
Problem Set 1 - Preferences
Problem 1.

Let � be a preference relation on a set X. Define I�x� to be the set of all y � X for

which y � x. Show that the set (of sets!) �I�x�|x � X� is a partition of X.

(i) For all x and y, either I�x� � I�y� or I�x� � I�y� � �.

Note that the indifference relation is symmetric and transitive.

Let x, y � X, and assume that I�x� � I�y� � �, which means that there exists

z � I�x� � I�y�. Let a be any element in one of the sets, let us say I�x�. It means that

a � x. But z � x and z � y since z � I�x� � I�y�. By symmetry of the indifference relation,

x � z. By transitivity of �, it follows that a � y, and thus a � I�y�.

(ii) For every x � X, there is y � X such that x � I�y�.

Let x � X. The completeness of � means that x � x. Consequently, x � I�x�.



Problem 2.

Kreps (1990) introduces another formal definition for preferences. His primitive is

a binary relation P interpreted as “strictly preferred”. He requires P to satisfy:

Asymmetry: For no x, y do we have both xPy and yPx.

Negative Transitivity (NT): �x, y, z � X, if xPy, then either xPz or zPy (or both).

Explain the sense in which Kreps’ formalization is equivalent to the traditional

definition.

We will closely follow the proof presented in the lecture notes. The following steps are

required:

a. Construct an interpretation-preserving function T that maps a binary relation P

satisfying asymmetry and negative-transitivity into preference relations.

Consider the following candidate function T, which maps any relation P into a binary

relation defined by

xT�P�y if not yPx.

Note that T preserves interpretation: If “y is not strictly preferred to x” according to Kreps’

formalization, then “x is at least as good as y”.

b. Prove that T�P� is a preference relation.

Completeness of T�P�: Kreps’ asymmetry property of P says that for any x and y in X,

either not xPy or not yPx. Thus either xT�P�y or yT�P�x.

Transitivity: Let x, y, z � X be such that xT�P�y and yT�P�z. If not xT�P�z, then zPx. By NT,

either yPx or zPy. Thus either not xT�P�y or not yT�P�z, a contradiction.

c. Prove that T is one-to-one.

Let P1 and P2 be two different relations satisfying Kreps’ properties. Then there is a pair

x, y such that xP1y and not xP2y (or the opposite), and thus not yT�P1�x and yT�P2�x.

Thus, T�P1� � T�P2�, implying that T is one to one.

d. Prove that T maps onto all preference relations.

Let � be a preference relation. Define P, by:

xPy if not y � x.

P preserves Kreps’ properties:

Asymmetry: Since � is complete, then we never have both xPy and yPx.

NT: Let x, y, z � X be such that xPy, and thus not y � x. Therefore it is not true that both

y � z and z � x. Therefore either zPy or xPz.

Finally, note that T�P� ��.



Problem 3.

Let Z be a finite set and let X be the set of all nonempty subsets of Z. Let � be a

preference relation on X (not Z). An element A � X is interpreted as a "menu", i.e.

"the option to choose an alternative from the set A". Consider the following two

properties of preference relations on X:

1. If A � B and C is a set disjoint to both A and B, then A � C � B � C, and

if A 	 B and C is a set disjoint to both A and B, then A � C 	 B � C.

2. If x � Z and �x� 	 �y� �y � A, then A � �x� 	 A, and

if x � Z and �y� 	 �x� �y � A, then A 	 A � �x�.

a. Discuss the plausibility of the properties.

Consider an appealing interpretation of the formal model: The elements in Z are the

alternatives which might be chosen at the end of a decision process, a set A is a set of

candidates to be considered seriously in the second stage. If we have in mind that the

economic agent is certain about his preferences in the later stage then (1) is

problematic: if the best element in menu A is better than the best in menu B, and menu

C includes an even better element, then A 	 B but A � C � B � C, violating (1). Also, if

any element of menu A is strictly better than z � Z, then A 	 �z� but A � A � �z�,

violating (2). The properties make more sense if the decision maker has in mind a tiny

possibility that he will err in his choice or that there is a possibility that an alternative

which he chooses will not be feasible at the end.

b. Provide an example of a preference relation that:

(1) Satisfies both properties.

The relation � defined by A � B if |A|
 |B| satisfies (1) and (2) in a degenerate way (since

for all x and y we have �x� � �y�).

A "better" class of examples (including the previous one): Let X be divided to two sets G

and B. Define a preference relation by the utility function u�A� � |A � G|�|A � B|. Clearly

it satisfies both properties.

(2) Satisfies the first but not the second property.

Let z� � Z. Define � over X whereby A 	 B � z� � A, z� 
 B and A � B otherwise.

(1) Let A, B, C � X be such that A � B and C is disjoint to both A and B. If A 	 B, then

z� � A and z� 
 B, C, which implies that A � C 	 B � C. If A � B, then either z� is a

member of both sets A � C and B � C or of none. In both cases A � C � B � C.

(not 2) Let A � �z�� and y � z� . Then A 	 �y� but A � A � �y� violating the second part

of (2).

More generally, attach to each element x a non-negative number v�x� and define a



preference relation by a utility function U�A� � �a�Av�a�. Then the preference relation

satisfies �1� but not �2�.

(3) Satisfies the second but not the first property.

Let �� be a preference relation on Z. Define � by A � B if

(a) the �� �best element in A is strictly better than the �� �best element in B, or

(b) the agent is indifferent between the best elements but the �� �worst element in A is

weakly better than the �� �worst element in B.

(not 1) Let a 	� b 	� c 	� d. Then �b� 	 �c�, but �b� � �a, d� � �c� � �a, d�.

(2) Let A � X and z � Z. If z is strictly �� �better (strictly �� �worse) then all a � A, then

A � �z� 	 A �A 	 A � �z��.

c. Show that if there are x, y, z � Z such that �x� 	 �y� 	 �z�, then there is no

preference relation satisfying both properties.

Assume � satisfies (1) and (2), with �x� 	 �y� 	 �z� for some x, y, z � Z. From (2),

�x� 	 �x, y� and �y, z� 	 �z�. Applying (1) to the above, �x, z� 	 �x, y, z� and

�x, y, z� 	 �x, z�, a contradiction.



Problem 4.

Let 	 be an asymmetric binary relation on a finite set X that does not have cycles.

Show (by induction on the size of X) that 	 can be extended to a complete

ordering.

Note that if a set A is finite and 	 is an acyclic relation on A (there are no cycles), then

there must exist an x � A such that there is no y � A such that y 	 x.

Since X is finite, then there exists an x1 � X such that there is no y � X such that y 	 x1.

Define x1 	� y for all such y � X � �x1�. Again, there exists an x2 � X � �x1� such that

there is no y � X � �x1� such that y 	 x2. Define x2 	� y for all such y, and so on. By

induction we can define 	� for all x � X.

By construction, the relation 	� is complete, asymmetric, extends 	 and transitive: let

x i 	� x j and x j 	� xh. Then i � j and j � h and therefore, x i 	� xh.



Problem 5.

You have read an article in a "prestigious" journal about a decision maker (DM)

whose mental attitude towards elements in a finite set X is represented by a

binary relation 	, which is a-symmetric and transitive but

not necessarily complete. The incompleteness is the result of an assumption that

a DM is sometimes unable to compare between alternatives.

Another, presumingly stronger, assumption made in the article is that the DM

uses the following procedure: he has n criteria in mind, each represented by an

ordering (a-symmetric, transitive and complete) 	i (i � 1, . . . , n). The DM decides

that x 	 y if and only if x 	i y for every i.

1.Verify that the relation 	 generated by this procedure is a-symmetric and

transitive. Try to convince a reader of the paper that this is an attractive

assumption by giving a "real life" example in which it is "reasonable" to assume

that a DM uses such a procedure in order to compare between alternatives.

	 is a-symmetric: If x 	 y then by definition, x 	i y for every i. Since 	i are a-syemmtric,

y 	� i x for all i, and by definition also y 	� x.

	 is transitive: Let x 	 y and y 	 z. By definition, x 	i y and y 	i z for every i. Since 	i

are transitive, also x 	i z for all i, and by definition x 	 z.

An example: A parent who considers destinations for a family vacation who ranks the

different destinations according to the orderings of his children: he prefers A to B iff all

his children prefer A to B.

It can be claimed that the additional assumption regarding the procedure that

generates 	 is not a "serious" one since given any asymmetric and transitive

relation, 	, one can find a set of complete orderings 	1 , . . . ,	n such that x 	 y iff

x 	i y for every i.

2. Demonstrate this claim for the relation on the set X � �a, b, c� according to

which only a 	 b and the comparison between [b and c] and [a and c] are not

determined.

Let a 	1 b 	1 c and c 	2 a 	2 b. The two relations agree only on a 	i b.

3. (Main part of the question) Prove this claim for the general case.

Guidance (for c): given an asymmetric and transitive relation 	 on an arbitrary X,

define a set of complete orderings �	i � and prove that x 	 y iff for every i, x 	i y.



First, note that if X is a finite set and P is a asymmetric and transitive relation on X then

P does not have any cycles and thus P can be extended to a complete ordering of X

(see problem 4).

Let � be the set of all complete orderings which extends 	. We will see that a 	 b if and

only if a 	i b for all 	i � �:

(i) If a 	 b, then a 	i b for all i since any 	i � � is an extension of 	.

(ii) If not a 	 b, then let 	� be the relation 	 extended to include also b 	� a. The relation

	� does not have cycles: if there is a cycle x1 	� . . .	� xn � x1 then

(a) if for some i we have x i � b 	� a � x i�1 then since

a � x i�1 	� x i�2. . .	� xn � x1 	� . . .	� x i � b by transitivity a 	 b contradicting the

assumption.

(b) otherise, by thranstivity x1 	 x2 but also x2 	 x1 conradicting asymettry.

Thus, 	� can be extended to a complete ordering 	 � which will be an extension of 	 as

well. Hence, there is an extension 	 � � � for which not a 	 � b.



Problem 6.

Listen to the illusion called the Shepard Scale. (You can find it on the internet.

Currently, it is available at http://www.youtube.com/watch?v�boJD\gTLavA

and http://en.wikipedia.org/wiki/Shepard_tone.)

Can you think of any economic analogies?

The Shepard Scale consists of three separate scales that play the same tone at different

octaves. As the notes ascend, one scale drops its pitch an octave, a change the listener

does not notice because the other two scales continue to ascend monotonically, which

“covers up” the drop. Several notes later, a second scale drops its pitch an octave, and

so on. Thus, the Shepard Scale sounds as if it perpetually ascends, even though the

same finite set of notes are repeated. See http://en.wikipedia.org/wiki/Shepard_tone for

explanation.

The phenomenon is a reminder of an example due to Fishburn and LaValle (1988):

Many of us prefer the lottery f2 to the lottery f1. However, one can easily construct the

other 4 lotteries f3, f4, f5, f6, (increase the $500 to $1000 and reduce the other prizes by

$100), such that we would prefer f3 to f2, f4 to f3, ... and f1 to f6.

See Peter C. Fishburn and Irving H. LaValle (1988). "Context-Dependent Choice with

Nonlinear and Nontransitive Preferences", Econometrica, Vol. 56, 1221-1239. Stable

URL: http://www.jstor.org/stable/1911365


