Solution of Problem Set 5

1.

The actions of player 1 that are rationalizable are a_1 , a_2 , and a_3 ; those of player 2 are b_1 , b_2 , and b_3 . The actions a_2 and b_2 are rationalizable since (a_2,b_2) is a Nash equilibrium. Since a_1 is a best response to b_3 , b_3 is a best response to a_3 , a_3 is a best response to b_1 , and b_1 is a best response to a_1 the actions a_1 , a_3 , b_1 , and b_3 are rationalizable. The action b_4 is not rationalizable since if the probability that player 2's belief assigns to a_4 exceeds 1/2 then b_3 yields a payoff higher than does b_4 , while if this probability is at most 1/2 then b_2 yields a payoff higher than does b_4 . The action a_4 is not rationalizable since without b_4 in the support of player 1's belief, a_4 is dominated by a_2 .

Comment That b_4 is not rationalizable also follows from the fact that b_4 is strictly dominated by the mixed strategy that assigns the probability 1/3 to b_1 , b_2 , and b_3 .

2. (Cournot duopoly)

Player *i*'s best response function is $B_i(a_j) = (1 - a_j)/2$; hence the only Nash equilibrium is (1/3, 1/3).

Since the game is symmetric, the set of rationalizable actions is the same for both players; denote it by *Z*. Let $m = \inf Z$ and $M = \sup Z$. Any best response of player *i* to a belief of player *j* whose support is a subset of *Z* maximizes $E[a_i(1 - a_i - a_j)] = a_i(1 - a_i - E[a_j])$, and thus is equal to $B_i(E[a_j]) \in [B_j(M), B_j(m)] = [(1 - M)/2, (1 - m)/2]$. Hence (using the second definition of rationalizability), we need $(1-M)/2 \le m$ and $M \le (1-m)/2$, so that M = m = 1/3: 1/3 is the only rationalizable action of each player.

3. (Guess the average)

The action 0 is rationalizable since it is a Nash Equilibrium.

Since the game is symmetric, the set of rationalizable actions is the same, say Z, for all players. Note that if an action is a best response to some belief, its expected payoff must be positive according to that belief. Let $k^* > 0$ be the largest number in Z. k^* must be a best response to some belief over the action of the other players in the

support of Z. Then $k^* < \frac{3}{2}k^* = \left[\sum_{i \in N} \frac{a_i}{n}\right] \le \sum_{i \in N} \frac{a_i}{n}$. But then for some player i, $a_i > k^*$

contradicting k^* being maximal. By this argument the action k^* is a best response to a belief whose support is a subset of *Z* only if $k^* = 0$.

4.

At the first stage of elimination positions 1 and 7 are erased since position 1 is strictly dominated by position 2 and position 7 is strictly dominated by position 6 (see matrix payoff below). Then positions 2 and 6 are eliminated since they are strictly dominated by positions 3 and 5 respectively. And finally positions 3 and 5 are eliminated since they are strictly dominated by position 4.

	1	2	3	4	5	6	7
1	7,7	2,12	3,11	4,10	5,9	6,8	7,7
2	12,2	7,7	4,10	5,9	6,8	7,7	8,6
3	11,3	10,4	7,7	6,8	7,7	8,6	9,5
4	10,4	9,5	8,6	7,7	8,6	9,5	10,4
5	9,5	8,6	7,7	6,8	7,7	10,4	11,3
6	8,6	7,7	6,8	5,9	4,10	7,7	12,3
7	7,7	6,8	5,9	4,10	3,11	2,12	7,7

* divide all payoffs by 14 in order to get the share of each seller

5.

At the first round every action $a_i \le 50$ of each player *i* is weakly dominated by $a_i + 1$. No other action is weakly dominated, since 100 is a strict best response to 0 and every other action $a_i \ge 51$ is a best response to $a_i + 1$. At every subsequent round up to 50 one action is eliminated for each player: at the second round this action is 100, at the third round it is 99, and so on. After round 50 the single action pair (51, 51) remains, with payoffs of (50, 50).