Problem Set Two – Utility

Problem 1.

The purpose of this problem is to make sure that you fully understand the basic concepts of utility representation and continuous preferences. Prove or disprove the following:

a. Is the statement "if both *U* and *V* represent \succeq , then there is a strictly monotonic function $f : \mathfrak{R} \to \mathfrak{R}$ such that V(x) = f(U(x))" correct?

False: Let $X = \Re$ and preferences be represented by the utility functions

$$V(x) = x$$
 and $U(x) = \begin{cases} x & \text{if } x \le 0\\ x+1 & \text{if } x > 0. \end{cases}$

The only increasing function $f : \mathfrak{R} \to \mathfrak{R}$ that satisfies V(x) = f(U(x)) is

$$f(x) = \begin{cases} x & \text{if } x \le 0\\ 0 & \text{if } 0 < x \le 1\\ x - 1 & \text{if } x > 1 \end{cases}$$

which is not strictly increasing.

b. Can a continuous preference relation be represented by a discontinuous utility function?

True: The preferences ($x \geq y$ if $x \geq y$) is represented by *U* in (a) are continuous, though *U* is discontinuous.

c. Show that in the case of $X = \Re$, the preference relation that is represented by the discontinuous utility function u(x) = [x] (the largest integer *n* such that $x \ge n$) is not a continuous relation.

1 > 1/2, but $1 - \epsilon \sim 1/2$ for $\epsilon > 0$ small, violating C1.

d. Show that the two definitions of a continuous preference relation, C1 and C2, are equivalent to

Definition C3: $\forall x \in X$, the upper and lower contours $\{y \mid y \succeq x\}$ and $\{z \mid x \succeq z\}$ are closed sets in *X*.

Definition C4: $\forall x \in X$, the sets $\{y \mid y \succ x\}$ and $\{z \mid x \succ z\}$ are open sets in *X*.

(C3 \Leftrightarrow C4) By completeness, the sets $\{y \mid x \succ y\}$ and $\{y \mid y \succ x\}$ are the complementary to $\{y \mid y \succeq x\}$ and $\{y \mid x \succeq y\}$ correspondingly. Thus the formers are open sets iff the later are closed sets.

(C1 \Rightarrow C4) Let $x \in X$ and $a \in \{y \mid y \succ x\}$. By C1, there exists an $\epsilon > 0$ such that $Ball(a, \epsilon) \subseteq \{y \mid y \succ x\}$, $(Ball(a, \epsilon)$ is the set of points in *X* that are less than ϵ distance from *a*). Thus $\{y \mid y \succ x\}$ is open. The argument for $\{z \mid x \succ z\}$ open is analogous.

(C4 \Rightarrow C1) Let us use the notation $B \succ x$ to mean that $y \succ x$ for all $y \in B$.

Assume first that there exists a $z \in X$ such that $x \succ z \succ y$. By C4, there exist $\epsilon_1, \epsilon_2 > 0$ such that $Ball(x, \epsilon_1) \succ z$ and $z \succ Ball(y, \epsilon_2)$. Let $\epsilon = \min\{\epsilon_1, \epsilon_2\}$. By transitivity, every point in $Ball(x, \varepsilon)$ is strictly better than every point in $Ball(y, \varepsilon)$.

Next, assume that there does not exist a $z \in X$ such that $x \succ z \succ y$. As above, by C4 there exists an $\epsilon > 0$ such that $Ball(x, \varepsilon) \succ y$ and $x \succ Ball(y, \varepsilon)$. Since there is no z such that $x \succ z \succ y$, then $Ball(x, \varepsilon) \succeq x$ and $y \succeq Ball(y, \varepsilon)$, and thus by transitivity, every point in $Ball(x, \varepsilon)$ is strictly better than every point in $Ball(y, \varepsilon)$.

Problem 2.

Give an example of preferences over a countable set in which the preferences cannot be represented by a utility function that returns only integers as values.

Let $X = \mathbb{N}$, which is countable. Define preferences to be such that

$$1 \succ 3 \succ 5 \succ \ldots \succ 2 \succ 4 \succ \ldots$$

By contradiction, assume that there exists a utility function $u : X \to \mathbb{Z}$ that represents \succeq . Then u(1) = N and u(2) = n for some $n, N \in \mathbb{Z}$. But there are an infinite number of odd numbers, implying that u maps to an infinite number of integers between n and N, a contradiction.

Problem 3.

Let \succeq be continuous preferences on a set $X \subseteq \Re^n$ which contains the interval connecting the points *x* and *z*. Show that if $y \in X$ and $x \succeq y \succeq z$, then there is a point *m* on the interval connecting *x* and *z* such that $y \sim m$.

Construct inductively the sequence $\{(x^n, z^n, m^n)\}$ as follows: Start with define $x^0 = x$, $z^0 = z$ and the midpoint $m^0 = 1/2x^0 + 1/2z^0$.

If $m^n \sim y$ then we found the point we look for. Otherwise, $m^n \succ y$ or $y \succ m^n$.

If $m^n \succ y$ let $x^{n+1} = m^n$ and $z^{n+1} = z^n$.

If $y \succ m^n$ let $x^{n+1} = x^n$ and $z^{n+1} = m^n$.

In any case define $m^{n+1} = 1/2x^{n+1} + 1/2z^{n+1}$.

If none of the points $m^n \sim y$ then $x^n \succ y \succ z^n$ for all *n*. Both sequences (x^n) and (z^n) converge to some m^* on the interval between *x* and *z*.

Since \succeq is continuous, then $m^* \succeq y$ and $y \succeq m^*$, and thus $m^* \sim y$.

Another possible proof: the interval between *x* and *y* is a connected set. The two sets $\{a|a > y\}$ and $\{a|y > a\}$ are disjoint by definition and open by the continuity of \succeq . Two disjoint open sets cannot cover a connected set and therefore there is at least one point on this interval such that $y \sim m$.

Problem 4.

Consider the sequence of preference relations $(\geq^n)_{n=1,2,...}$, defined on \Re^2_+ where \geq^n is represented by the utility function $u_n(x_1,x_2) = x_1^n + x_2^n$. We will say that the sequence \geq^n converges to the preferences \geq^* if for every *x* and *y* such that $x \geq^* y$, there is an *N* such that for every n > N we have $x \geq^n y$. Show that the sequence of preference relations \geq^n converges to the preferences \gtrsim^* which are represented by the function $max\{x_1, x_2\}$.

Let $x \succ^* y$. Since $\max\{x_1, x_2\} > \max\{y_1, y_2\}$, then there exists an $\epsilon > 0$ such that $\max\{x_1, x_2\} > (1 + \epsilon) \max\{y_1, y_2\}$. Consequently, for *n* large enough,

 $[\max\{x_1, x_2\}]^n > 2[\max\{y_1, y_2\}]^n$. But $x_1^n + x_2^n \ge [\max\{x_1, x_2\}]^n$ and $2\max\{y_1, y_2\}^n \ge y_1^n + y_2^n$, and thus $x \succ^n y$ for *n* large enough.

Problem 5.

Let *X* be a finite set and let (\succeq, \succ) be a pair where \succeq is a preference relation and \succ is a transitive sub-relation of \succ (by sub-relation, we mean $x \succ y$ implies $x \succ y$). We can think about the pair as representing the responses to the questionnaire *A* where A(x, y) is the question:

How do you compare *x* and *y*? Tick one of the following five options:

 \Box I very much prefer *x* over *y* (*x* >> *y*)

 \Box I prefer *x* over *y* (*x* > *y*)

 \Box I am indifferent (*I*)

 \Box I prefer *y* over *x* (*y* > *x*)

 \Box I very much prefer *y* over *x* (*y* >> *x*)

Assume that the pair satisfies extended transitivity: If $x \succ y$ and $y \succeq z$, or if $x \succeq y$ and $y \succ z$ then $x \succ z$. We say that a pair (\succeq, \succ) is represented by a function *u* if u(x) = u(y) iff $x \sim y$,

u(x) - u(y) > 0 iff x > y, and

u(x) - u(y) > 1 iff $x \succ y$.

Show that every extended preference (\geq, \succ) is represented by a function *u*.

Denote A > B if a > b for all $a \in A$ and $b \in B$. Let $X_1, X_2, ..., X_K$ be the \succeq indifference sets such that $X_K > X_{K-1} > ... > X_1$. Define first $u(X_1) = 0$.

Let us define $u(X_k)$ for k > 1.

(1) if $X_k >> X_{k-1}$, then $u(X_k) = u(X_{k-1}) + 2$

(2) if X_k is not $\succ \succ$ even of X_1 , then $u(X_k) \in (u(X_{k-1}), 1)$

(3) otherwise, there exists a maximal m(k) such that $X_k \succ X_{m(k)}$. Define $u(X_k)$ such that $u(X_k) > u(X_{k-1})$ and $1 + u(X_{m(k)+1}) > u(X_k) > u(X_{m(k)}) + 1$.

Clearly, $x \sim y$ iff u(x) = u(y)

Also, if x > y then u(x) > u(y), since we picked $u(X_k)$ as an increasing sequence.

Finally, if $x \succ y$, $x \in X_k$ and $y \in X_m$ then $m(k) \ge m$ and $u(x) > u(X_{m(k)}) + 1 \ge u(y) + 1$.

Problem 6.

The following is a typical example of a utility representation theorem: Let $X = \Re_+^2$. Assume that a preference relation \geq satisfies the following three properties:

ADD: $(a_1, a_2) \succeq (b_1, b_2)$ implies that $(a_1 + t, a_2 + s) \succeq (b_1 + t, b_2 + s) \forall s, t$.

SMON: If $a_1 \ge b_1$ and $a_2 \ge b_2$, then $(a_1, a_2) \ge (b_1, b_2)$. In addition, if either $a_1 > b_1$ or $a_2 > b_2$ then $(a_1, a_2) > (b_1, b_2)$.

CON: Continuity.

a. Show that if \succeq has a linear representation (that is, \succeq are represented by a utility function $u(x_1, x_2) = \alpha x_1 + \beta x_2$ with $\alpha, \beta > 0$), then \succeq satisfies ADD, SMON, CON.

ADD: Let $s,t \in \Re$ and $x,y \in X$ be such that $x \succeq y$. Note that $(x_1,x_2) \succeq (y_1,y_2) \Leftrightarrow \alpha x_1 + \beta x_2 \ge \alpha y_1 + \beta y_2 \Leftrightarrow \alpha (x_1+t) + \beta (x_2+s) \ge \alpha (y_1+t) + \beta (y_2+s) \Leftrightarrow$ $u(x_1+t,x_2+s) \ge u(y_1+t,y_2+s) \Leftrightarrow (x_1+t,x_2+s) \succeq (y_1+t,y_2+s).$

SMON: Let $x, y \in X$ be such that $x_1 \ge y_1$ and $x_2 \ge y_2$ with at least one strict inequality.

Since $\alpha, \beta > 0$, then $\alpha x_1 + \beta x_2 > \alpha y_1 + \beta y_2$, which implies that $(x_1, x_2) \succ (y_1, y_2)$.

CON: $u(x_1, x_2)$ is continuous, and thus \succeq is continuous.

b. Show that for any pair of the three properties there is a preference relation that does not satisfy the third property.

Satisfies only ADD, SMON: Lexicographic preferences satisfy *ADD* and *SMON*, but are not continuous (see the lecture notes).

Satisfies only ADD, CON: The preferences represented by $u(x_1, x_2) = x_1 - x_2$ satisfy ADD and CON, but not SMON since (1, 1) > (1, 2).

Satisfies only MON, CON: Preferences represented by $u(x_1, x_2) = x_1^2 + x_2^2$ satisfy *SMON* and *CON*, but not *ADD* since (3,0) > (2,1) and (3,3) < (2,4).

c. Show that if \geq satisfies the three properties, then it has a linear representation.

Assume first that x and y are two different points such that $x \sim y$. Then:

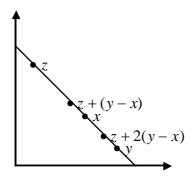
(i) $(x + y)/2 \sim y$. Otherwise, $(x + y)/2 \succ y$ would imply that

 $x = \frac{x+y}{2} + \frac{x-y}{2} \succ y + \frac{x-y}{2} = \frac{x+y}{2} \succ y$ by ADD, a contradiction.

(ii) $z = (1 - \alpha)x + \alpha y \sim x$ for $\alpha \in [0, 1]$. Define $\{(x^n, y^n)\}$ inductively as follows: let $x^0 = x$, $y^0 = y$. Let $m^0 = (x^0 + y^0)/2$.

Assume *z* belongs to $[x^n, y^n]$ and its length is $1/2^n$ the length of [x, y]. The point *z* belongs to at least one of the intervals $[x^n, m^n]$ and $[m^n, y^n]$. Define $[x^{n+1}, y^{n+1}]$ to be one of those intervals which contains *z*. Now, all $x^n \sim x$ for all *n*. The sequence $x^n \rightarrow z$, therefore by continuity $z \sim x$.

(iii) Let z be on the line which connects x and y, $z \sim x$. Without loss of generality, assume that z is closer to x. There is n such that w = z + n(y - x) is between x and y. By ADD if a - x = b - y (that is a-b=x-y) then $a \sim b$. Thus by transitivity $z \sim w \sim x$.



By SMON there is an $\varepsilon > 0$ such that $a = (x_1 + \varepsilon, x_2) > x > (x_1, x_2 - \varepsilon) = b$. By question 3, there exists *y* (different than *x*) on the interval which connects *a* and *b* such that $x \sim y$. Thus, every point is on a difference line which is a line. The indifference lines must be parallel since otherwise we will get a contradiction to *ADD*.

d. Characterize the preference relations which satisfy ADD, SMON and an additional property MUL:

$$(a_1,a_2) \succeq (b_1,b_2)$$
 implies that $(\lambda a_1,\lambda a_2) \succeq (\lambda b_1,\lambda b_2)$ for any $\lambda \ge 0$.

Define $s = sup\{x | (0,1) > (x,0)\}$ (by SMON the set is not empty).

Case (1): $s = \infty$ or s = 0: the preferences must be lexicographic with priority for the second or first components, respectively.

Assume
$$s = \infty$$
.

If $a_2 > b_2$ then $(a_1, a_2) > (b_1, b_2)$ iff $(a_1, a_2 - b_2) > (b_1, 0)$ (by ADD) iff $(a_1/(a_2 - b_2), 1) > (b_1/(a_2 - b_2), 0)$ (by MUL), which is always true (by $s = \infty$). If $a_2 = b_2$ then $(a_1, a_2) > (b_1, b_2)$ iff $a_1 > b_1$ (by SMON).

Thus, we have a lexicographic relation with priority for the second component.

If s = 0 then it follows that $s = sup\{y|(1,0) > (0,y)\} = \infty$ and the preferences must be lexicographic with priority for the first component.

Case (2): $\infty > s > 0$

Let (a_1, a_2) and (b_1, b_2) be two vectors with $a_1 \le b_1$. (a_1, a_2) relates to (b_1, b_2) as $(0, a_2 - b_2)$ relates to $(b_1 - a_1, 0)$ (by ADD) and thus as $((b_1 - a_1)/(a_2 - b_2), 0)$ relates to (0, 1). This relation is determined by the comparison of $(b_1 - a_1)/(a_2 - b_2)$ to *s*, which is equivalent to the comparison of $a_1 + sa_2$ and $b_1 + sb_2$.

Therefore, if $(0,1) \sim (s,0)$ then $x_1 + sx_2$ represents the preferences. If $(0,1) \succ (s,0)$ or $(0,1) \prec (s,0)$ then the preferences are lexicographic with the first priority to $x_1 + sx_2$ and the second to x_2 or x_1 accordingly.

Problem 7.

Utility is a numerical representation of preferences. One can think about the numerical representation of other abstract concepts. Here, you will try to come up with a possible numerical representation of the concept "approximately the same" (see Luce (1956) and Rubinstein (1988)). For simplicity, let X = [0, 1]. Consider the following six properties of *S*:....

c. Let *S* be a binary relation that satisfies the above six properties and let $\epsilon > 0$. Show that there is a strictly increasing and continuous function $H : X \to \Re$ such that $aSb \iff |H(a) - H(b)| \le \epsilon$.

Note the definitions of m(x) and M(x) in the question.

Define $\{x_n\}$ by $x_0 = 0$, $x_1 = M(0)$, $x_2 = M(x_1) = M(M(0))$ and so on. By S6, $\{x_n\}$ is increasing and bounded above by 1, and thus $\{x_n\}$ converges to $x^* \le 1$. By S5, there exists an *N* such that $x_{N-1}Sx^*$, and thus $x^* \le M(x_{N-1}) = x_N$. Since x^* is the upper bound of $\{x_n\}$, then $x^* = 1$ by S6. Define *N* to be the smallest integer such that $x_N = 1$, and thus $0 = x_0 < \ldots < x_N = 1$.

Lemma 1: If $a \in [x_n, x_{n+1}]$, where $1 \le n \le N - 1$, then $m(a) \in [x_{n-1}, x_n]$.

Proof: Since x_nSx_{n+1} , then x_nSa by S4, and thus $m(a) \le x_n$. Moreover, $x_{n-1} \le m(a)$, as otherwise $m(a) < x_{n-1}$ and $M(x_{n-1}) = x_n \le M(m(a))$, violating the assumption that M increasing.

Lemma 2: m(a) is strictly increasing and continuous on $(x_1, 1]$.

Proof: m(a) > 0 if $a > x_1$, as otherwise aS0, and thus $M(0) \ge a > x_1$, a contradiction. By S6, the lemma is proved.

Define

$$H(a) = \begin{cases} \frac{\epsilon}{x_1} a & \text{if } a \leq x_1 \\ H(m(a)) + \epsilon & \text{if } a > x_1. \end{cases}$$

H is clearly continuous and strictly increasing on $[0, x_1]$, with $H(x_1) = \epsilon$.

If $a \in (x_1, x_2]$, then $H(a) = \epsilon[m(a)/x_1 + 1]$ since $m(a) \in [0, x_1]$ by Lemma 1. Thus *H* is strictly increasing and continuous on $(x_1, x_2]$ by Lemma 2. Since $m(x_1) = 0$, then $H(x) \rightarrow \epsilon$ as $x \rightarrow x_1$ from the right, and thus *H* in continuous and strictly increasing on $[0, x_2]$, with $H(x_2) = 2\epsilon$.

More generally, if $a \in (x_n, x_{n+1}]$, where $n \le N-1$, then $m(a) \in [x_{n-1}, x_n]$, $m(m(a)) \in [x_{n-2}, x_{n-1}]$ and so on by Lemma 1. Therefore $H(a) = \epsilon[m(\dots m(a)\dots)/x_1 + n]$,

which is strictly increasing and continuous by Lemma 2, where $m(\dots m(a)\dots)$ applies m inductively n times. Since $H(x) \rightarrow n\epsilon$ as $x \rightarrow x_n$ from the right, then H is strictly increasing and continuous on $[0, x_{n+1}]$.

Let $a, b \in [0,1]$ where a < b. If $b \le x_1$, then *H* represents *S* by S4. Otherwise, *aSb* iff $H(m(b)) \le H(a) < H(b)$ iff $|H(b) - H(a)| \le \epsilon$, where the first iff follows from *aSb* iff $m(b) \le a < b$ and *H* strictly increasing, and the second iff follows from $H(b) = H(m(b)) + \epsilon$.