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Lecture B-1: Economic Allocation Mechanisms: An Introduction

Warning: These lecture notes are preliminary and contain mistakes!

1. A basic setup

Let us focus on the following fundamental question: how does a group of

individuals who face a shortage of resources allocate those resources among its

members?

In the model we deal with a society consisting of a set of agents I  1, . . ,n

and a set of houses H  1, . . . ,m. For simplicity assume that m  n (an extension

is straightforward).

Each agent can possess only one house. Each house can be occupied by at

most one agent.

Agent i holds a strict ordering i over the set H (I will comment on the more

general case of preferences with indifferences).

We are interested in mechanisms which allocate the houses among the agents.

A feasible allocation a is a function from I into H such that there is no h ∈ H for

which ai  aj  h for some i ≠ j. This reflects the assumption that an agent

cannot hold more than one house.

We say that an allocation a is efficient (or Pareto Efficient) if there is no other

allocation b such that for all i we have bi i ai and for at least one j, bj j aj.

Efficiency has two interpretations. From the welfare point of view this is a

minimal condition for optimality. From "stability" point of view an inefficient

allocation might be unstable in the sense that a group of people could re-alloacte

the houses they hold so that all be happier.

2. Mechanisms:

A mechanism attaches to every profile of preferences a feasible allocation. A

random mechanism attaches to every profile a lottery over the set of feasible

allocations. The following are some mechanisms (some of them involve random

elements) which make sense in our setup:

(1) Maximize Points: The preferences are translated into ”points” (the more



preferred houses get more points) and a computer calculates the allocation which

maximizes the sum of the ”points” over all individuals.

(2) First, look for the houses which are considered most popular by the largest

number of individuals. Allocate each of them randomly to one of the individuals

who likes them most. Continue the process with the remaining houses and the

remaining agents.

(3) Choose randomly one of the Pareto-efficient allocations.

(4) Lottery: The houses are allocated to the individuals by a fair lottery (like

has been done in Joshua’s allocation of the “nachalot" (inheritances). This random

mechanism seems fair (ex-ante) but can yield unfair outcomes (ex-post) as it is

invariant of the individuals’ preferences. The realized allocation might be inefficient.

(5) Sequential Dictatorship with Random Ordering: An ordering of the agents is

determined by a fair lottery. Then, agents are called one after the other to choose

a house from those yet unchosen. This random mechanism is sensitive to the

individuals’ preferences. The procedure is fair ex-ante and yields an efficient

ex-post outcome (to be shown later).

In the following mechanisms some additional information is fed in:

(6) Big Brother: A computer attaches to each individual i and each house h, a

number vih interpreted as the “value” of i holding h. The computer then looks for

an allocation which maximizes the sum∑ i
viai over all feasible allocations.

(7) A game: The individuals play a game which ends with an allocation or with

disagreement. An example of such a game is one where in each round each

individual makes a demand (for a house). If the demands are compatible (no two

individuals demand the same house), the allocation is implemented; if not the game

continues to the next round without a time limit.

One can see that for the n  2 case, the equilibrium outcome of the game must

be an agreement. However, for n ≥ 3 there are equilibria with no agreement (all

agents always demand house 1, no one can unilaterally deviate and gain). The

bargaining outcome depends on additional information about the agents, such as

time impatience.

(8) The houses are “auctioned” one by one. House 1 is auctioned first. The

agents are required to do push ups and the one who does the most will get the

house. In order to talk about an equilibrium in this model we need to enrich the



model with information about the trade-off between the individuals’ preferences

over houses and their readiness to do push ups.

Note, that a mechanism can be viewed as a social choice function (see Lecture

9 in the book). The social alternatives are the allocations and each individual has a

preference relation on the set of allocations. Note that the assumption that an

agent cares only about the house he gets makes the problem a social choice

problem with restricted domain.

The rest of the lecture is devoted to a discussion of two models, the jungle and

the market, where additional information is either a power relationship or an initial

ownership. In discussing each model we will describe an equilibrium concept and

we will think about it as the outcome of the mechanism.

3. The jungle

We are about to add to the model information about the relative power of the

individuals. Let S be a power relation on the set of individuals. The statement iSj

means that i is stronger than j and can take from him whatever asset he holds. We

assume that the relation S is an ordering and without loss of generality assume

1S2S3. . .Sn. (Note that the interpretation of power is not necessary physical, power

can be originate by, for example, "seniority".)

An allocation is a function from I to H. We look for an allocation of the houses

which will remain “stable” despite the potential forces operating in the model. We

say that an allocation a  aii∈I is a Jungle Equilibrium if there is no i such that

there exists a house h held by one of the individuals who are weaker than him such

that h i ai. In other words, an allocation is a jungle equilibrium if no agent i can

improve his situation by replacing his house with a house held by a weaker agent.

Claim 1: A jungle equilibrium exists.

Proof: Consider the allocation which is obtained by "calling" the agents one by

one, according to the order of power, to pick a house from those not allocated

earlier in the process. Namely, agent 1 picks first and chooses his preferred house

a1. Agent 2 chooses then the best house according to his preferences from



among H − a1, denote it by a2 and continue on. The allocation is a jungle

equilibrium since each agent i possesses a house which is the best (according to

his preferences) from among H − a1, . . .ai − 1.

Claim 2: The jungle equilibrium is unique.

Proof: Assume both a and b are two different jungle equilibria. Let i be the

strongest agent for which ai ≠ bi. Assume ai i bi. It must be that

ai  bj for some agent j weaker than i. This contradicts b being a jungle

equilibrium since iSj and bj i bi.

Claim 3: (The first fundamental welfare theorem) A jungle equilibrium is

efficient.

Proof: Let a be a jungle equilibrium. Consider a feasible allocation b such that

bj j aj for all j with at least one strict inequality. Let j∗ be the strongest agent

for whom bj ≠ aj. It must be that bj∗ j∗ aj∗ and that bj∗  aj for some

j∗Sj, a contradiction for a being a jungle equilibrium.

Claim 4: (The second fundamental welfare theorem) For any efficient

allocation there is a power relation such that the allocation is a jungle

equilibrium with this relation.

Proof: Let a be an efficient allocation. Define a relation iEj if aj i ai

interpreted as "i envies j". Given that the allocation a is efficient, the E relation is

acyclic: if there was a cycle, n1En2E. . . . ,EnKEn1 then the allocation where each ik

gets aik1 (and inK gets an1) would Pareto dominate a, a contradiction to the

efficiency of a. Complete the acyclic relation E to an ordering E
∗

and define iSj if

jE∗i. The allocation a is a Jungle equilibrium of the Jungle with this power relation

P since we arranged that if i envies j, then j would be stronger than him.

A discussion:

1) The uniqueness and efficiency results will not be true if preferences with

indifferences.

2) The preferences don’t exhibit externalities. With externalities the efficiency



property will not necessarily hold.

3) The welfare of an individual depends only on his "consumption" (the house

he possesses) and not on the budget set (considerations like "I am happy since I

can consume" do not enter into the model).

4) We do not talk here about the dynamics which leads to the final allocation

(an interesting issue by itself). Rather we define and analyze an equilibrium

concept.

5) One can think about other notions of power where the outcome of a conflict

is not deterministic and where the power depends on the house which is in dispute

(namely i might be stronger than j regarding h and weaker regarding h′).

4. Markets

Markets are based on the notion of ownership. The additional information is e,

an initial allocation of the houses. Each agent i enters the model owning a house

ei. The basic idea behind the notion of a market is that nobody is forced to make

an exchange. Exchange is voluntary and requires the consent of all involved

parties. Again, we will not talk here about a dynamics which leads to the final

allocation and confine ourselves to define and analyze an equilibrium concept.

A candidate for a competitive equilibrium is a pair a,p which consists of:

(1) a function a : I → H.

(2) a price vector p  ph: one price for each house h.

For a pair a,p to be a competitive equilibrium we require that:

(1) ai maximizes i given the "budget set" h|ph ≤ pei. That is, for every i,

buying the house ai is optimal given his budget set. In other words, the house

ai is the best house for agent i from the set of houses he can afford.

(2) a is feasible, that is a1, . . . ,an  H. In other words, the demand for

each house is equal to its supply which is 1.

Prices and initial holding determine what are the trade possibilities of each

agent. One interpretation of the equilibrium is as follows: each agent awakes in the

market day morning and sees the price of his house. Agent i is going to a central

place and in one window exchanges ei with pei units of an "intrinsic valueless"

commodity called money. Then, he goes to the other window and buys back one

house he “can afford” to buy with the money he got (probably the same house he



held earlier). In equilibrium, no house is demanded by more than one agent (with

the logic that it will cause an increase in the house’s price until demand is equal

supply).

Claim 1: A competitive equilibrium exists (This proof is due to David

Gale).

Proof: A “top cycle” is a sequence of agents i1, i2, . . . iK1  i1 such that ik likes

most eik1. To show that a top cycle exists - start arbitrarily with agent j1 and

continue by ejk1 be the house which is most liked by jk. Eventually jK  jk for

K  k.

Let J1  ik, . . . , iK−1. Assign to each j ∈ J1 the house he likes most. Continue

with the rest of the agents I − J1 and the rest of the houses (those which are not

owned initially by the members of J1). In this way we will partition I into disjoint sets

J1,J2. . . . ,JL. Attach prices pk to all houses owned initially by the members of Jk so

that p1  p2 . . . .pL  0. Verify that this price vector and the obtained assignment

of houses is a competitive equilibrium.

Discussion: What makes an agent strong in the market? It is the

complementarity of other people preferences with his own. Market power of an

agent is an outcome of the house he held initially and the agents’ preferences.

Claim 2: (The first fundamental welfare theorem) A competitive

equilibrium allocation is efficient.

Proof: Let the price vector p1, . . . ,pn and the allocation a be a competitive

equilibrium. Assume that the allocation is not efficient. Thus, there is an allocation

b such that some agents are better off and no one is worse off. In other words, for

all i, bi i ai and for at least one agent the inequality is strict. Denote by J the

non empty set of agents for whom bj ≠ aj. Let HJ be the houses held by

members of J (it is the same set in a and b). Since we do not allow indifferences,

bj j aj for all j ∈ J and thus it must be that pbj  paj for all j ∈ J . Thus,

∑h∈HJ ph  ∑ i∈J pbi  ∑ i∈J pai  ∑h∈HJ ph, a contradiction.



Claim 3: (The second fundamental welfare theorem) Any efficient

allocation is also a competitive equilibrium allocation.

Proof: Let a be an efficient allocation. Consider the market with the initial

allocation being a. By claim 1 this market has a competitive equilibrium outcome b.

For every i bi i ai and since a is Pareto efficient it must be that bi i ai for

all i and by the strict preferences assumption b  a.

Claim 4: The model with strict orderings has a unique competitive

equilibrium allocation.

Proof: (The following proof is based on a suggestion made by Daniel Bird and

Ziv Kedem, students in Fall 2008).

Let eii∈I be an initial allocation of the houses. Without loss of generality let

us assume that the set of houses (H) is the same as the set of agents (I) and that

ei  i.

L1: Any competitive equilibrium aii∈I, pii∈I induces a partition of I to trade

cycles, each consists of a sequence of agents i1, . . , iK such that ai1  i2,

ai2  i3,....,aiK  i1 (that is, i1 buys i2’s house, i2 buys i3’s house and so on).

Furthermore, since pi1 ≥ pi2,pi2 ≥ pi3,. . . , piK ≥ pi1, the prices attached

to the houses of all members of a trade cycle is the same.

L2: If aii∈I, pii∈I is a competitive equilibrium in the market with the set of

traders of houses be I and C  i1, . . , iK is a trade cycle, then aii∈I−C, pii∈I−C is

a competitive equilibrium in the market with the set of traders and houses I − C

(verify).

Now, let a,p and b,q be competitive equilibria. We will show that for all i

ai  bi.

Let M be the highest number in the price vector p. Consider a trade cycle of the

agents i1, . . , iK whose houses’ price is M. All agents in this cycle achieve the

house they liked most in the set of all houses. Let i1 be the agent in this cycle who

is the richest according to q. He can afford in q house i2 and thus it must be that

ai1  bi1  i2. Now, i2 is also a richest trader from among the traders in

C  i1, . . , iK and thus he can afford i3 in q. Therefore, ai2  bi2  i3 and so

on.. We infer that i1, . . , iK is a trade cycle also in b,q.

By L2 aii∈I−C, pii∈I−C and bii∈I−C, qii∈I−C are competitive equilibria

in the market with the set of agents and houses be I − C. Continuing as in the



above leads to conclude that ai  bi for all i.



Problem Set B-1:

Problem 1:

Show that in this model for any efficient allocation a there is an i such ai i h

for all h.

Problem 2:

Consider a world with K commodities where an initial bundle w can be divided in

any way between the n agents. Assume that each agent has a classical preference

relation (satisfying continuity, strict monotonicity and strong convexity) over the set

of bundles and is restricted to consuming a bundle within a set of bundles Xi which

satisfies compactness, free disposal and convexity. Define an equilibrium as an

allocation aii of w such that there is no i stronger than j such that there exists a

bundle xi ≤ ai  aj in Xi such that xi i ai. (That is, i can attack only one

weaker agent. After the seizure of the weaker agent’s bundle (aj) he holds the

bundle ai  aj. If ai  aj ∉ Xi he must dispose some of the commodities in

order to possess a feasable bundle in Xi).

Show the existence of jungle equilibrium in this model.

Show that the jungle equilibrium is efficient.

Problem 3:

Show that if agents have preferences with indifferences, then there might be a

jungle equilibrium which is not efficient.

Show that if agents have preferences with indifferences, then there might be a

competitive equilibrium which is not efficient.

Problem 4:

Can a competitive equilibrium be always obtained by a chain of pairwise

exchanges where each exchange has the property that the exchange improves the

situation of the two parties?

Problem 5:

Consider a model with n  1 agents and n houses. The “new” agent 0 initially

owns the n houses and cares only about an additional good, “money”. Each agent i

(i  1, . . . ,n) initially holds $mi where m1  m2 . . . mn and has lexicographic

preferences with first priority be the house he will own and second priority is the



money left in his pocket after purchasing the house.

Define a concept of equilibrium and show its existence.

Problem 6:

Show that for every jungle equilibrium a  aii∈I there is a price vector p such

that a,p is a competitive equilibrium satisfying that if iSj than i is wealthier than j

(measured by the competitive price vector).

Problem 7:

Invent at least two comparative statics results , one for the jungle equilibrium

and one for the competitive equilibrium.

Problem 8:

Consider the following dynamic process.

Starting point: start from an arbitrary assignment (an agent can be assigned to

an house or to the "street")

At stage t  1 each agent selects the best house (from his point of view) from

the houses which at stage t are deserted or held by agents which are not stronger

than him. At each house which is approached by more than one agent, only the

stronger stays. The rest are sent to the "street".

The process stops at T when the assignment at period T and T − 1 are identical

Show that he process must stop and will stop at a jungle equilibrium.


