
Solutions for problems set 6 

1.  

Each reduced strategy of player i corresponds to a set of (regular) strategies of player i 

in the extensive game. { }  ofdomain  in the    if )()( iiiii fh(h)s(h)fsf ∀=→ . In this 

set, the outcomes for player i are the same, given the strategies of the other players 

since they result in the same terminal history. The set of Nash Equilibria of the 

strategic game with the reduced strategies corresponds to the set of (regular) Nash 

Equilibria of the extensive game in which the reduced strategies of each player 

corresponds to the set of (regular) strategies  

Take for example the centipede game: 

 

The set of strategies of both players is {(S,S),(S,C),(C,S),(C,C)}. The set of reduced 

strategies is {(S),(C,S),(C,C)}. The strategic form of the game is: 

 

 

 

And the strategic form of the game with reduced strategies is: 

 S CS CC 

S 0,0* 0,0 0,0 

CS -1,3 2,2 2,2 

CC -1,3 1,5 4,4 

The * stands for the Nash equilibria 

 SS SC CS CC 

SS 0,0* 0,0* 0,0 0,0 

SC 0,0* 0,0* 0,0 0,0 

CS -1,3 -1,3 2,2 2,2 

CC -1,3 -1,3 1,5 4,4 
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2. (SPE of Stackelberg game) 

Consider the game  

 

In this game (L, AD) is a subgame perfect equilibrium, with a payoff of (1, 0), while 

the solution of the maximization problem is (R, C), with a payoff of (2, 1).  

3.  (Necessity of finite horizon for one deviation property) 

In the (one-player) game  

 

the strategy in which the player chooses d after every history satisfies the condition in 

Lemma of one deviation property but is not a subgame perfect equilibrium.  

4.  (Necessity of finiteness for Kuhn's theorem) 

Consider the one-player game in which the player chooses a number in the interval 

 [0, 1), and prefers larger numbers to smaller ones. That is, consider the game 

 〈{1}, {φ } ∪  [0, 1), P, { 1}〉 in which P(φ ) = 1 and x 1 y if and only if x > y. This 

game has a finite horizon (the length of the longest history is 1) but has no subgame 

perfect equilibrium (since [0, 1) has no maximal element).  

In the infinite-horizon one-player game the beginning of which is shown in the 

following figure  



 

the single player chooses between two actions after every history. After any history of 

length k the player can choose to stop and obtain a payoff of k + 1 or to continue; the 

payoff if she continues for ever is 0. The game has no subgame perfect equilibrium.  

5. (SPE of games satisfying no indifference condition) 

The hypothesis is true for all subgames of length one. Assume the hypothesis for all 

subgames with length at most k. Consider a subgame Γ(h) with l(Γ(h)) = k + 1 and 

P(h) = i. For all actions a of player i such that (h, a)∈H define R(h, a) to be the 

outcome of some subgame perfect equilibrium of the subgame Γ(h, a). By hypothesis 

all subgame perfect equilibria outcomes of Γ(h, a) are preference equivalent; in a 

subgame perfect equilibrium of Γ(h) player i takes an action that maximizes i over 

{R(h, a) : a∈A(h)}. Therefore player i is indifferent between any two subgame perfect 

equilibrium outcomes of Γ(h); by the no indifference condition all players are 

indifferent among all subgame perfect equilibrium outcomes of Γ(h).  

We now show that the equilibria are interchangeable. For any subgame perfect 

equilibrium we can attach to every subgame the outcome according to the subgame 

perfect equilibrium if that subgame is reached. By the first part of the exercise the 

outcomes that we attach (or at least the rankings of these outcomes in the players' 

preferences) are independent of the subgame perfect equilibrium that we select. Thus 

by the one deviation property, any strategy profile s′′ in which for each player i the 

strategy si′′ is equal to either si or si′ is a subgame perfect equilibrium.  

6.  (Armies) 

We model the situation as an extensive game in which at each history at which 

player i occupies the island and player j has at least two battalions left, player j has 



two choices: conquer the island or terminate the game. The first player to move is 

player 1. (We do not specify the game formally.)  

We show that in every subgame in which army i is left with yi battalions (i = 1, 2) and 

army j occupies the island, army i attacks if and only if either yi > yj, or yi = yj and yi is 

even.  

The proof is by induction on min{y1, y2}. The claim is clearly correct if 

 min{y1, y2} ≤ 1. Now assume that we have proved the claim whenever min{y1, y2} ≤ m 

for some m ≥ 1. Suppose that min{y1, y2} = m+1. There are two cases.  

• either yi > yj, or yi = yj and yi is even: If army i attacks then it occupies the 

island and is left with yi−1 battalions. By the induction hypothesis army j does 

not launch a counterattack in any subgame perfect equilibrium, so that the 

attack is worthwhile.  

• either yi < yj, or yi = yj and yi is odd: If army i attacks then it occupies the island 

and is left with yi−1 battalions; army j is left with yj battalions. Since either   

yi − 1 < yj − 1 or yi − 1 = yj − 1 and is even, it follows from the inductive 

hypothesis that in all subgame perfect equilibria there is a counterattack. Thus 

army i is better off not attacking.  

Thus the claim is correct whenever min{y1, y2} ≤ m + 1, completing the inductive 

argument.  

7.  

First lets recall the conclusion from the lecture notes that in the finite version of chess 

there is a SPE and hence also a NE. Because chess is strictly competitive, the 

equilibrium payoff is unique and thus any NE strategy of a player guarantees the 

player his equilibrium payoff. Thus either White has a strategy that guarantees that he 

wins, or Black has a strategy that guarantees that she wins, or each player has a 

strategy that guarantees that the outcome of the game is a draw. 

Assume the payoff of the outcome win is 1, of loose is -1 and draw is 0. According to 

the official law of the chess game it is no longer a finite game. However we will show 



that in any SPE the players will either choose to stop the game or will be indifferent 

between a draw and continuing the game to infinity.   

  

If in the finite version the White payer can guarantee that she wins (meaning that no 

position was repeated 3 times) than this is true also for the official version of chess 

and the value of the game is 1. The same is true if the Black player can guarantee he 

wins and the value of the game is -1. 

If however in the finite version the SPE follows a history in which a position is 

repeated 3 times the value of the game is 0 (Note that in the subgame that starts in that 

position for the first time, all other action for the player whose turn it is to move must 

lead to a draw or a loss).  

Assume that a position is repeated 3 times and it is white’s time to move. Any action 

that leads to a finite subgame will end with a draw or a loss (as in the finite game). 

Also if she chooses “draw” then the game ends and we are back to the finite version 

where the game has a value. However if she chooses to continue to a subgame which 

is not finite it must be the case that she weakly prefers this over a draw. Since this is a 

zero sum game is must be the case that the Black player weakly prefers an outcome of 

a draw over continuing the game forever. But during the history that repeats this 

position over and over there must be another position which is repeated at least three 

times in which the Black player can call a draw. So it is either the case that both 

player continue for ever and are indifferent between this and a draw or that one of the 

player ends the game with a draw. In any case the value of this subgame is 0.           

 

8.  (ODP and Kuhn's theorem with chance moves) 

One deviation property: The argument is the same as in the proof of the one 

deviations property.  

Kuhn's theorem: The argument is the same as in the proof of the existence of a 

subgame perfect equilibrium with the following addition. If P(h*) = c then R(h*) is 

the lottery in which R(h*, a) occurs with probability  f c(a ⏐ h) for each a ־ A(h*).  



9. (Three players sharing pie) 

The game is given by  

• N = {1, 2, 3}  

• H = {φ } ∪ X ∪ { (x, y): x ∈  X and y ∈  {yes, no} × {yes, no} where            

X = {x∈  3
+ : 13

1 =∑ =i ix }  

• P(φ ) = 1 and P(x) = {2, 3} if x ∈  X  

• for each i ∈ N we have (x, (yes, yes)) i (z, (yes, yes)) if and only if xi > zi; if  

(A, B) ≠(yes, yes) then (x, (yes, yes)) i (z, (A, B)) if xi > 0 and                        

(x,(yes, yes)) ∼ i(z, (A, B)) if xi = 0; if (A, B) ≠ (yes, yes) and (C, D) ≠ (yes, yes) 

then (x, (C, D)) ∼ i (z, (A, B)) for all x∈ X and z∈X.  

In each subgame that follows a proposal x of player 1 there are two types of Nash 

equilibria. In one equilibrium, which we refer to as Y(x), players 2 and 3 both accept 

x. In all the remaining equilibria the proposal x is not implemented; we refer to the set 

of these equilibria as N(x). If both x2 > 0 and x3 > 0 then N(x) consists of the single 

equilibrium in which players 2 and 3 both reject x. If xi = 0 for either i = 2 or i = 3, or 

both, then N(x) contains in addition equilibria in which a player who is offered 0 

rejects the proposal and the other player accepts the proposal.  

Consequently the equilibria of the entire game are the following.  

• For any division x, player 1 proposes x. In the subgame that follows the 

proposal x of player 1, the equilibrium is Y(x). In the subgame that follows any 

proposal y of player 1 in which y1 > x1, the equilibrium is in N(y). In the 

subgame that follows any proposal y of player 1 in which y1 < x1, the 

equilibrium is either Y(y) or is in N(y).  

• For any division x, player 1 proposes x. In the subgame that follows any 

proposal y of player 1 in which y1 > 0, the equilibrium is in N(y). In the 

subgame that follows any proposal y of player 1 in which y1 = 0, the 

equilibrium is either Y(y) or is in N(y).  



10. (Naming numbers) 

The game is given by  

• N = {1, 2}  

• H = {φ } ∪ {Stop, Continue} ∪ {(Continue, y) : y∈Z × Z} where Z is the set 

of nonnegative integers  

• P(φ ) = 1 and P(Continue) = {1, 2}  

• the preference relation of each player is determined by the payoffs given in the 

question.  

In the subgame that follows the history Continue there is a unique subgame perfect 

equilibrium, in which both players choose 0. Thus the game has a unique subgame 

perfect equilibrium, in which player 1 chooses Stop and, if she chooses Continue, both 

players choose 0.  

Note that if the set of actions of each player after player 1 chooses Continue were 

bounded by some number M then there would be an additional subgame perfect 

equilibrium in which player~1 chooses Continue and each player names M, with the 

payoff profile (M2,M2).  

 

 


