
 

Problem Set G-1: Nash Equilibrium 

 

1. First price auction 

The set of actions of each player i is [0, ∞) (the set of possible bids) and the payoff of 

player i is vi − bi if his bid bi is equal to the highest bid and no player with a lower 

index submits the same bid, and 0 otherwise.  

The set of Nash equilibria is the set of profiles b of bids with b1 ∈ [v2, v1], bj ≤ b1 for all 

j ≠ 1, and bj = b1 for some j ≠ 1.  

It is easy to verify that all these profiles are Nash equilibria. To see that there are no 

other equilibria, first we argue that there is no equilibrium in which player 1 does not 

obtain the object. Suppose that player i ≠ 1 submits the highest bid bi and b1 < bi. If 

bi > v2 then player i's payoff is negative, so that he can increase his payoff by bidding 

0. If bi ≤ v2 then player 1 can deviate to the bid bi and win, increasing his payoff.  

Now let the winning bid be b*. We have b* ≥ v2, otherwise player 2 can change his 

bid to some value in (v2,b*) and increase his payoff. Also b* ≤ v1, otherwise player 1 

can reduce her bid and increase her payoff. Finally, bj = b* for some j ≠ 1 otherwise 

player 1 can increase her payoff by decreasing her bid.  

 

2. Second price auction 

The set of actions of each player i is [0, ∞) (the set of possible bids) and the payoff of 

player i is vi − bj if his bid bi is equal to the highest bid and bj is the highest of the other 

players' bids (possibly equal to bi) and no player with a lower index submits this bid, 

and 0 otherwise.  



For any player i the bid bi = vi is a dominant action. To see this, let xi be another action 

of player i. If maxj≠i bj ≥ vi then by bidding xi player i either does not obtain the object 

or receives a nonpositive payoff, while by bidding bi he guarantees himself a payoff of 

0. If maxj≠i bj < vi then by bidding vi player i obtains the good at the price maxj≠i bj, 

while by bidding xi either he wins and pays the same price or loses.  

An example of equilibrium in which player 1≠j  obtains the good is that in which 

b1 < vj, bj > v1, and bi = 0 for all players i∉{1,j}.  

 

3. War of attrition 

The set of actions of each player i is Ai = [0,∞) and his payoff function is 

  

ui(t1,t2) = 

−ti  if ti < tj 

vi/2 − ti if ti = tj 

 

where j ≠i Let (t1, t2) be a pair of actions. If t1 = t2 then by conceding slightly later than 

t1 player 1 can obtain the object in its entirety instead of getting just half of it, so this 

is not an equilibrium. If 0 < t1<t2 then player 1 can increase her payoff to zero by 

deviating to t1 = 0. Finally, if 0 = t1 < t2 then player 1 can increase her payoff by 

deviating to a time slightly after t2 unless v1 − t2 ≤ 0. Similarly for 0 = t2 < t1 to 

constitute an equilibrium we need v2 − t1 ≤ 0. Hence (t1, t2) is a Nash equilibrium if and 

only if either 0 = t1 < t2 and t2 ≥ v1 or 0 = t2 < t1 and t1 ≥ v2.  

Comment An interesting feature of this result is that the equilibrium outcome is 

independent of the players' valuations of the object.  

 

 

 



4. Location game 

There are n players, each of whose set of actions is { } [ ]1,0UOut . (Note that the model 

differs from Hotelling's in that players choose whether or not to become candidates.) 

Each player prefers an action profile in which he obtains more votes than any other 

player to one in which he ties for the largest number of votes; he prefers an outcome 

in which he ties for first place (regardless of the number of candidates with whom he 

ties) to one in which he stays out of the competition; and he prefers to stay out than to 

enter and lose.  

Let F be the distribution function of the citizens' favorite positions and let  

m = F-1(1/2) be its median (which is unique, since the density  f  is everywhere 

positive).  

It is easy to check that for n = 2 the game has a unique Nash equilibrium, in which 

both players choose m.  

The argument that for n = 3 the game has no Nash equilibrium is as follows.  

• There is no equilibrium in which some player becomes a candidate and loses, 

since that player could instead stay out of the competition. Thus in any 

equilibrium all candidates who enter must tie for first place.  

• There is no equilibrium in which a single player becomes a candidate, since by 

choosing the same position any of the remaining players ties for first place.  

• There is no equilibrium in which two players become candidates, since by the 

argument for n = 2 in any such equilibrium they must both choose the median 

position m, in which case the third player can enter close to that position and 

win outright.  

• There is no equilibrium in which all three players become candidates:  

o If all three choose the same position then any one of them can choose a 

position slightly different and win outright rather than tying for first 

place;  



o If two choose the same position while the other chooses a different 

position then the lone candidate can move closer to the other two and 

win outright.  

o If all three choose different positions then (given that they tie for first 

place) either one of the extreme candidates can move closer to his 

neighbor and win outright.  

Following the same type of arguments as in the case where n=3, we have that when 

n=4, the only equilibrium possible is if all players enter and they all tie. Similarly, as 

before it is not possible that all 4 are in the same location. In addition, in the rightmost 

location there can not be a single candidate, since then this candidate can move left 

and win (a similar argument holds for the leftmost candidate).  Consequently, the only 

equilibrium possible is two players located in the one place and the other two in 

another, and all candidates tie. In this case, the right couple of candidates should be 

located not to the left of m = F-1(3/4), otherwise one of the rightmost candidates can 

move to the right, get more than ¼ of the votes and win, they also can not be located 

to the right of  m = F-1(3/4), or one of them can move to the left and win. By this 

argument, and a similar argument for the left couple of candidates we get that in 

equilibrium one couple is located at m = F-1(3/4), and the other at m = F-1(1/4). Note 

that this can only be an equilibrium if F-1(1/2)=( F-1(1/4)+ F-1(3/4))/2, otherwise there 

is no equilibrium for n=4 as well.      

Comment If the density f is not everywhere positive then the set of medians may be an 

interval, say [m*, m**]. In this case the game has Nash equilibria when n = 3; in all 

equilibria exactly two players become candidates, one choosing m* and the other 

choosing m**.  

 

5. A demand game 

The set of actions of each player i is [0, 1] (the set of possible demands) and the 

payoff of player i is: 

• In game a: ( )
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xxx −−−
+  if xi + x-i ≤1, and 0 otherwise. 



• In game b: ( )
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In game a, x1 and x2 are equilibrium demands if x1 + x2 =1 or if both players demand 1. 

In game b, x1  and x2 are equilibrium demands if x1 = x2 ≤1/2 or if both players demand 

1. 

 In game c ( 0≠λ ): 

• 01 >> λ : x1 and x2 are equilibrium demands iff 121 =+ xx .  

• 1=λ : Every x1 and x2 for which 121 ≤+ xx  are equilibrium demands. 

• If 1>λ : the only equilibrium demands are ( )0,0 .  

Otherwise, if λ<0, xi  and x-i are equilibrium if x1 + x2 =1 and for every i, 
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xxxxxx λ ,  or if x1 + x2 >1 and for every i, 

01 1 ≤+− −− ixx λ . 

 

6. Ducks 

The set of players N={1,…,12}, the set of possible actions is A={1,2} and the payoffs 

of a player are 
1} choose that {players#

1  if he chooses 1, and 
2} choose that {players#

2  

if he chooses 2. 

It is straightforward to see that all equilibria will be of the same type, 8 players will 

choose 2 and 4 will choose 1. 

 



7. Symmetric games 

Define the function F : A1 → A1 by F (a1) = B2(a1) (the best response of player 2 to a1). 

The function F satisfies the conditions of Kakutani’s fixed point theorem, and hence 

has a fixed point, say a1*. The pair of actions (a1*, a1*) is a Nash equilibrium of the 

game since, given the symmetry, if a1* is a best response of player 2 to a1* then it is 

also a best response of player 1 to a1*. 

A symmetric finite game that has no symmetric equilibrium is Hawk--Dove.  

 

 


