Solution of Problem Set 5

1.

The actions of player 1 that are rationalizable are a_{1}, a_{2}, and a_{3}; those of player 2 are b_{1}, b_{2}, and b_{3}. The actions a_{2} and b_{2} are rationalizable since $\left(a_{2}, b_{2}\right)$ is a Nash equilibrium. Since a_{1} is a best response to b_{3}, b_{3} is a best response to a_{3}, a_{3} is a best response to b_{1}, and b_{1} is a best response to a_{1} the actions a_{1}, a_{3}, b_{1}, and b_{3} are rationalizable. The action b_{4} is not rationalizable since if the probability that player 2's belief assigns to a_{4} exceeds $1 / 2$ then b_{3} yields a payoff higher than does b_{4}, while if this probability is at most $1 / 2$ then b_{2} yields a payoff higher than does b_{4}. The action a_{4} is not rationalizable since without b_{4} in the support of player 1's belief, a_{4} is dominated by a_{2}.

Comment That b_{4} is not rationalizable also follows from the fact that b_{4} is strictly dominated by the mixed strategy that assigns the probability $1 / 3$ to b_{1}, b_{2}, and b_{3}.

2. (Cournot duopoly)

Player i 's best response function is $B_{i}\left(a_{j}\right)=\left(1-a_{j}\right) / 2$; hence the only Nash equilibrium is $(1 / 3,1 / 3)$.

Since the game is symmetric, the set of rationalizable actions is the same for both players; denote it by Z. Let $m=\inf Z$ and $M=\sup Z$. Any best response of player i to a belief of player j whose support is a subset of Z maximizes $\mathrm{E}\left[a_{i}\left(1-a_{i}-a_{j}\right)\right]=a_{i}(1-$ $\left.a_{i}-\mathrm{E}\left[a_{j}\right]\right)$, and thus is equal to $B_{i}\left(\mathrm{E}\left[a_{j}\right]\right) \in\left[B_{i}(M), B_{i}(m)\right]=[(1-M) / 2,(1-m) / 2]$. Hence (using the second definition of rationalizability), we need $(1-M) / 2 \leq m$ and $M \leq(1-m) / 2$, so that $M=m=1 / 3: 1 / 3$ is the only rationalizable action of each player.

3. (Guess the average)

The action 0 is rationalizable since it is a Nash Equilibrium.
Since the game is symmetric, the set of rationalizable actions is the same, say Z, for all players. Note that if an action is a best response to some belief, its expected payoff must be positive according to that belief. Let $k^{*}>0$ be the largest number in Z. k^{*} must be a best response to some belief over the action of the other players in the
support of Z . Then $k^{*}<\frac{3}{2} k^{*}=\left[\sum_{i \in N} \frac{a_{i}}{n}\right] \leq \sum_{i \in N} \frac{a_{i}}{n}$. But then for some player $\mathrm{i}, \mathrm{a}_{\mathrm{i}}>k^{*}$ contradicting k^{*} being maximal. By this argument the action k^{*} is a best response to a belief whose support is a subset of Z only if $k^{*}=0$.
4.

At the first stage of elimination positions 1 and 7 are erased since position 1 is strictly dominated by position 2 and position 7 is strictly dominated by position 6 (see matrix payoff below). Then positions 2 and 6 are eliminated since they are strictly dominated by positions 3 and 5 respectively. And finally positions 3 and 5 are eliminated since they are strictly dominated by position 4.

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
$\mathbf{1}$	7,7	2,12	3,11	4,10	5,9	6,8	7,7
$\mathbf{2}$	12,2	7,7	4,10	5,9	6,8	7,7	8,6
$\mathbf{3}$	11,3	10,4	7,7	6,8	7,7	8,6	9,5
$\mathbf{4}$	10,4	9,5	8,6	7,7	8,6	9,5	10,4
$\mathbf{5}$	9,5	8,6	7,7	6,8	7,7	10,4	11,3
$\mathbf{6}$	8,6	7,7	6,8	5,9	4,10	7,7	12,3
$\mathbf{7}$	7,7	6,8	5,9	4,10	3,11	2,12	7,7

* divide all payoffs by 14 in order to get the share of each seller

5.

At the first round every action $a_{i} \leq 50$ of each player i is weakly dominated by $a_{i}+1$. No other action is weakly dominated, since 100 is a strict best response to 0 and every other action $a_{i} \geq 51$ is a best response to $a_{i}+1$. At every subsequent round up to 50 one action is eliminated for each player: at the second round this action is 100 , at the third round it is 99 , and so on. After round 50 the single action pair $(51,51)$ remains, with payoffs of $(50,50)$.

