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Lecture B-2: Competitive Equilibrium: Definition, Examples and Existence

Warning: Preliminary notes!

The General Structure of the Competitive Equilibrium Concept

The concept of competitive equilibrium applies to models which fit to an interaction of

a number of agents. The abstract structure of the model is the following.

I be a set of agents.

Each i has a preference relation i on some space of actions Xi and some other

characeteristics ei.

A set H ⊆  i∈IXi of comparable profile of actions interpreted as the set of action

vectors which are "in harmony".

A function Bp,ei which assigns to each element p ∈ Δ (a set of "prices"/"traffic

signals") a subset of feasable actions, that is Bp,ei ⊆ Xi.

A competitive equilibrium is a pair p and a profile aii∈I such that

(i) the action ai is i’s best action in Bp,ei and

(ii) the vector ai is in H.

The solution concept is static. We do not discuss the mechanism by which prices are

evolved. "Equilibrium prices miraculously appear from nowhere". No agent has the power

to determine prices.

Economy with Pure Exchange

An economy is a tuple  I,K, i i∈I, eii∈I , where, I is the set of consumers, K is the

set of goods, each consumer i holds an initial bundle ei ∈ R
|K| and i is a preference

relation defined over R
K (later we will sometimes replace this bundle space with a more

restricted space). We assume that all preference relations satisfy the classical assumptions

we have made in our discussion of the consumer; in particular, we assume that preferences

are strictly monotonic, continuous and convex. The model we discuss "assumes" the

existence of ownership. We interpret ei as the bundle i owns initially. The action space of



each i is a subset of the set of bundles R
K.

Given a price vector p an agent i can choose an element in the budget set

Bp,ei  x|px ≤ pei.

Thus, prices are the terms of exchange in the market. Two related interpretations:

(i) Prices can be viewed as “prices” for exchange using money.

(ii) All consumers can exchange the commodities k and k ′ in fixed exchange ratios.

One unit of commodity k can be exchanged for pk/pk′ units of k ′. The terms of exchange

are linear, that is, are independent of the identity of the traders. Linearity of prices means

that the terms of exchange are also independent of the traded quantities. Each agent

assumes that he can trade a combination of commodities for any other combination of

goods which has the same value as measured by the prices where the value is calculated

"linearly".

The profiles of actions which are compatible are the profiles xi for which

∑ i∈I xi  ∑ i∈I ei.

Thus, applying the general idea of competitive equilibrium to this setup we reach the

following definition:

Definition: A Competitive Equilibrium (CE) is a vector of non-negative numbers

(prices) p  p1, . . . ,pK and a profile of bundles, xii∈I, such that:

(1) xi is i optimal from among the set Bp,ei  x|px ≤ pei

(2)∑ i∈I xi  ∑ i∈I ei.

The basic idea of CE is that the considerations of each agent are affected by the price

vector and not by the actions of the other players. The price vector is a "transmission

element" between the actions of the other agents and the actions (or considerations)

available to the agent.

Comments:

(1) Consumers are price takers: they take equilibrium prices as given and their actions

are optimal given those prices.

(2) In equilibrium the markets for all goods are cleared simultaneously.

(3) If p is a CE price vector, then so is p for any positive .

(4) The mechanism of trade is not specified.

(5) Missing elements: production, time and uncertainty.



Example 1 : Consider a market with two commodities. Commodity 1 is “money” and

commodity 2 is an indivisible good. Assume that each consumer can hold only one unit of

commodity 2. Thus, the consumption set of each agent is

Xi  m,q| m ∈  and q ∈ 0,1.

Consumer i is characterized by a number vi  0 such that i’s utility function is

uim, 1  m  vi and uim, 0  m. Thus, m, 1 i m′, 0 iff m  vi  m′. The number vi

can be thought of as consumer i’s reservation value.

Thus in this economy, the set of consumers is split into two sets, B (potential buyers)

and S (potential sellers), where for any i ∈ B, ei  mi, 0 and for any j ∈ S, ej  mj, 1.

Denote by |S| the number of sellers in the economy (that is, the number of units of

commodity 2 in the economy).

In the following we calculate the competitive equilibrium for the case in which for all

i ∈ B mi  vi (that is, any buyer i has enough money to buy the good even for vi). (How

would you change the following so to cover also the case that not for all buyers mi  vi ?).

Let the price of the first good be normalize d to 1.

We can calculate the equilibrium price in the following way: Order all agents by their

reservation values. Let O be a set of |S| agents such that there is no i ∉ O and j ∈ O such

that vi  vj. In other words O includes |S| agents with the highest reservation value. Let p∗

be any price such that for all i ∈ O, vi ≥ p∗ and for all i ∉ O, vi ≤ p∗. The equilibrium

actions will be the following:

i ∈ ai

O ∩ S ei

O ∩ B mi − p∗, 1

Oc ∩ S mi  p∗, 0

Oc ∩ B ei

The equilibrium allocation may be not unique. For example if S  1,2 and B  3

with v1  v2  v3 then the only equilibrium price is p∗  v1  v2 but there are two CE

allocation (one where 1 sells the good and one where 2 sells the good).



Comment: Note that the equilibrium can be calculated also using the standard supply

and demand curves:

Order the buyers according to their reservation values from highest to lowest, i.e.,

b1 . . . b |B|.

Order the sellers by their reservation values from lowest to highest s1 . . . s |S|.

Let n ≤ min|B|, |S| be the largest value for which bn ≥ sn .

(i) n  0 (that is, all sellers put a higher value on the good than any buyer).

A price vector 1,q with s1 ≥ q ≥ b1 combined with xi  ei for all i ∈ I is a CE.

Verify that any price vector 1,q with q outside the range is not be a competitive price

vector.

(ii) If 0  n ≤ min|B|, |S|, choose q to be within the intersection of bn1,bnand

sn, sn1 (if n  |B| define bn1  0 and if n  |S| define sn1  ) an intersection which

must be non-empty). For all buyers b1, . . ,bn the final bundle will be mi − q, 1 and for all

sellers s1, . . , sn the final bundle will be mi  q, 0. For the rest, the initial and final bundles

will be identical. Verify that this is a CE and that any other price vector cannot be a CE

price vector.

Example 2: Assume that prior to trading in the market each consumer has to decide

whether to enter the market or not (i.e., “stay at home”). Assume that entering into the

market is associated with a cost c ≥ 0 (paid to agents outside the market). In this case we

can formalize the competitive equilibrium as follows:

An action for agent i is "stay home", "go and don’t trade", "go and consume a bundle"

The utility function is extended from example 1 with the deduction of c for "go and not

trade" and "go and consume". We can simple write:

Bp, m, 0  m, 0, m − c, 0, m − c − p, 1 and

Bp, m, 1  m, 1, m − c, 1, m − c  p, 0.

For a pair containing a price vector and an action profile 1,p∗, aii∈I to be a CE it

has to be true that:

(i) for each i the action ai is a best from his budget set.

(ii) the number of buyers who go and trade is equal to the number of sellers who go and

trade.

It is easy to see that the CE can be calculated in a similar manner to that in example 1,

where the vi of a buyer is reduced by c and the vi of a seller is increased by c.



(Compare with an equilibrium model which allows also an equilibrium where all agents

are left out).

Example 3: Let K  2. Consider the case that initially  consumers hold the bundle

1,0 and  consumers hold the bundle 0,1. All consumers have preferences represented

by the utility function minx1,x2.

If   , there is no equilibrium with p1,p2  0 because if there is a positive CE price

vector then for every i the bundle xi is on the main diagonal (equal quantities of the two

commodities) and thus∑ i∈I xi must be on the main diagonal whereas the total initial

bundles∑ i∈I ei  , are not.

There exists an equilibrium with p  1,0, in which each “leftist" consumer consumes

1,1 and each “rightist" consumer consumes 0,1 − /.

If   , then any price vector 1,q is an equilibrium price vector and the leftist

consumers choose 1/1  q, 1/1  q and the rightist consumers choose

q/1  q,q/1  q. In other words, the competitive equilibrium is consistent with any

share of the “surplus” between the two type of agents.

Example 4: Consider a market with  consumers holding the initial bundle 1,0 and

having the utility function minx1,x2 and  consumers holding the initial bundle 0,1 and

having a utility function x1x2. In all equilibria the bundles of all agents of the same type

are the same (since given a positive price vector their choice problems are identical and

have a unique solution). Denote the final bundles held by the leftists and the rightists by xL

and xR, respectively.

Consider a candidate for competitive equilibrium 1,p∗, where p∗  0. It must be that

xL  1/1  p∗, 1/1  p∗ and xR  p∗/2,1/2. The “market clearing” equilibrium

condition implies that 1/1  p∗, 1/1  p∗  p∗/2,1/2  , and thus,

p∗  2 − / . However, this is an equilibrium only if 2 −  ≥ 0, i.e.,  ≥ /2.

When  ≤  the vector 1,0 is a competitive equilibrium price vector and the leftists

obtain the bundle 1,1.

Example 5 (Robinson Crusoe): Consider a two-commodity market with one consumer

holding the initial bundle e1. In competitive equilibrium the chosen vector must be e1.

Thus, we look for a price vector for which the initial bundle maximizes the consumer’s

preferences given the budget constraint. If the consumer’s preferences are convex, then



such a price vector exists (determined by the tangent to the indifference curve which passes

through e1). The existence of such prices for general convex preferences follows from a

separation theorem. For convex differential preferences, the vector vke1k is a CE price

vector.

Example 6 (Edgeworth Box): |I| 2, Edgeworth box is a helpful diagrammatic tool for

discussing the situation (Discussion, Figure).

Demonstration of CE and a proof of existence (it is easy since the price vector could be

thought as one dimensional).

Example 7: A Story about Two Gates

N individuals want to enter a stadium which has two gates, 1 and 2. The average

waiting time at a gate depends on the number of agents who choose to enter the stadium

through that gate. Let fix be the average waiting time at gate i if x people choose that

gate. Assume fi0  0 and that fi is strictly increasing. Assume that all individuals prefer

to wait in line as little as possible.

The competitive equilibrium approach states that each individual takes the best action

given the constraints dictated by some "numbers" which he takes as given. The actions and

numbers should be compatible. In this case let us apply the spirit of competitive

equilibrium in the following way:

Define equilibrium as a pair of numbers t1, t2, where ti is interpreted as the waiting

time at gate i, and aj j∈1,..,N, where aj is j’s action (an element of 1,2) satisfying that:

1) aj is the best action for agent j, i.e., for each j, if aj  1 it requires that t1 ≤ t2 and if

aj  2 it requires that t2 ≤ t1

2) For both i we have fiKi  ti where Ki is the number of agents who choose gate i,

i.e., Ki  |j|aj  i| .

Analysis: There is no equilibrium with K1  0 because in this case t1  0 , K2  N and

t2  0. However, it is not optimal for an agent to choose 2 while t1  t2. Similarly there is

no equilibrium with K2  0. It follows that in equilibrium both K1  0 and K2  0 ; both

actions are optimal and thus it must be that in equilibrium t1  t2. To summarize, an

equilibrium is characterized by f1K1  f2K2 and K1  K2  N.

Exercise: In what sense can you say that the equilibrium is "efficient".

Note the difference between this type of analysis and an analysis of the same situation

as a game. Here an agent does not take into account the influence of his own choice on the



waiting time as opposed to the model of a strategic game in which he does.

Fixed Points Theorems: Reminder

Brouwer’s fixed point theorem

Let X be a compact convex subset of n and let f∶X → X be a function such that:

f is continuous (that is the graph of f is closed, i.e. for all sequences xn and yn such

that yn  fxn for all n, xn → x, and yn → y, we have y  fx).

Then f has a fixed point x∗ at which fx∗  x∗.

Note that each of the following conditions is necessary for Brower’s theorem to hold.

(i) X is closed: Consider the function fx  x2 on 0,1.

(ii) X is bounded: Consider the function fx  x  1on .

(iii) X is convex: Let X be a circle and consider any non-degenerate rotation of X.

(iv) f has a closed graph: Let x  0,1 and let fx  1 − x for all x ≠ 1/2 and f1/2  0.

Kakutani’s fixed point theorem

Let X be a compact convex subset of n and let f∶X → X be a set-valued function (that

is fx ⊆ X and fx ≠ ∅ for any x ∈ X) satisfying:

for all x ∈ X the set fx is convex

the graph of f is closed (i.e. for all sequences xn and yn such that yn ∈ fxn for all n,

xn → x, and yn → y, we have y ∈ fx).

Then f has a fixed point x∗ at which x∗ ∈ fx∗.

Note that the condition that the set fx is always convex is necessary for Kakutani’s

theorem to hold.

Consider X  0,1 and let fx  1 for all x  1/2, fx  0 for all x  1/2 and

f1/2  0,1.

Existence

Efforts have been made to prove the existence of equilibria for a wide class of markets.

We are interested in such theorems in order to:

(1) Guarantee that the concepts we talk about are not empty.

(2) Test the consistency of the models we build.

Here we will prove a very basic existence theorem of competitive equilibrium. It is



presented here in order to give the flavor of the existence theorems.

Let Δ be the set of all price vectors, i.e., p ∈ 
K| ∑k

pk  1. Define xip,w to be

i’s demand given the price vector p and income w. We assume that the demand is well

defined for every price vector p including the vectors in which some prices are zero. We

also assume, that the demand functions xi are continuous even at the boundaries of Δ.

Let zip  xip,pei − ei be i’s excess demand.

Let zp  ∑ i
zip be the total excess demand.

The function z is continuous. It also satisfies Walras’ Law: pzp  0 since

pzp  ∑ i∈I pzip  ∑ i∈Ipxip,pei − pei  0.

Proposition (Existence): Assume that for each agent i the function zip

(1) is well defined for all p

(2) is continuous.

(3) satisfies Walras’ law and

(4) satisfies that, for any vector p with pk  0, there is a surplus of demand, that is

pk  0 implies zk
i p  0.

Then a competitive equilibrium exists.

Proof: The set Δ is compact and convex. We construct a function g : Δ → Δ which has

a fixed point and for which we can show that any fixed point is a competitive price vector.

Ideally, the function will describe a dynamic process: if price vector "today" is p, then the

price vector "tomorrow" will be gp. The function g which we construct has attractive

features but it is far from describing a reasonable dynamics. It is defined here only for the

sake of the proof.

Let g : Δ → Δ, be defined by gkp  pk  max0, zkp/1 ∑ j
max0, zjp

Note that gp ∈ Δ. When there is an excess of supply for k (zkp  0), gkp ≤ pk.

However, when zkp ≥ 0 the price gkp is not necessarily above pk (gkp ≥ pk for at

least one commodity k).

The function g satisfies the conditions of Brouwer’s fixed point theorem and thus g has

a fixed point p∗.

We will now show that p∗ is a CE price. By the assumption that if pk
∗  0 then

zk
i p∗  0, the fixed point must be a strictly positive vector.



It is sufficient to point out that for all k, zkp∗  0 since then the pair p∗ and the profile

xip∗,p∗eii∈I constitute a CE.

Since∑k
pkzkp∗  0 and all prices are positive, it is sufficient to show that for all

k, zkp∗ ≤ 0 since then zkp∗  0 for all k.

From the equation gkp∗  pk
∗ we obtain: max0, zkp∗  pk

∗∑ j
max0, zjp∗.

Multiply the two sides of the equation by zkp∗ and sum over all k we obtain:

∑k
zkp∗max0, zkp∗  ∑k

zkp∗pk
∗∑ j

max0, zjp∗.

By Walras law (∑k
pkzkp∗  0) and therefore∑k

zkp∗max0, zkp∗  0 which

implies that for all k, zkp ∗ ≤ 0.

The proof so far does not provide exactly what we are looking for. The main problems

are:

(i) The demand for the case that a price is 0 might be not well-defined. (ii) The demand

might be multi-valued.

Some work is needed to deal with those problems. In particular we need (i) to find a

subsapce of prices which will not include the boundaries and on which the function will get

values inside the set. (ii) to replace the proof which is using the Brower’s theorem with a

proof which will use Kakutani’s theorem.

The First Welfare Theorem

We say that an allocation of a bundle e, xii∈I, is efficient if there is no other allocation

yii∈I of e such that for all i, yi  xi and for at least one agent i the inequality is strict.

The First Welfare Theorem connects the concept of Competitive Equilibrium to the

concept of efficient allocation. Any outcome of competitive equilibrium is necessarily

efficient.

Proposition: (First Fundamental Welfare Theorem): A CE allocation is always an

efficient allocation of the social endowment.

Proof: Let p, xii∈I be a CE. Let yii∈I be an allocation of e  ∑ i∈I ei so that yi  xi



for all i with strict inequality for some j. It must be that pyj  pej and for all other i,

pyi ≥ pei (otherwise there would be a feasible bundle superior to xi). Summing over all

consumers, we have p∑ i∈I yi  p∑ i∈I xi which is a contradiction to the equilibrium

requirement that∑ i∈I xi  e.

The Second Welfare Theorem

Proposition: (Second Fundamental Welfare Theorem): An efficient allocation of the

social endowment is a CE allocation for some economy.

Proof (without using the existence theorem): Let xii∈I be an efficient allocation.

Consider the economy with ei  xi for all i.

Let x∗  ∑ i
xi. Consider the set Y  y| there is an allocation yi of y such that

yi i xi and for at least one i also yi i xi. The set Y is not empty, is convex (why?) and

x∗ ∉ Y. By the separation theorem, there is a non zero vector p such that py ≥ px∗ for all

y ∈ Y. For all k we have pk ≥ 0 since (x∗  0, . . . 1, . . . . 0 ∈ Y).

Assume that there is an agent j such that yj j xj and pyj ≤ pxj. By continuity there is

also zj such that zj j xj and pzj  pxj. The bundle x∗  zj − xj ∈ Y but

px∗  zj − xj  px∗. A contradiction.



Problem set B-02

1. Assume that the terms of trade between a and b are characterized by pab which

expresses the number of b that can be traded for one unit of a.

Show that unless pa,c  pa,bpb,c agents can make “arbitrage trades” to obtain goods

without giving anything in return.

Show that if pa,c  pa,bpb,c for any three goods a, b and c, then there is a price vector

p1,. . . ,pK such that pa.b  pa/pb.

2. Define a market with m  n consumers and two commodities in which all consumers

have the utility function ux1,x2  x1x2.

m consumers have the initial bundle 2,1 and the remaining n consumers have the

initial bundle 1,5. Calculate the CE prices as a function of m and n.

3. Prove the existence of CE for the Edgeworth box case using diagrams which depict

the excess demand for commodity 1 as a function of the price vector 1,p.

4. Construct an example of a market in which one consumer has convex preferences

and one has non-convex preferences in which there is no CE.

5. Define a market with a  b consumers who live for two periods. The first a

consumers have one unit of food in the first period and 0 in the second. The remaining b

consumers have 1 unit of food in the second period and 0 in the first. All consumers are

time indifferent (i.e., they are indifferent between consuming x units of food in the first

period and y in the second or consuming y units in the first and x in the second). The goods

are perfectly divisible. Assume that the preferences are monotonic, continuous, strictly

convex and differentiable. Calculate the relative CE prices for the case of a  b. What can

you say about the CE when a  b?



6. Formulate and prove the statement: In a world with K commodities, if the markets

for K − 1 goods clear then so does the K-th market.

7. Consider a society of N agents. Each agent has to choose a bar, either 1 or 2. When

allocating their unit of time between the bars, each agent takes into account the densities n1

and n2 (where n1  n2  N) in the bars, but ignores his own influence on n1 and n2. In

other words the agents relate to n1 and n2 like agents relate to the prices in a competitive

market.

Agent i chooses an allocation of time x1
i ,x2

i  (a pair of non-negative numbers which

sum up to 1) so as to maximize the function Uix1
i ,x2

i   x1
i u1

i n1  x2
i u2

i n2 where uh
i nh

is a continuous strictly decreasing function.

(a) Characterize the behavior of agent i as a function of n1 and n2.

Define an equilibrium as a pair of numbers n1 and n2 and a profile of allocations

x1
i ,x2

i i1,...,N such that:

(1) For every bar h,∑
i

xh
i  nh (i.e., nh is the correct density)

(2) For any i, x1
i ,x2

i  maximizes i’s utility given n1 and n2.

(b) Show that if uh
i  u for all i and for all h, then in equilibrium n1  n2  N/2.

(c) Prove the existence of an equilibrium (for the general case).


