Problem Set 4 – Consumer Preferences

Problem 1.

Consider the preference relations on the interval [0,1] which are continuous. What can you say about those preferences which are also strictly convex?

We will show that a continuous preference relation \succeq on X = [0,1] is strictly convex iff there exists a point x^* such that $b \succ a$ for all $a < b \le x^*$ or all $x^* \ge b > a$.

(a) Let \geq be continuous and strictly convex. Since the preferences are continuous and *X* is compact there exists a unique $x^* \in X$ that maximizes the preferences (see Lecture 5). Let $0 \leq a < b \leq x^*$. By definition $a \leq x^*$ and $b = \alpha a + (1 - \alpha)x^*$ for some $\alpha \in [0, 1)$ and thus, by strict convexity $a \prec b$. The case, for two points in $[x^*, 1]$ is analogous .

(b) Assuming that the preferences are increasing in $[0, x^*]$ and decreasing in $[x^*, 1]$, we will show that they satisfy strict convexity. Let $\alpha \in (0, 1)$ and $a, b \in X$ be such that $a \neq b$ and $a \geq b$. It must be that $\alpha a + (1 - \alpha)b$ is either between *a* and x^* or between *b* and x^* . If $\alpha a + (1 - \alpha)b$ is between *b* and x^* , then $\alpha a + (1 - \alpha)b > b$. If it is between *a* and x^* , then $\alpha a + (1 - \alpha)b > b$.

Problem 2.

Show that if the preferences \succeq satisfy continuity and monotonicity, then the function u(x) defined by $x \sim (u(x), \dots, u(x))$ is continuous.

Let *x* be a point in *X*. By definition $u(x) \ge 0$. We need to show that for any $\epsilon > 0$ there exists δ such that $|u(x) - u(y)| < \epsilon$ for any $y \in Ball(x, \delta)$.

If $u(x) - \epsilon \ge 0$, then by monotonicity, $x > (u(x) - \epsilon, ..., u(x) - \epsilon)$. By continuity, there exists $\delta_1 > 0$ such that $u(y) > u(x) - \epsilon$ for $y \in Ball(x, \delta_1)$.

If $u(x) - \epsilon < 0$, then for any $\delta_1 > 0$, $u(y) > u(x) - \epsilon$ for $y \in Ball(x, \delta_1)$.

Similarly, by monotonicity, $(u(x) + \epsilon, ..., u(x) + \epsilon) > x$ and thus

 $(u(x) + \epsilon, ..., u(x) + \epsilon) > Ball(x, \delta_2)$ for some $\delta_2 > 0$ by continuity. Therefore, $u(x) + \epsilon > u(y)$ for $y \in Ball(x, \delta_2)$.

Define $\delta = \min{\{\delta_1, \delta_2\}}$. Then, $|u(x) - u(y)| < \epsilon$ for any $y \in Ball(x, \delta)$.

Problem 3. In a world with two commodities, consider the following condition: The preference relation \geq satisfies Convexity 4 if for all *x* and $\epsilon > 0$

$$(x_1,x_2) \sim (x_1 - \epsilon, x_2 + \delta_1) \sim (x_1 - 2\epsilon, x_2 + \delta_1 + \delta_2)$$
 implies $\delta_2 \ge \delta_1$.

Interpret Convexity 4 and show that for strong monotonic and continuous preferences, it is equivalent to the convexity of the preference relation.

Interpretation: If after an x_1 is reduced by ϵ , the consumer must be compensated with δ units of good 2 in order to remain indifferent to x, then he must be compensated with *at least* 2δ units of good 2 if his consumption of x_1 is decreased by 2ϵ .

Convexity 1 \Rightarrow **Convexity 4**: Let $(x_1, x_2) \sim (x_1 - \epsilon, x_2 + \delta_1) \sim (x_1 - 2\epsilon, x_2 + \delta_1 + \delta_2)$. By convexity 1,

$$(x_1 - \epsilon, x_2 + \frac{\delta_1 + \delta_2}{2}) = \frac{1}{2}(x_1, x_2) + \frac{1}{2}(x_1 - 2\epsilon, x_2 + \delta_1 + \delta_2)$$

$$\gtrsim (x_1 - \epsilon, x_2 + \delta_1).$$

Then, $(\delta_1 + \delta_2)/2 \ge \delta_1$ by monotonicity and thus $\delta_2 \ge \delta_1$.

Convexity 4 \Rightarrow **Convexity 1**: First, we show that if $x \sim y$, then $(x + y)/2 \gtrsim y$. If $x \neq y$ then by strong monotonicity we can WLOG assume $x_1 > y_1$ and $y_2 > x_2$. Define $\Delta > 0$ by $\Delta = (y_2 - x_2)/2$ and $\epsilon = (x_1 - y_1)/2$. By strong monotonicity

$$(x_1 - \epsilon, x_2 + 2\Delta) = (\frac{x_1 + y_1}{2}, y_2) \succ y \sim x$$

 $\succ (\frac{x_1 + y_1}{2}, x_2) = (x_1 - \epsilon, x_2).$

By continuity, there exists $\delta > 0$ such that

$$(x_1,x_2) \sim (x_1 - \epsilon, x_2 + \delta) \sim y = (x_1 - 2\epsilon, x_2 + 2\Delta).$$

By Convexity 4, $2\Delta - \delta \ge \delta$ and thus $\Delta \ge \delta$. By monotonicity,

$$\frac{x+y}{2} = (x_1 - \epsilon, x_2 + \Delta) \succeq (x_1 - \epsilon, x_2 + \delta) \sim y.$$

Now if $x \geq y$, then there exists z on the interval which connects 0 and x, such that $z_k \leq x_k$ for all k and $z \sim y$. Then, by monotonicity and the previous result, $(x + y)/2 \geq (z + y)/2 \geq y$. The rest follows from the following Lemma:

Lemma: If \succeq are continuous preferences, then \succeq are convex iff $[x \succeq y]$ implies $(x + y)/2 \succeq y$ for all $x, y \in X$.

Proof: Assume $x \succeq y$ and $z = \alpha x + (1 - \alpha)y$ for $\alpha \in [0, 1]$. We will show that $z \succeq y$. Construct a sequence $\{(x^n, y^n)\}$ such that both $x^n, y^n \succeq y$ and z between x^n and y^n . Define $x^0 = x, y^0 = y$. Continue inductively. Let $m^n = (x^n + y^n)/2$. Then, m^n is at least as good as either x^n or y^n and the above argument and transitivity imply that it is at least as good as

y. Define:

$$x^{n+1} = m^n$$
 and $y^{n+1} = y^n$ if *z* lies between y^n and m^n , and $x^{n+1} = x^n$ and $y^{n+1} = m^n$ otherwise.

Thus, $x^{n+1}, y^{n+1} \succeq y$ and z is between x^{n+1} and y^{n+1} . Since $y^n, x^n \to z, z \succeq y$ by continuity.

Problem 4.

Complete the proof (for all *K*) of the claim that any continuous preference relation satisfying strong monotonicity quasi-linearity in all commodities can be represented by a utility function of the form $\sum_{k=1}^{K} \alpha_k x_k$, where $\alpha_k > 0$ for all *k*.

Proof by induction on *K*: We have already proved this for K = 1 and 2.

Let \geq be a preference relation satisfying the problem's assumptions. Consider the preferences restricted to the set of all vectors of the type $(0, x_2, ..., x_K)$. The preferences satisfy Continuity, Strong Monotonicity and Quasi-Linearity in goods 2, ..., K. By the induction hypothesis, there is a vector of positive numbers $(\alpha_k)_{k=2,...,K}$ such that $(0, x_2, ..., x_K) \sim (0, \sum_{k=2}^{K} \alpha_k x_k, 0, ..., 0)$.

By quasi-linearity in good 1, $(x_1, x_2, \dots, x_K) \succeq (y_1, y_2, \dots, y_K)$ iff

 $(x_1, \sum_{k=2}^{K} \alpha_k x_k, 0, \dots, 0) \gtrsim (y_2, \sum_{k=2}^{K} \alpha_k y_k, 0, \dots, 0).$

The relation over all vectors of the type $(x_1, x_2, 0, ..., 0)$ satisfies the three properties in the first two dimensions. Thus, there exists $\beta_1, \beta_2 > 0$ such that $(x_1, x_2, 0, ..., 0) \sim (\beta_1 x_1 + \beta_2 x_2, 0, 0, ..., 0)$ and thus $x \sim (\beta_1 x_1 + \sum_{k=2}^{K} \beta_2 \alpha_k x_k, 0, ..., 0)$ and by strong monotonicity in the first good, the preferences have a linear utility representation.

Problem 5.

Show that for any consumer's preference relation \succeq satisfying continuity, monotonicity, strong monotonicity with respect to commodity 1 and quasi-linearity with respect to commodity 1, there exists a number v(x) such that $x \sim (v(x), 0, ..., 0)$ for every vector x.

Since \geq satisfies continuity and monotonicity every bundle is indifferent to a bundle on the main diagonal. Thus, it is sufficient to show the claim for bundles on the main diagonal.

Let $e = (1, \ldots, 1)$ and define

$$T = \{ \alpha \in \mathfrak{R}_+ \mid \alpha e \succ (x_1, 0, \dots, 0) \text{ for all } x_1 \in \mathfrak{R}_+ \}.$$

We will see that $T = \emptyset$. Assume that $T \neq \emptyset$. Let $\gamma = \inf T$. There are two cases:

Case 1: $\gamma \in T$. Then $\gamma > 0$ and by strict monotonicity of commodity 1, $(1 + \gamma, \gamma, ..., \gamma) \succ \gamma e$. By continuity, there exists $\epsilon > 0$ such that

$$(1 + \gamma, \gamma - \epsilon, \dots, \gamma - \epsilon) \succ \gamma e \succ (x_1, 0, \dots, 0)$$

for all x_1 .

Since $\gamma - \epsilon < \inf T$, there exists an x_1^* such that $(x_1^*, 0, \dots, 0) \succeq (\gamma - \epsilon, \gamma - \epsilon, \dots, \gamma - \epsilon)$ and by quasi-linearity in commodity 1,

 $(x_1^* + 1 + \epsilon, 0, ..., 0) \succeq (1 + \gamma, \gamma - \epsilon, ..., \gamma - \epsilon)$, a contradiction.

Case 2: $\gamma \notin T$. Then $(\beta, 0, ..., 0) \succeq \gamma e$ for some β . By strong monotonicity of commodity 1, $(\beta + 1, 0, ..., 0) \succ \gamma e$. By continuity, there is an $\epsilon > 0$ such that $(\beta + 1, 0, ..., 0) \succ (\gamma + \epsilon)e$, which contradicts $\gamma = \inf T$.

Thus, $T = \emptyset$ and for any bundle on the main diagonal, αe , there exists a bundle $(x_1, 0, ..., 0)$ such that $(x_1, 0, ..., 0) \succeq \alpha e \succeq (0, ..., 0)$. By continuity there exists a number $v(\alpha e)$ such that $(v(\alpha e), 0, ..., 0) \sim \alpha e$.

Problem 6.

We say that a preference relation satisfies separability if it can be represented by an additive utility function, that is, a function of the type $u(x) = \sum_{k} v_k(x_k)$.

a. Show that such preferences satisfy condition S: for any subset of commodities *J*, and for any bundles *a*, *b*, *c*, *d*, we have

$$(a_J, c_{-J}) \succeq (b_J, c_{-J}) \Leftrightarrow (a_J, d_{-J}) \succeq (b_J, d_{-J})$$

where (x_J, y_{-J}) is the vector that takes the components of x for any $k \in J$ and takes the components of y for any $k \notin J$.

$$(a_J, c_{-J}) \succeq (b_J, c_{-J}) \Leftrightarrow \sum_{k \in J} v_k(a_k) + \sum_{i \notin J} v_i(c_i) \ge \sum_{k \in J} v_k(b_k) + \sum_{i \notin J} v_i(c_i)$$
$$\Leftrightarrow \sum_{k \in J} v_k(a_k) + \sum_{i \notin J} v_i(d_i) \ge \sum_{k \in J} v_k(b_k) + \sum_{i \notin J} v_i(d_i)$$
$$\Leftrightarrow (a_J, d_{-J}) \succeq (b_J, d_{-J}).$$

Graphically, if two bundles lie on the same horizontal line and $(a,c) \succeq (b,c)$, then a change of *c* to *d* will preserve the preference relation, that is $(a,d) \succeq (b,d)$.

b. Show that for K = 2 such preferences satisfy the Hexagon-condition: If $(a,b) \geq (c,d)$ and $(c,e) \geq (f,b)$ then $(a,e) \geq (f,d)$. $v_1(a) + v_2(b) \geq v_1(c) + v_2(d)$ and $v_1(c) + v_2(e) \geq v_1(f) + v_2(b)$ implies $v_1(a) + v_2(e) \geq v_1(f) + v_2(d)$.

c. Give an example of a continuous preference relation which satisfies condition

S and does not satisfy separability.

Consider any preference relation with linear indifference curves as depicted:

Such preferences violate the Hexagon Condition.

Problem 7.

a. Show that the preferences represented by the utility function $\min\{x_1, \ldots, x_K\}$ are not differentiable.

Let $x^* = (a, ..., a)$ and let $v(x^*)$ be a candidate set of subjective values. Without loss of generality, let $v_1(x^*) > 0$. Then, $(1, 0, 0, ..., 0) \cdot v(x^*) > 0$ but $(a + \epsilon, a, a, ..., a) \sim x^*$ for all ϵ , and thus $(+1, 0, 0, ..., 0) \notin D(x^*)$, a contradiction.

b. Check the differentiability of the lexicographic preferences in \Re^2 .

Lexicographic preferences are not differentiable. Let $x \in \Re^2$ and assume that v(x) is a vector of subjective values. Since $x + \epsilon(0,1) > x$ for all $\epsilon > 0$, then (0,1) is an improving direction and $v_2(x) > 0$. Then, for small $\delta > 0$, $(-\delta, 1) \cdot v(x) > 0$. However, $(-\delta, 1)$ is not an improving direction, a contradiction.

c. Assume that \succeq is monotonic, convex and differentiable such that for every *x*, we have (*) $D(x) = \{d \mid (x+d) \succ x\}$. What can you say about \succeq ?

We will show that the indifference curves are linear.

By differentiability and (*) there exists v(x) such that $d \cdot v(x) > 0$ iff $x + d \succ x$. Graphically, any point above the dotted line is strictly better than *x*:

We will show that for any $z \in X$ on the dotted line (that is zv(x) = xv(x)), we have $x \sim z$. First let us see that (**) any $z \in X$ on the dotted line satisfies $x \succeq z$. If $z \succ x$, then by (*) $(z-x) \in D(x)$ and by differentiability $(z-x) \cdot v(x) > 0$ but as zv(x) = xv(x), a contradiction. Note that it must be that v(z) = v(x), since otherwise there would be a point on $\{y \mid yv(z) = zv(z)\}$ such that yv(x) > xv(x) but by (*) $y \succ x$ though $x \succeq z \succeq y$. Thus $(x-z) \cdot v(z) = 0$ and by (**) (applied to $z) z \succeq x$. d. Assume that \succeq is a monotonic, convex and differentiable preference relation. Let $E(x) = \{d \in \Re^K \mid \text{ there exists } \epsilon^* > 0 \text{ such that } x + \epsilon d \prec x \text{ for all } \epsilon \leq \epsilon^* \}$. Show that $\{-d \mid d \in D(x)\} \subseteq E(x)$ but not necessarily $\{-d \mid d \in D(x)\} = E(x)$.

We first show that $\{-d \mid d \in D(x)\} \subseteq E(x)$. By contradiction, let $d \in D(x)$ be such that $-d \notin E(x)$. WLOG $x + d \succ x$ and $x - d \succeq x$. By definition of D(x), $d \cdot v(x) > 0$ and $e \cdot v(x) > 0$ for some *e* with $e_k \leq d_k$ with at least one strict inequality. For $\epsilon > 0$ small enough $x + \epsilon e \succ x$. By convexity any convex combination of $x + \epsilon e$ and x - d is at least as good as *x* but the segment contains points which by monotonicity are at least as bad as *x*.

Let \succeq be represented by $u(x) = x_1x_2$. Since u is quasi-concave, has continuous partial derivatives and satisfies $u_i(x) > 0$. Thus, the relation \succeq is convex, monotonic and differentiable. Let d = (1, -1) and note that $-d \in E(2, 2)$ but $d \notin D(2, 2)$.

e. Consider the consumer's preferences in a world with two commodities defined by:

 $\mathbf{u}(\mathbf{x}_1,\mathbf{x}_2) = \begin{cases} x_1 + x_2 & \text{if } x_1 + x_2 \leq 1 \\ 1 + 2x_1 + x_2 & \text{if } x_1 + x_2 > 1 \end{cases}.$

Show that these preferences are not continuous but nevertheless are differentiable according to our definition.

If $x_1 + x_2 \le 1$, then differentiability holds for v(x) = (1,1) and if $x_1 > 1$, then differentiability holds for v(x) = (2,1). The preferences are not continuous, since (0,2) > (1,0), but $(0,2) < (1+\epsilon,0)$ for $\epsilon > 0$.