©Ariel Rubinstein. These lecture notes are distributed for the exclusive use of students in, Tel Aviv University, Spring 2005. Much of the material is based on my book with Martin Osborne A Course of Game Theory, MIT Press 1994.

Lecture L-2: Zero Sum Games

Readings: Osborne and Rubinstein Ch 2.5

Strictly Competitive Games

Let us discuss now a class of games in which there are two players, whose preferences are diametrically opposed. For convenience assume $N=\{1,2\}$.

A strategic game $\left\langle\{1,2\},\left(A_{i}\right),\left(\succsim_{i}\right)\right\rangle$ is strictly competitive if for any $a \in A$ and $b \in A$ we have $a \succsim_{1} b$ if and only if $b \succsim_{2} a$.

A strictly competitive game is sometimes called zero-sum because if player 1's preference relation \succsim_{1} is represented by the payoff function u_{1} then player 2's preference relation is represented by $u_{2}=-u_{1}$.

We identify a pattern of strategic reasoning of a special kind. We say that player i maxminimizes if he chooses an action that is best for him under the assumption that whatever he does, player j will choose his action to hurt him as much as possible.

We interpret it in two possible ways. (1) A decision making method: the player always assume the worst and try to minimize the disaster. (2) A strategic reasoning: in spite of the simultaneousness, a player anticipates that his opponent will respond optimally (from the opponent's point of view).

Main message: We will show that a strictly competitive game possesses a Nash equilibrium, a pair of actions is a Nash equilibrium if and only if the action of each player is a maxminimizer.

This provides a link between individual decision-making and the reasoning behind the
notion of Nash equilibrium. It will follow that for strictly competitive games that possess Nash equilibria all equilibria yield the same payoffs.

Definition: Let $\left\langle\{1,2\},\left(A_{i}\right),\left(\succsim_{i}\right)\right\rangle$ be a strictly competitive strategic game. Let \succsim_{i} be represented by a payoff function u_{i}. Without loss of generality, assume that $u_{2}=-u_{1}$.

The action $z^{*} \in A_{1}$ is a maxminimizer for player 1 if $\min _{y \in A_{2}} u_{1}\left(z^{*}, y\right) \geq \min _{y \in A_{2}} u_{1}(x, y)$ $\forall x \in A_{1}$. That is, a maxminimizer for player i is an action that maximizes the payoff that player i can guarantee.

Lemma The maxminimization of player 2's payoff is equivalent to the minmaximization of player 1's payoff. That is, let $\left\langle\{1,2\},\left(A_{i}\right),\left(u_{i}\right)\right\rangle$ be a strictly competitive strategic game.
(a) $\max _{y \in A_{2}} \min _{x \in A_{1}} u_{2}(x, y)=-\min _{y \in A_{2}} \max _{x \in A_{1}} u_{1}(x, y)$.
(b) $y \in A_{2}$ solves the problem $\max _{y \in A_{2}} \min _{x \in A_{1}} u_{2}(x, y)$ iff it solves the problem $\min _{y \in A_{2}} \max _{x \in A_{1}} u_{1}(x, y)$.

Proof Note that for any function f we have $\min _{z}(-f(z))=-\max _{z} f(z)$ and $\arg \min _{z}(-f(z))=\arg \max _{z} f(z)$.
Thus, for every $y \in A_{2}-\min _{x \in A_{1}} u_{2}(x, y)=\max _{x \in A_{1}}\left(-u_{2}(x, y)\right)=\max _{x \in A_{1}} u_{1}(x, y)$.
$\max _{y \in A_{2}} \min _{x \in A_{1}} u_{2}(x, y)=-\min _{y \in A_{2}}\left[-\min _{x \in A_{1}} u_{2}(x, y)\right]=-\min _{y \in A_{2}} \max _{x \in A_{1}} u_{1}(x, y)$;
in addition $y \in A_{2}$ is a solution of the problem $\max _{y \in A_{2}} \min _{x \in A_{1}} u_{2}(x, y)$ if and only if it is a solution of the problem $\min _{y \in A_{2}} \max _{x \in A_{1}} u_{1}(x, y)$.

Proposition Let $G=\left\langle\{1,2\},\left(A_{i}\right),\left(u_{i}\right)\right\rangle$ be a strictly competitive strategic game.
(a) If $\left(x^{*}, y^{*}\right)$ is a Nash equilibrium of G then x^{*} is a maxminimizer for player 1 and y^{*} is a maxminimizer for player 2.
(b) If $\left(x^{*}, y^{*}\right)$ is a Nash equilibrium of G then
$\max _{x} \min _{y} u_{1}(x, y)=\min _{y} \max _{x} u_{1}(x, y)=u_{1}\left(x^{*}, y^{*}\right)$, and thus all Nash equilibria of G yield the same payoffs.
(c) If $\max _{x} \min _{y} u_{1}(x, y)=\min _{y} \max _{x} u_{1}(x, y)$ (and thus, in particular, if G has a Nash
equilibrium (see part b)), x^{*} is a maxminimizer for player 1 , and y^{*} is a maxminimizer for player 2 , then $\left(x^{*}, y^{*}\right)$ is a Nash equilibrium of G. proposition

Proof (a) and (b).
Let $\left(x^{*}, y^{*}\right)$ be a Nash equilibrium of G.
Then $u_{2}\left(x^{*}, y\right) \leq u_{2}\left(x^{*}, y^{*}\right)$ for all $y \in A_{2}$ or, since $u_{2}=-u_{1}, u_{1}\left(x^{*}, y^{*}\right) \leq u_{1}\left(x^{*}, y\right)$ for all $y \in A_{2}$.
Hence $\min _{y} u_{1}\left(x^{*}, y\right)=u_{1}\left(x^{*}, y^{*}\right)$
For any $x \in A_{1}$ we have $\min _{y} u_{1}(x, y) \leq u_{1}\left(x, y^{*}\right)$.
Since $\left(x^{*}, y^{*}\right)$ be a Nash equilibrium of G we have $u_{1}\left(x, y^{*}\right) \leq u_{1}\left(x^{*}, y^{*}\right)$ for all $x \in A_{1}$. Thus $u_{1}\left(x^{*}, y^{*}\right)=\max _{x} \min _{y} u_{1}(x, y)$ and x^{*} is a maxminimizer for player 1.
An analogous argument for player 2 establishes that y^{*} is a maxminimizer for player 2 and $u_{2}\left(x^{*}, y^{*}\right)=\max _{y} \min _{x} u_{2}(x, y)$.
By the Lemma $u_{1}\left(x^{*}, y^{*}\right)=-u_{2}\left(x^{*}, y^{*}\right)=-\max _{y} \min _{x} u_{2}(x, y)=\min _{y} \max _{x} u_{1}(x, y)$.
Proof of (c):
Let $v^{*}=\max _{x} \min _{y} u_{1}(x, y)=\min _{y} \max _{x} u_{1}(x, y)$.
By the Lemma we have $\max _{y} \min _{x} u_{2}(x, y)=-v^{*}$.
Since x^{*} is a maxminimizer for player 1 we have $u_{1}\left(x^{*}, y\right) \geq v^{*}$ for all $y \in A_{2}$;
Since y^{*} is a maxminimizer for player 2 we have $u_{2}\left(x, y^{*}\right) \geq-v^{*}$ and thus $u_{1}\left(x, y^{*}\right) \leq v^{*}$ for all $x \in A_{1}$.

Letting $y=y^{*}$ and $x=x^{*}$ in these two inequalities we obtain $u_{1}\left(x^{*}, y^{*}\right)=v^{*}$
Using the fact that $u_{2}\left(x^{*}, y^{*}\right)=-u_{1}\left(x^{*}, y^{*}\right)$, we conclude that $\left(x^{*}, y^{*}\right)$ is a Nash equilibrium of G.

- By (c) a Nash equilibrium can be found by solving the problem $\max _{x} \min _{y} u_{1}(x, y)$.
- By (a) and (c) Nash equilibria of a strictly competitive game are interchangeable: if (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ are equilibria then so are $\left(x, y^{\prime}\right)$ and $\left(x^{\prime}, y\right)$.
- Always $\max _{x} \min _{y} u_{1}(x, y) \leq \min _{y} \max _{x} u_{1}(x, y)$
since $u_{1}\left(x^{\prime}, y\right) \leq \max _{x} u_{1}(x, y)$ for all y,
and thus $\min _{y} u_{1}\left(x^{\prime}, y\right) \leq \min _{y} \max _{x} u_{1}(x, y)$ for all x.
\rightarrow In Matching Pennies, $\max _{x} \min _{y} u_{1}(x, y)=-1<\min _{y} \max _{x} u_{1}(x, y)=1$.
-(b) shows that $\max _{x} \min _{y} u_{1}(x, y)=\min _{y} \max _{x} u_{1}(x, y)$ for any 0 -sum game that has NE. If $\max _{x} \min _{y} u_{1}(x, y)=\min _{y} \max _{x} u_{1}(x, y)$ then we say that this payoff, the equilibrium payoff of player 1 , is the value of the game.

Problem set G-2

1. (Exercise) Let G be a strictly competitive game that has a Nash equilibrium.
© Show that if some of player 1's payoffs in G are increased in such a way that the resulting game G^{\prime} is strictly competitive then G^{\prime} has no equilibrium in which player 1 is worse off than she was in an equilibrium of G. (Note that G^{\prime} may have no equilibrium at all.)

- Show that the game that results if player 1 is prohibited from using one of her actions in G does not have an equilibrium in which player 1's payoff is higher than it is in an equilibrium of G.
© Give examples to show that neither of the above properties necessarily holds for a game that is not strictly competitive.

2. (Exercise)

© What can you say anout the Nash equilibrium of a symmetric zero-sum game?
A Invent a formal concept which will state that in a zero-sum game where each player has to choose an action from a set X (the same action set to both players), player 1 is in a better position.
3. (Exercise) Cosnider the following game. Player 1 has to state a number of 20 digits and player 2 has to repeat on the number. If he succeed player 2 wins the game, if he fails player 1 wins the game.

Analyse the situation as a zero sum game. What is the value of the game. Would you prefer to be player 1 or 2 in this game? Comment on what is missing from the model.

