©Ariel Rubinstein. These **lecture notes** are distributed for the exclusive use of students in, Tel Aviv University, Spring 2005. Much of the material is based on my book with Martin Osborne A Course of Game Theory, MIT Press 1994.

Lecture L-2: Zero Sum Games

Readings: Osborne and Rubinstein Ch 2.5

Strictly Competitive Games

Let us discuss now a class of games in which there are two players, whose preferences are diametrically opposed. For convenience assume $N = \{1, 2\}$.

A strategic game $\langle \{1,2\}, (A_i), (\succeq_i) \rangle$ is *strictly competitive* if for any $a \in A$ and $b \in A$ we have $a \succeq_1 b$ if and only if $b \succeq_2 a$.

A strictly competitive game is sometimes called *zero-sum* because if player 1's preference relation \succeq_1 is represented by the payoff function u_1 then player 2's preference relation is represented by $u_2 = -u_1$.

We identify a pattern of strategic reasoning of a special kind. We say that player *i* maxminimizes if he chooses an action that is best for him under the assumption that whatever he does, player *j* will choose his action to hurt him as much as possible.

We interpret it in two possible ways. (1) A decision making method: the player always assume the worst and try to minimize the disaster. (2) A strategic reasoning: in spite of the simultaneousness, a player anticipates that his opponent will respond optimally (from the opponent's point of view).

Main message: We will show that a strictly competitive game possesses a Nash equilibrium, a pair of actions is a Nash equilibrium if and only if the action of each player is a maxminimizer.

This provides a link between individual decision-making and the reasoning behind the

notion of Nash equilibrium. It will follow that for strictly competitive games that possess Nash equilibria all equilibria yield the same payoffs.

Definition: Let $\langle \{1,2\}, (A_i), (\succeq_i) \rangle$ be a strictly competitive strategic game. Let \succeq_i be represented by a payoff function u_i . Without loss of generality, assume that $u_2 = -u_1$.

The action $z^* \in A_1$ is a maxminimizer for player 1 if $\min_{y \in A_2} u_1(z^*, y) \ge \min_{y \in A_2} u_1(x, y)$ $\forall x \in A_1$. That is, a maxminimizer for player i is an action that maximizes the payoff that player i can *guarantee*.

Lemma The maxminimization of player 2's payoff is equivalent to the minmaximization of player 1's payoff. That is, let $\langle \{1,2\}, (A_i), (u_i) \rangle$ be a strictly competitive strategic game.

- (a) $\max_{y \in A_2} \min_{x \in A_1} u_2(x, y) = -\min_{y \in A_2} \max_{x \in A_1} u_1(x, y)$.
- (b) $y \in A_2$ solves the problem $\max_{y \in A_2} \min_{x \in A_1} u_2(x, y)$ iff it solves the problem $\min_{y \in A_2} \max_{x \in A_1} u_1(x, y)$.

Proof Note that for any function f we have $\min_z(-f(z)) = -\max_z f(z)$ and $\arg\min_z(-f(z)) = \arg\max_z f(z)$.

Thus, for every $y \in A_2 - \min_{x \in A_1} u_2(x, y) = \max_{x \in A_1} (-u_2(x, y)) = \max_{x \in A_1} u_1(x, y)$. $\max_{y \in A_2} \min_{x \in A_1} u_2(x, y) = -\min_{y \in A_2} [-\min_{x \in A_1} u_2(x, y)] = -\min_{y \in A_2} \max_{x \in A_1} u_1(x, y)$; in addition $y \in A_2$ is a solution of the problem $\max_{y \in A_2} \min_{x \in A_1} u_2(x, y)$ if and only if it is a solution of the problem $\min_{y \in A_2} \max_{x \in A_1} u_1(x, y)$.

Proposition Let $G = \langle \{1,2\}, (A_i), (u_i) \rangle$ be a strictly competitive strategic game.

- (a) If (x^*, y^*) is a Nash equilibrium of G then x^* is a maxminimizer for player 1 and y^* is a maxminimizer for player 2.
- (b) If (x^*, y^*) is a Nash equilibrium of G then $\max_x \min_y u_1(x, y) = \min_y \max_x u_1(x, y) = u_1(x^*, y^*)$, and thus all Nash equilibria of G yield the same payoffs.
- (c) If $\max_x \min_y u_1(x, y) = \min_y \max_x u_1(x, y)$ (and thus, in particular, if G has a Nash

equilibrium (see part b)), x^* is a maxminimizer for player 1, and y^* is a maxminimizer for player 2, then (x^*, y^*) is a Nash equilibrium of G. proposition

Proof (a) and (b).

Let (x^*, y^*) be a Nash equilibrium of G.

Then $u_2(x^*, y) \le u_2(x^*, y^*)$ for all $y \in A_2$ or, since $u_2 = -u_1$, $u_1(x^*, y^*) \le u_1(x^*, y)$ for all $y \in A_2$.

Hence $\min_{y} u_1(x^*, y) = u_1(x^*, y^*)$

For any $x \in A_1$ we have $\min_{y} u_1(x, y) \le u_1(x, y^*)$.

Since (x^*, y^*) be a Nash equilibrium of G we have $u_1(x, y^*) \le u_1(x^*, y^*)$ for all $x \in A_1$. Thus $u_1(x^*, y^*) = \max_x \min_y u_1(x, y)$ and x^* is a maxminimizer for player 1.

An analogous argument for player 2 establishes that y^* is a maxminimizer for player 2 and $u_2(x^*, y^*) = \max_y \min_x u_2(x, y)$.

By the Lemma $u_1(x^*, y^*) = -u_2(x^*, y^*) = -\max_y \min_x u_2(x, y) = \min_y \max_x u_1(x, y)$. Proof of (c):

Let $v^* = \max_x \min_y u_1(x, y) = \min_y \max_x u_1(x, y)$.

By the Lemma we have $\max_{y} \min_{x} u_2(x, y) = -v^*$.

Since x^* is a maxminimizer for player 1 we have $u_1(x^*,y) \ge v^*$ for all $y \in A_2$;

Since y^* is a maxminimizer for player 2 we have $u_2(x,y^*) \ge -v^*$ and thus $u_1(x,y^*) \le v^*$ for all $x \in A_1$.

Letting $y = y^*$ and $x = x^*$ in these two inequalities we obtain $u_1(x^*, y^*) = v^*$

Using the fact that $u_2(x^*, y^*) = -u_1(x^*, y^*)$, we conclude that (x^*, y^*) is a Nash equilibrium of G.

- ▶ By (c) a Nash equilibrium can be found by solving the problem $\max_x \min_y u_1(x, y)$.
- ▶ By (a) and (c) Nash equilibria of a strictly competitive game are *interchangeable*: if (x,y) and (x',y') are equilibria then so are (x,y') and (x',y).
- ► Always $\max_x \min_y u_1(x, y) \le \min_y \max_x u_1(x, y)$ since $u_1(x', y) \le \max_x u_1(x, y)$ for all y, and thus $\min_y u_1(x', y) \le \min_y \max_x u_1(x, y)$ for all x.
- ►In Matching Pennies, $\max_x \min_y u_1(x, y) = -1 < \min_y \max_x u_1(x, y) = 1$.

▶(b) shows that $\max_x \min_y u_1(x, y) = \min_y \max_x u_1(x, y)$ for any 0-sum game that has NE. If $\max_x \min_y u_1(x, y) = \min_y \max_x u_1(x, y)$ then we say that this payoff, the equilibrium payoff of player 1, is the *value of the game*.

- 1. (Exercise) Let G be a strictly competitive game that has a Nash equilibrium.
- ▲ Show that if some of player 1's payoffs in G are increased in such a way that the resulting game G' is strictly competitive then G' has no equilibrium in which player 1 is worse off than she was in an equilibrium of G. (Note that G' may have no equilibrium at all.)
- \blacktriangle Show that the game that results if player 1 is prohibited from using one of her actions in G does not have an equilibrium in which player 1's payoff is higher than it is in an equilibrium of G.
- ▲ Give examples to show that neither of the above properties necessarily holds for a game that is not strictly competitive.

2. (Exercise)

- ▲ What can you say anout the Nash equilibrium of a symmetric zero-sum game?
- \blacktriangle Invent a formal concept which will state that in a zero-sum game where each player has to choose an action from a set X (the same action set to both players), player 1 is in a better position.
- 3. (**Exercise**) Cosnider the following game. Player 1 has to state a number of 20 digits and player 2 has to repeat on the number. If he succeed player 2 wins the game, if he fails player 1 wins the game.

Analyse the situation as a zero sum game. What is the value of the game. Would you prefer to be player 1 or 2 in this game? Comment on what is missing from the model.