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Solution
Problem 1.
Consider a world with two commodities in which a consumer can consume

bundles that contain only one of the two commodities Facing a budget set
Bp1,p2,w, each consumer has two continuous strictly monotonic evaluation
functions v1 and v2 and compares between v1w/p1 and v2w/p2. He spends all
his resources on the good that yields a higher evaluation.

a. Is this behavior rationalizable?
Answer:
Yes, by the preferences represented by Maxv1x1,v2x2.

b. Is this behavior consistent with maximizing continuous, monotonic and
convex preferences?

Answer:
Yes, by preferences with linear indifference curves (not necessarily parallel) such

that:
a. any x1 and x2 where v1x1  v2x2 are on the same indifference curve. By the

strict monotonicity of v1 and v2, these lines do not intersect.
b. in the case that there is a quantity xi

∗ of commodity i where vixi
∗  vjxj for any

quantity of commodity j, the indifference curve through xi
∗ is orthogonal to the i axis.

c. Assume that a consumer follows this procedure and sometimes
purchases commodity 1 and sometimes commodity 2. Is this behavior
consistent with maximizing continuous, monotonic and strict convex
preferences?

Answer:
No.
Assume that this behavior is consistent with maximizing continuos. monotonic and

strictly convex preferences.
First, note that there are quantities x1

∗ and x2
∗ such that x1

∗, 0  0,x2
∗:

If the agent sometimes purchases commodity 1 and sometimes commodity 2, then
there are two budget sets, p1

′ ,p2
′ ,w and p1

′′,p2
′′,w′′, such that v1w′/p1

′ ≥v2w′/p2
′ , and

v1w′′/p1
′′≤v2w′′/p2

′′. By the continuity of v1 and v2, there is  such that
v1w′/p1

′  1 − w′′/p1
′′v2w′/p2

′  1 − w′′/p2
′′. Thus, there exist x1

∗ and x2
∗ such

that v1x1
∗  v2x2

∗.
If x1

∗, 0  0,x2
∗ then by continuity there exists x1  x1

∗ such that also
x1, 0  0,x2

∗. By the monotonicity of v1, it holds that v1x1  v2x2
∗ which implies



that in a budget set where p1x1  p2x2
∗  w an agent that follows this procedure is

supposed to choose 0,x2
∗. This is inconsistent with x1, 0  0,x2

∗. Similarly, it cannot
be that x1

∗, 0  0,x2
∗, and therefore x1

∗, 0  0,x2
∗.

Let Bp1,p2,w be a budget set such that p1x1
∗  p2x2

∗  w. The agent is indifferent
between x1

∗, 0 and 0,x2
∗, the two corners of the budget set, and by strict convexity

he prefers any point between the two corners, x1
∗, 1 − x2

∗, to the corners
themselves. This is inconsistent with the procedure, which requires choosing one of
the corners.

d. Does the demand function satisfy the "law of demand" (according to
which decreasing price of a commodity weakly increases the demand for it)?

Answer:
Yes. If the price of good i decreases, i.e. pi

′  pi, then the consumer can buy more
of good i, i.e. w/pi

′  w/pi, while the amount of commodity j he can buy remains
unchanged. Thus, his evaluation of commodity j (vjw/pj) remains constant while his
evaluation of commodity i increases from viw/pi to viw/pi

′.
If under pi the consumer did not consume commodity i, then his demand cannot

decrease and the law of demand holds.
Otherwise, the consumer buys w/pi units of commodity i and we can conclude that

vjw/pj ≤ viw/pi. Clearly, we now have that vjw/pj  viw/pi
′ and the consumer

continues to consume from commodity i. His consumption of commodity i increases
from w/pi to w/pi

′ and the law of demand again holds.

Problem 2
Society often looks for a representative agent. Assume for simplicity that the

number of agents in a society is a power of 2 (1,2,4,8....). Each agent is one of a
finite number of types (a member in a set T). A representative agent method
(RAM) is a function F which attaches to any vector of types t1, . . , tn (where
n  2m and each ti ∈ T) an element in t1, . . , tn.

Make the following assumptions about F:
(1) Anonymity: For any n and for any permutation  of 1, . . ,n, we have

Ft1, . . , tn  Ft1, . . , tn.
(2) The "representative" is the "representative of the representatives":

Ft1, . . , tn  FFt1, . . , tn/2,Ftn/21, . . , tn
a. Characterize the RAMs which satisfy the two axioms.
Answer:
Claim: an RAM satisfies the two axioms iff there is an ordering of the types in T,



denoted by , such that Ft1, . . , tn is the -maximal type in t1, . . , tn.
Proof:
→
Let F be an RAM satisfying the two axioms.
Define ti  tj if Fti, tj  ti. The relation  is an ordering on T and has the following

characteristics:
Asymmetry: by axiom (1), Fti, tj  Ftj, ti and therefore if ti  tj, then Ftj, ti ≠ tj,

which implies that tj ⊁ ti.
Completeness: By the assumption that Fti, tj ∈ ti, tj, either Fti, tj  ti or

Ftj, ti  tj. Hence, either ti  tj or tj  ti.
Transitivity: Assume that ti  tj and tj  th. If not ti ⊁ th, then Fth, ti  th. By axiom

(2):
Fti, tj, th, th  FFti, tj,Fth, th  Fti, th  th and
Ftj, th, ti, th  FFtj, th,Fti, th  Ftj, th  tj.
However, by axiom (1) Fti, tj, th, th  Ftj, th, ti, th, a contradiction.
Lastly, we can show that Ft1, . . , tn  -maximal in t1, . . , tn, by induction on m,

where n  2m:
By definition this holds for m  1. Assume that it is correct for m  l − 1:

Ft1, . . , t2l−1  -maximal in t1, . . , t2l−1.
Let m  l.
By axiom (2), Ft1, . . , t2l  FFt1, . . , t2l−1,Ft2l−11, . . , t2l. By assumption,

Ft1, . . , t2l−1  -maximal in t1, . . , t2l−1 and Ft2l−11, . . , t2l  -maximal in
t1, . . , t2l−1. Denote these two maximal types by t ′ and t ′′.

By definition, Ft ′, t ′′ is the -maximal in t ′, t ′′ and clearly it is also the maximal in
t1, . . , t2l.

←
1. Trivial
2. The -maximal type in t1, . . , tn is either in t1, . . , tn/2 or in tn/21, . . , tn. In either

case, it is the -maximal in its set and therefore it is chosen by F. Thus, this type is
also in Ft1, . . , tn/2,Ftn/21, . . , tn and it will be chosen from t1, . . , tn by F.

b Suggest an RAM that satisfies (1) but not (2) and an RAM that satisfies (2)
but not (1).

Answer:
(1) but not (2): choosing the second-best type according to some ordering .on T.
(2) but not (1): choosing the type of the first agent: Ft1, . . , tn  t1.



Problem 3
Consider the housing model we talked about in class (where the number of

houses is equal to the number of individuals).
a. We will say that an allocation a  aii∈I is an equilibrium if there are

"choice sets" Sii∈I such that:
(i) ai is the i-best in Si
(ii) for any two agents i and j either Si ⊂ Sj or Sj ⊂ Si.
Show that a is an equilibrium if and only if a is Pareto efficient.
Answer:
→
Let a be an equilibrium according to the above definition. By (ii), we can order the

agents such that S1 ⊂ S2 ⊂. . .⊂ Sn.
Consider a feasible allocation b such that bi i ai for all i ∈ I for at least one

agent j, such that bj j aj.
Let i∗ be the highest i ∈ I such that bi ≠ ai. It must be that bi∗ i∗ ai∗ and

that bi∗  aj for some j  i∗. However, aj ∈ Sj ⊂ Si∗, which contradicts ai∗
being the i-best in Si∗.


Let a be a Pareto-efficient allocation. Construct the sets Si by the following steps:
Step 1:
There is at least one agent such that ai i aj for all j ≠ i: otherwise we obtain a

contradiction to a being efficient (see problem 1 in B − 1).
Denote this agent by 1.
Define S1  j∈I aj. Clearly, a1 is the 1-best in S1
Repeat this procedure with the remaining agents:
At step l, there is at least one agent in I \ 1, . . . , l − 1 such that ai i aj for all

j ∈ I \ 1, . . . , l − 1, i.
Denote this agent by l.
Define Sl  j∈I \ 1,...,l−1 aj. Clearly, al is the l-best in Sl

Lastly, note that by construction, for any two agents i and j, either Si ⊂ Sj or
Sj ⊂ Si.

b. We will say that an allocation a  aii∈I is a 2-equilibrium if there are
"choice sets" Sii∈I such that

(i) ai is the i-best in Si; and
(ii) Si contains two elements.
Show that unless one of the alternatives is the worst according to all

preferences, then a 2-efficient equilibrium always exists.
Answer:
Claim: If none of the alternatives is the worst according to all agents’ preferences,



then there is an allocation such that no agent receives his worst alternative.
Proof: Let a be an allocation with the minimal number of agents who receive their

worst alternative. Assume, for the purpose of contradiction, that this number is positive
and let i be an agent who receives his worst alternative. Since no alternative is worst
according to all agents, there is an individual j who does not consider ai to be the
worst alternative.

Let b be an allocation such that bi  aj, bj  ai, and bh  ah for all h ≠ i, j.
The number of individuals who receive their worst alternative in b is smaller than in a,
in contradiction to a having the minimal number of agents who receive their worst
alternative.

Now, let a be an allocation in which no agent receives his worst alternative. For
each agent, i, define Si to be a set containing ai and i’s worst alternative. Clearly,
ai is best according to i in Si.


