0) = l(0) = 0. CE(p) is a number x which equalizes the expected

“loss”with the expected “gain”, that is satisfies
∑

y<x p(y)l(x− y) =
∑

y>x p(y)g(y − x).

1. Explain why pD1q implies under the two procedures that CE(p) ≥
CE(q).

2. Explain why the first procedure allows behavior which is not pos-

sible under procedure 2.

3. (More Difficult) Can any individual who operates by procedure 2

be described as working through procedure 1?
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Problem C9. (NYU 2012)

Consider a decision maker in the world of lotteries, with Z = R be-

ing monetary prizes. The decision maker assigns a number v(z) to

each amount of money z. The function v is continuous and increas-

ing. The decision maker evaluates each lottery p according to: U(p) =

α[max{v(z)|z ∈ supp(p)}] + (1− α)[min{v(z)|z ∈ supp(p)}].

1. Characterize the decision makers of this type who are “risk averse”.

2. Show that if two decision makers of this type, with α = 1/2, hold

the functions v1 and v2 and v1 ◦ v−1
2 is concave, then decision maker

1 is more risk averse than decision maker 2.

3. Do at home: Assume that the two decision makers use α = 1/2. Is

the concavity of v1 ◦ v−1
2 a necessary condition for decision maker

1 to be more risk averse than decision maker 2.

Problem C10. (NYU 2014)

Consider the following family of preference relations defined over L(Z)

(the set of all lotteries with prizes in some finite set Z): The DM has

in mind a function which assigns to each prize z ∈ Z a value v(z). He

partitions Z into two sets G and B such that if g ∈ G and b ∈ B then

v(g) > v(b). He evaluates any lottery p by

p(Supp(p) ∩G)maxz∈Supp(p)∩G v(z) + p(Supp(p) ∩B)minz∈Supp(p)∩B v(z).

These evaluations form his preferences over L(Z) (where p(A) =
∑

z∈A
p(z)).

1. Explain the procedure in words.

2. Show that such a preference relation satisfies neither the Indepen-

dence axiom nor the Continuity axiom.

3. Show that a weaker independence property holds: If Supp(p) =

Supp(q) then for every 1 > α > 0 and every r,

p % q iff αp+ (1− α)r % αq + (1− α)r.

4. Describe in words and then formally define a ”monotonicity prop-

erty” that holds.

D. Social Choice

Problem D1. (Princeton 2000)

Consider the following social choice problem: a group has n members

who must choose from a set containing 3 elements {A,B,L}, where A
and B are prizes and L is the lottery that yields each of the prizes A and

B with equal probability. Each member has a strict preference over the
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three alternatives that satisfies vNM assumptions. Show that there is a

nondictatorial social welfare function that satisfies the independence of

irrelevant alternatives axiom (even the strict version I∗) and the Pareto

axiom (Par). Reconcile this fact with Arrow’s Impossibility Theorem.

Problem D2. (NYU 2009)

We will say that a choice function C is consistent with the majority

vetoes a dictator procedure if there are three preference relations ≻1,

≻2, and ≻3 such that c(A) is the ≻1 maximum unless both ≻2 and ≻3

agree on another alternative being the maximum in A.

1. Show that such a choice function might not be rationalizable.

2. Show that such a choice function satisfies the following property: if

c(A) = a, c(A− {b}) = c for b and c different from a, then c(B) = c

for any B that contains c and is a subset of A− {b}.
3. Show that not all choice functions could be explained by the ma-

jority vetoes a dictator procedure.

Problem D3. (Tel Aviv 2009. Inspired by Miller (2007).)

Lately we have been using the term a “reasonable reaction” quite fre-

quently. In this problem we assume that this term is defined according to

the opinions of the individuals in the society with regard to the question:

“What is a reasonable reaction?”

Assume that in a certain situation, the possible set of reactions is X

and the set of individuals in the society is N .

A “reasonability perception” is a nonempty set of possible reactions

that are perceived as reasonable.

The social reasonability perception is determined by a function f that

attaches a reasonability perception (a nonempty subset of X) to any

profile of the individuals’ reasonability perception (a vector of nonempty

subsets of X).

1. Formalize the following proposition:

Assume that the number of reactions inX is larger than the number

of individuals in the society and that f satisfies the following four

properties:

a. If in a certain profile all the individuals do not perceive a

certain reaction as reasonable, then neither does the society.

b. All the individuals have the same status.

c. All the reactions have the same status.
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d. Consider two profiles that are different only in one individual’s

reasonability perception. Any reaction that f determines to

be reasonable in the first profile, and regarding which the

individual did not change his opinion from reasonable to un-

reasonable in the second profile, remains reasonable.

Then f determines that a reaction is socially reasonable if and only

if at least one of the individuals perceives it as reasonable.

2. Show that all four properties are necessary for the proposition.

3. Prove the proposition.

Problem D4. (Tel Aviv 2010)

Let % be a preference relation on R
n satisfying the following properties:

Weak Pareto (WP): If xi ≥ yi for all i, then x =(x1, . . . , xn) % y =

(y1, . . . , yn), and if xi > yi for all i, then (x1, . . . , xn) ≻ (y1, . . . , yn).

Independence (IIA): Let a, b, c, d ∈ R
n be vectors such that in any

coordinate ai > bi, ai = bi, or ai < bi if and only if ci > di, ci = di, or

ci < d, accordingly. Then, a % b iff c % d.

1. Find a preference relation different from those represented by

ui(x1, . . . , xn) = xi which satisfies the two properties.

2. Show, for n = 2, that there is an i such that ai > bi implies a ≻ b.

3. Provide a “social choice” interpretation for the result in (2). Explain

how it differs from Arrow’s Impossibility Theorem.

4. Expand (2) for any n.

Problem D5. (NYU 2012. Based on Rubinstein (1980).)

An individual is comparing pairs of alternatives within a finite set X

(|X | ≥ 3). His comparison yields unambiguous results, such that either

x is evaluated to be better than y (denoted x→ y) or y is evaluated to be

better than x (y → x). A ranking method assigns to each such relation

→ (namely, complete, irreflexive and antisymmetric relation, but not

necessarily transitive) a preference relation % (→) over X . Consider the

following axioms with respect to ranking methods:

(i) Neutrality: “the names of the alternatives are immaterial”. (For-

mally, let σ be a permutation of X and let σ(→) be the relation

defined by σ(x)σ(→)σ(y) iff x→ y. Then, x % (→)y iff σ(x) %

(σ(→))σ(y).)

(ii) Monotonicity: if x % (→)y, then x ≻ (→′)y where →′, differs

from → only in the existence of one alternative z such that z → x

and x→′ z.
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(iii) Independence: The ranking between any two alternatives de-

pends only on the results of comparisons that involve at least one

of the two alternatives.

1. Define N→(x) = |{z|x→ z}| (the number of alternatives beaten

by x). Explain why the scoring method defined by x % (→)y if

N→(x) ≥ N→(y) satisfies the three axioms.

2. For each of the properties, give an example of a ranking method

which satsifies the other two properties but not that one.

3. Prove that the above scoring method is the only one that satisfies

the three properties.

Problem D6. (Tel Aviv 2013)

Society often looks for a representative agent. Assume for simplicity that

the number of agents in a society is a power of 2 (1,2,4,8....). Each agent

is one of a finite number of types (a member in a set T). A representative

agent method (RAM) is a function F which attaches to any vector of

types (t1, .., tn) (where n = 2m and each ti ∈ T ) an element in {t1, .., tn}.
Make the following assumptions about F :

(i) Anonymity: For any n and for any permutation σ of {1, .., n},
we have F (t1, .., tn) = F (tσ(1), .., tσ(n)).

(ii) The “representative” is the “representative of the representa-

tives”: F (t1, .., tn) = F (F (t1, .., tn/2), F (tn/2+1, .., tn)).

1. Characterize the RAMs which satisfy the two axioms.

2. Suggest an RAM that satisfies (i) but not (ii) and an RAM that

satisfies (ii) but not (i).

Problem D7. (Tel Aviv 2014.)

We say that a binary relation P over the spaceX = Rn satisfies Property

I if the statement xPy (the relation between x and y) depends only on

the equalities between the components of the two vectors. Formally, P

satisfies Property I if aPb ⇐⇒ cPd for any four vectors a, b, c and d

that satisfy (i) ai = aj ⇐⇒ ci = cj , (ii) bi = bj ⇐⇒ di = dj and (iii)

ai = bj ⇐⇒ ci = dj .

Denote Y = {x|∀i 6= j, xi 6= xj} as the set of all vectors vectors that

are composed of n different numbers.

1. Give an example (for n = 2) of non-degenerated preference relation

on X that satisfies property I.

Show that any preference relation satisfying property I:
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2. is indifferent between the vector (1, 2, 3) and any of the vectors

(4, 2, 5), (2, 3, 1) and (4, 5, 6).

3. is indifferent between any x, y ∈ Y satisfying xi 6= yj for any i,j.

4. is indifferent between any x, y ∈ Y where x is a permutation of y.

5. is indifferent between any x, y ∈ Y .

6. (much more difficult) Characterize the set of preference relations

satisfying Property I.



References

Arrow, K. J. (1963). Social Choice and Individual Values. 2d edition.

New York: Wiley.
Arrow, K. J. (1970). Essays in the Theory of Risk Bearing. Chicago:

Markham.
Arrow, K. J., and F. Hahn (1971). General Competitive Analysis. San

Francisco: Holden-Day.
Bernoulli, D. (1954). “Exposition of a new theory on the measurement

of risk.” Econometrica 22: 23–36.
Bowles, S. (2003) Microeconomics: Behavior, Institutions, and Evolu-

tion. Princeton, N.J.: Princeton University Press.
Chen, M. K., V. Lakshminarayanan, and L. Santos (2005). “The evo-

lution of our preferences: Evidence from Capuchin-monkey trading

behavior.” Journal of Political Economy 114(3): 517-537.
Cherepanov, V., T. Feddersen, and A. Sandroni (2008). “Rationaliza-

tion.” Working paper, Kellogg School of Management.
de Clippel, G. (2011). “Implementation and Bounded Rationality.”

Working paper, Brown University.
Debreu, G. (1954). “Representation of a preference ordering by a nu-

merical function.” In Decision Processes, ed. R. Thrall, C. Coombs,

and R. Davis. New York: Wiley.
Debreu, G. (1959). Theory of Value. New York: Wiley.
Debreu, G. (1960). Mathematical Methods in the Social Sciences. Stan-

ford, Calif.: Stanford University Press.
Diewert, W. E. (1982). “Duality approaches to microeconomic theory.”

Chap.12 in Handbook of Mathematical Economics, vol. 2, ed. K. Arrow

and M. Intriligator. Amsterdam: North-Holland.
Dutta, B., M. O. Jackson, and M. Le Breton (2001). “Strategic candi-

dacy and voting procedures.” Econometrica 69: 1013–1037.
Eliaz, K., M. Richter, and A. Rubinstein (2011). “Choosing the two

finalists.” Economic Theory 46: 211–219.
Fishburn, P. (1970). Utility Theory for Decision Making. New York:

Wiley.
Fishburn, P., and A. Rubinstein (1982). “Time preferences.” Interna-

tional Economic Review 23: 677–694.
Geanakoplos, J. (2005). “Three brief proofs of Arrow’s impossibility the-

orem.” Economic Theory 26: 211-215.



References 155

Gilboa, I. (2009). Theory of Decision under Uncertainty. Cambridge:

Cambridge University Press.
Gilboa, I., and D. Schmeidler (1995). “Case-based decision theory.” The

Quarterly Journal of Economics 110: 605–639.
Handa, J. (1977). “Risk, probabilities, and a new theory of cardinal

utility.” The Journal of Political Economy 85: 97–122.
Hicks, J. R. (1939). Value and Capital: An Inquiry into Some Funda-

mental Principles of Economic Theory. Oxford: Oxford University

Press.
Hicks, J. R. (1946). Value and Capital. Oxford: Clarendon Press.
Hicks, J. R. (1956). A Revision of Demand Theory. Oxford: Clarendon

Press.
Houthakker, H. S. (1950). “Revealed preference and the utility func-

tion.” Economica 17: 159–174.
Huber, J., J. Payne, and C. Puto (1982). “Adding asymmetrically domi-

nated alternatives: Violations of regularity and the similarity hypoth-

esis.” Journal of Consumer Research 9: 90–98.
Jehle, G., and P. J. Reny (1997). Advanced Microeconomic Theory.

Boston: Addison-Wesley.
Kahneman, D., and A. Tversky (1979). “Prospect theory: An analysis

of decision under risk.” Econometrica 47: 263–292.
Kahneman, D., and A. Tversky (1984). “Choices, values, and frames.”

American Psychologist 39: 341–350.
Kahneman, D., and A. Tversky (2000). Choices, Values, and Frames.

Cambridge, U.K.: Cambridge University Press.
Kalai, G., A. Rubinstein, and R. Spiegler (2002). “Comments on ratio-

nalizing choice functions which violate rationality.” Econometrica 70:

2481–2488.
Kannai, Y., and B. Peleg (1984). “A note on the extension of an order

on a set to the power set.” Journal of Economic Theory 32: 172–175.
Kasher, A., and A. Rubinstein (1997). “On the question ‘Who is a J?” ’

: A social choice approach.” Logique et Analyse 160: 385–395.
Kelly, J. S. (1988). Social Choice Theory: An Introduction. New York:

Springer-Verlag.
Kreps, D. (1988). Notes on the Theory of Choice. Boulder, Colo.: West-

view Press.
Kreps, D. ( 1990). A Course in Microeconomic Theory. Princeton, N.J.:

Princeton University Press.
Kreps, D. ( 2013). Microeconomic Foundations I: Choice and Competi-

tive Markets. Princeton, N.J.: Princeton University Press.
Luce, Duncan R. (1956). “Semiorders and a theory of utility discrimi-

nation.” Econometrica 24: 178–191.



156 References

Luce, D. R., and H. Raiffa. (1957). Games and Decisions. New York:

Wiley.

Machina, M. (1987). “Choice under uncertainty: Problems solved and

unsolved.” Journal of Economic Perspectives 1: 121–154.

Mandler M., P. Manzini, and M. Mariotti (2010). “A million answers to

twenty questions: Choosing by checklist.” Working paper.

Markowitz, H. (1959). Portfolio Selection: Efficient Diversification of

Investments. New York: Wiley.

Mas-Colell, A., M. D. Whinston, and J. R. Green (1995).Microeconomic

Theory. Oxford: Oxford University Press.

Masatlioglu, Y., and E. A. Ok (2005). “Rational choice with status-quo

bias.” Journal of Economic Theory 121: 1–29.

May, O. (1952). “A set of independent necessary and sufficient conditions

for simple majority decision.” Econometrica 20: 680–684.

McKenzie, L. (1957). “Demand theory without a utility index.” Review

of Economic Studies 24 : 185–189.

Miller, A.D. (2007). “A model of community standards.” Working paper.

Miyamoto, J. M., P. P. Wakker, H. Bleichrodt, and H. J. M. Peters

(1998). “The zero-condition: A simplifying assumption in QALY mea-

surement and multi-attribute utility.” Management Science 44: 839–

849.

Muller, E., and M. A. Satterthwaite (1977). “The equivalence of strong

positive association and strategy proofness.” Journal of Economic

Theory 14: 412–418.

Plott, C. E. (1973). “Path independence, rationality, and social choice.”

Econometrica 41: 1075–1091.

Pratt, J. (1964). “Risk aversion in the small and in the large.” Econo-

metrica 32: 122–136.

Rabin, M. (1998). “Psychology and economics.” Journal of Economic

Literature 36: 11–46.

Rabin, M. (2000). “Risk aversion and expected-utility theory: A cali-

bration theorem.” Econometrica 68: 1281–1292.

Radner, R. (1993). “The organization of decentralized information pro-

cessing.” Econometrica 61: 1109–1146.

Reny, P. J. (2001). “Arrow’s theorem and the Gibbard-Satterthwaite

theorem: A unified approach.” Economic Letters 70: 99–105.

Richter, M. K. (1966). “Revealed preference theory.” Econometrica 34:

635–645.

Rothschild, M., and J. Stiglitz (1970). “Increasing risk I: A definition.”

Journal of Economic Theory 2: 225–243.

Roy, R. (1942). De l’utilité. Paris: Hermann.
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