Solution for Problem set 8

1.

Consider the next multi stage bargaining model: In every stage, the two (impatient) parties submit their proposals simultaneously. If the proposals match, an agreement is reached. Note that there might be more than on interpretation to a "match". We will refer here to a proposal of party i (denote by x_{i}) as the amount i demands for himself, and refer to x_{1} and x_{2} as matching iff $x_{1}+x_{2} \leq 1$. When an agreement is reached, party i receives x_{i}. (Note, that changing the interpretation of the match by requiring a perfect match, or changing a little the split of the pie by dividing the reminder, does not change the following results).

As in the alternating offers model, the players' preferences in the game are derived from player i 's utility function $U_{i}(x, t)=x_{i} \cdot \delta_{i}^{t}$ over the pairs (x, t).

The following are the possible histories:
$\left(x^{1}, x^{2}, \ldots, x^{t}\right)$ (for $t>0$) after which both players have to make a new offer. $\left(x^{1}, x^{2}, \ldots, x^{t}\right)$ (for $\left.t>0\right)$ a terminal history evaluated by player i as $U_{i}(x, t)=x_{i}^{t} \cdot \delta_{i}^{t}$. $\left(x^{1}, x^{2}, \ldots, x^{t}, \ldots\right)$ a terminal history evaluated by both players as 0 .

First note, that in the one period model, every successful division of the whole pie (meaning that $x_{1}+x_{2}=1$) is an equilibrium. Another (inefficient) equilibrium is the case where $x_{1}=x_{2}=1$.

Using these one-shot possible equilibria, we can show that every division of the whole pie, in any one of the periods, can be sustained in SPE, as well as the case where there is no division of the pie at all. To see that a division $\left(x_{1}^{*}, x_{2}^{*}\right)$ at period t^{*} can be sustained in equilibrium, consider the case where for every $t \neq t^{*}$ we have $x_{1}^{t}=x_{2}^{t}=1$ and for $t=t^{*}$ we have $x_{i}^{t}=x_{i}^{*}$ for $i=1,2$. Clearly, none of the parties can gain from deviation.

2. (Constant cost of bargaining)

The pair $x^{*}=(1,0)$ and $y^{*}=\left(1-c_{1}, c_{1}\right)$ is the unique SPE. It is straightforward to check that the strategy pair is SPE (by the one deviation property). In order to show uniqueness, let $M_{i}\left(G_{i}\right)$ be the supremum of a player i's payoff over the subgame perfect equilibria of subgames in which he makes the first proposal; let and $m_{(}\left(G_{i}\right)$ be the corresponding infimum for $i=1,2$.

We have $M_{2}\left(G_{2}\right) \leq 1-m_{1}\left(G_{1}\right)+c_{1}$, or $\left(^{*}\right) m_{1}\left(G_{1}\right) \leq 1-M_{2}\left(G_{2}\right)+c_{1}$. Otherwise player 1 will reject the proposal and wait until the next period in which he can guarantee he gets a payoff of at least $m_{1}\left(G_{1}\right)-c_{1}$.
Now suppose that $M_{2}\left(G_{2}\right) \geq c_{2}$, under this assumption (${ }^{* *}$) $m_{1}\left(G_{1}\right) \geq 1-M_{2}\left(G_{2}\right)+c_{2}$, since player 2 must accept the offer $M_{2}\left(G_{2}\right)-c_{2}$ because she cannot get a higher payoff in any continuation of the game.(*) together with (${ }^{* *}$) is a contradiction since $c_{1}<c_{2}$. Thus $M_{2}\left(G_{2}\right)<c_{2}$. But this implies that $m_{1}\left(G_{1}\right) \geq 1$ since player 2 will accept any offer of player 1 (including getting zero) because by rejecting she will get a negative payoff. Also $m_{1}\left(G_{1}\right) \leq 1$, so that $m_{1}\left(G_{1}\right)=1$ and hence $M_{1}\left(G_{1}\right)=1$.

As before (${ }^{*}$), $M_{2}\left(G_{2}\right) \leq 1-m_{1}\left(G_{1}\right)+c_{1}$, so we have $M_{2}\left(G_{2}\right) \leq c_{1}$; and $m_{2}\left(G_{2}\right) \geq c_{1}$ since player 1 will always accept payoff of $1-c_{1}$ since by rejecting he will get less. So that $M_{2}\left(G_{2}\right)=m_{2}\left(G_{2}\right)=c_{1}$.

In every SPE of G_{1} player 1's payoff is $x_{1}{ }^{*}$. Player 2's payoff must be non negative and since $x_{1}{ }^{*}+x_{2}{ }^{*}=1$, player 2 's payoff is 0 . This means that agreement is reached immediately. This means that in all SPE player 1 offers 1 and player 2 always offers c_{1}. Player 1 accepts offers which are at least good for him as c_{1} and player 2 accepts offers which are at least as good for him as 0 .

3.

We assume that u_{1}, u_{2} are strictly monotonic and continuous. The proof is based on Osborne and Rubinstein page 123 with minor changes to fit the question.

Moreover x in the question which is a scalar is changed to be a vector of offers.

- Existence:

Consider the following as an equilibrium: Player 1 always offers the partition x^{*} and accepts any offer which gives him at least y^{*}. Player 2 always demands y^{*} and
accepts any offer which gives him at least x^{*}. Since $\delta_{2} \cdot u_{2}\left(y^{*}\right)=u_{2}\left(x^{*}\right)$ and $\delta_{1} \cdot u_{1}\left(x^{*}\right)=u_{1}\left(y^{*}\right)$ both players cannot gain from a deviation.

- Uniqueness:

Let G_{i} be the game where i is the first one to give an offer.
let $M_{(}\left(G_{i}\right)$ be the supremum of a player i's payoff over the subgame perfect equilibria of subgames in which he makes the first proposal; let and $m_{(}\left(G_{i}\right)$ be the corresponding infimum for $i=1,2$.

Describe the pairs of payoffs on the Pareto frontier (which are efficient) by the function ϕ : if x is efficient then $u_{2}(x)=\phi\left(u_{1}(x)\right)$.

Step 1. $m_{2}\left(G_{2}\right) \geq \phi\left(\delta_{1} M_{1}\left(G_{1}\right)\right)$.
In any SPE of G_{2} Player 1 must accept an offer of $\delta_{1} M_{1}$ since in the next stage her payoff will not be higher than M_{1}. Thus player 2's payoff cannot be lower than $\phi\left(\delta_{1} M_{1}\left(G_{1}\right)\right)$.

Step 2. $M_{1}\left(G_{1}\right) \leq \phi^{-1}\left(\delta_{2} m_{2}\left(G_{2}\right)\right)$
In any SPE of G_{1} Player 2 must obtain a payoff of at least $\delta_{2} m_{2}\left(G_{2}\right)$, since otherwise player 2 will reject the opening offer of player 1 . Thus the payoff of player 1 cannot exceed $\phi^{-1}\left(\delta_{2} m_{2}\left(G_{2}\right)\right.$.

Step 3. $M_{1}\left(G_{1}\right)=u_{1}\left(x^{*}\right)$
We have that $M_{1}\left(G_{1}\right) \geq u_{1}\left(x^{*}\right)$ since there is a SPE of G_{1} in which x^{*} is agreed upon immediately. We will now show that $M_{1}\left(G_{1}\right) \leq u_{1}\left(x^{*}\right)$.

By the definition of ϕ we have that $\delta_{2} \phi\left(\delta_{1} u_{1}((1,0))>0=u_{2}(1,0)=\phi\left(u_{1}(1,0)\right)\right.$. Since ϕ is decreasing we get that $u_{1}(1,0)>\phi^{-1}\left(\delta_{2} \phi\left(\delta_{1} u_{1}(1,0)\right)\right)$. By step 1 and 2 we have $M_{1}\left(G_{1}\right) \leq \phi^{-1}\left(\delta_{2} \phi\left(\delta_{1} M_{1}\left(G_{1}\right)\right)\right.$. Thus by the continuity of ϕ there exists $U_{1} \in\left[M_{1}\left(G_{1}\right), u_{1}(1,0)\right]$ such that $U_{1}=\phi^{-1}\left(\delta_{2} \phi\left(\delta_{1} U_{1}\right)\right)$ (a fixed point). If $M_{1}\left(G_{1}\right)>u_{1}\left(x^{*}\right)$ then $U_{1} \neq u_{1}\left(x^{*}\right)$. Take a^{*} and b^{*} to be efficient agreements for which for $u_{1}\left(a^{*}\right)=U_{1}$ and $u_{1}\left(b^{*}\right)=\delta_{1} u_{1}\left(a^{*}\right)$. By substituting $u_{1}\left(a^{*}\right)$ and $u_{1}\left(b^{*}\right)$ into $U_{1}=\phi^{-1}\left(\delta_{2} \phi\left(\delta_{1} U_{1}\right)\right)$ we get $u_{1}\left(a^{*}\right)=\phi^{-1}\left(\delta_{2} \phi\left(u_{1}\left(b^{*}\right)\right)\right)$ which mean that $\phi\left(u_{1}\left(a^{*}\right)\right)=\delta_{2} \phi\left(u_{1}\left(b^{*}\right)\right)$. But since a^{*} and b^{*} are efficient agreements we get $u_{2}\left(a^{*}\right)=\delta_{2} u_{2}\left(b^{*}\right)$ contradicting the fact that x^{*} and y^{*} is the only pair that follows these conditions. The proofs for $m_{1}\left(G_{1}\right)=u_{1}\left(x^{*}\right)$, $M_{2}\left(G_{2}\right)=u_{2}\left(x^{*}\right)$ and $m_{2}\left(G_{2}\right)=u_{2}\left(x^{*}\right)$ is similar.

The remaining of the proof is the same as in the lecture notes.
4.

We will show that if $U_{i}(x, t)=u_{i}(x) \delta_{i}^{t}$ represents player i 's preference over the space $X \times T$ then so does $V_{i}(x, s)=v_{i}(x) \delta_{i}^{t}$, where $v_{i}(x)=u_{i}(x)^{\frac{\ln (\delta)}{\ln \left(\delta_{i}\right)}}$.
$u_{i}(x) \delta_{i}^{t} \geq u_{i}(y) \delta_{i}^{s} \Leftrightarrow\left(u_{i}(x) \delta_{i}^{t}\right)^{\frac{\ln (\delta)}{\log \left(\delta_{i}\right)}} \geq\left(u_{i}(y) \delta_{i}^{s}\right)^{\frac{\ln (\delta)}{\ln \left(\delta_{i}\right)}}$

But,

$$
\begin{aligned}
& \left(u_{i}(x) \delta_{i}^{t}\right)^{\frac{\ln (\delta)}{\ln \left(\delta_{i}\right)}}=u_{i}(x)^{\frac{\ln (\delta)}{\ln \left(\delta_{i}\right)}}\left(\delta_{i}^{t}\right)^{\frac{\ln (\delta)}{\ln \left(\delta_{i}\right)}}=u_{i}(x)^{\frac{\ln (\delta)}{\ln \left(\delta_{i}\right)}}\left(\delta_{i}^{t}\right)^{\log _{\delta_{i}}^{\delta}}= \\
& =u_{i}(x)^{\frac{\ln (\delta)}{\ln \left(\delta_{i}\right)}} \delta_{i}^{\log \delta_{i}^{t}}
\end{aligned}=u_{i}(x)^{\frac{\ln (\delta)}{\ln \left(\delta_{i}\right)}} \delta_{i}^{\log _{\delta_{i}^{t}}^{\delta_{i}^{t}}}=u_{i}(x)^{\frac{\ln (\delta)}{\ln \left(\delta_{i}\right)}} \delta_{i}^{\log _{\delta_{i}}^{\delta^{t}}}=u_{i}(x)^{\frac{\ln (\delta)}{\ln \left(\delta_{i}\right)}} \delta^{t}=v_{i}(x) \delta^{t} .
$$

So, $u_{i}(x) \delta_{i}^{t} \geq u_{i}(y) \delta_{i}^{s} \Leftrightarrow v_{i}(x) \delta^{t} \geq v_{i}(y) \delta^{s}$.
5.

The solution is based on Rubinstein, Safra and Thomson (1992), see also Binmore, Rubinstein and Wolinsky (1986).

For $x, y \in X$ we denote $x \gg y$ if there is a player i and a number δ such that both $\delta \cdot u_{i}(x)>u_{i}(y)$ and $u_{j}(x)>\delta \cdot u_{j}(y)$. In other words, $x \gg y$ if one of the players can "appeal" successfully against y by suggesting x for some discount factor δ.

Lemma (The single-peak property of >>):
Let $x, y, z \in X$ satisfy $z>x>y$. If not $[x \gg z]$ then $x \gg y$.

The full proof for the lemma appears in Rubinstein, Safra and Thomson (1992).

To get a slightly different intuition as to why the lemma is true, first note that $x \gg y$ iff $u_{1}(x) \cdot u_{2}(x)>u_{1}(y) \cdot u_{2}(y)$. The first direction is obvious, to see that $u_{1}(x) \cdot u_{2}(x)>u_{1}(y) \cdot u_{2}(y) \Rightarrow \delta \cdot u_{i}(x)>u_{i}(y)$ and $u_{j}(x)>\delta \cdot u_{j}(y)$ note that if $u_{1}(x) \cdot u_{2}(x)>u_{1}(y) \cdot u_{2}(y)$ then for some i, $u_{i}(x)>u_{i}(y)$ and choose $\delta=(1+\varepsilon) \frac{u_{i}(y)}{u_{i}(x)}$ for a small enough ε. Therefore, saying that >> is "single peaked" is equivalent to saying that $f(x)=u_{1}(x) \cdot u_{2}(x)$ is a single peaked function. This claim is reasonable under the classic assumption regarding the functions u_{i}.

Next, note that there is no $x>x^{*}(\delta)$ (so that $x \succ_{1} x^{*}(\delta)$) such that $x \gg x^{*}(\delta)$ since if there was, the fact that not $\left[x^{*}(\delta) \gg y^{*}(\delta)\right]$ together with the above lemma imply that $x^{*}(\delta) \gg x$. Similarly, there is no $x<y^{*}(\delta)$ (so that $x \succ_{2} y^{*}(\delta)$) such that $x \gg y^{*}(\delta)$.

Therefore, for all $\delta, x^{*}(\delta) \geq \underset{x}{\arg \max } u_{1}(x) \cdot u_{2}(x) \geq y^{*}(\delta)$. For any subsequence $\left(\delta_{n}\right)$ converging to 1 such that $x^{*}\left(\delta_{n}\right)$ and $y^{*}\left(\delta_{n}\right)$ converge to x^{*} and y^{*} respectively, it has to be true that $u_{i}\left(x^{*}\right)=u_{i}\left(y^{*}\right)$ for both i and thus $x^{*}=y^{*}$. Furthermore, $x^{*} \geq \underset{x}{\arg \max } u_{1}(x) \cdot u_{2}(x) \geq y^{*}$ and thus the sequence converge to $\underset{x}{\arg \max } u_{1}(x) \cdot u_{2}(x)$.

6. (Outside options)

It is straightforward to check that the strategy pair x^{*} and y * is a subgame perfect equilibrium, where $x^{*}=\left(\frac{1-\delta_{2}}{1-\delta_{1} \delta_{2}}, \frac{\delta_{2}\left(1-\delta_{1}\right)}{1-\delta_{1} \delta_{2}}\right)$ and $y^{*}=\left(\frac{\delta_{1}\left(1-\delta_{2}\right)}{1-\delta_{1} \delta_{2}}, \frac{1-\delta_{1}}{1-\delta_{1} \delta_{2}}\right)$.
By assumption $y_{1}{ }^{*}=\frac{\delta_{1}\left(1-\delta_{1}\right)}{1-\delta_{1} \delta_{2}} \succ d_{1}$ and $x_{2}{ }^{*}=\frac{\delta_{2}\left(1-\delta_{1}\right)}{1-\delta_{1} \delta_{2}} \succ d_{2}$, since each player prefers the equilibrium payoff over the outside option.

Let M_{1} and M_{2} be the suprema of player 1's and player 2's payoffs over subgame perfect equilibria of the subgames in which players 1 and 2 , respectively, make the first offer. Similarly, let m_{1} and m_{2} be the infima of these payoffs. We proceed in a number of steps in order to show uniqueness.

First observe that $m_{1} \leq x_{1}^{*} \leq M_{1}$ and $m_{2} \leq y_{2}^{*} \leq M_{2}$

Step 1. $m_{2} \geq 1-\max \left(\delta_{1} M_{1}, d_{1}\right)$, since player 1 must always accept a payoff higher than his outside option and the maximal payoff he may receive next period .But $m_{2} \geq 1-\delta_{1} M_{1}$ since $\delta_{1} M_{1} \geq \delta_{1} x_{1}{ }^{*}=y_{1}^{*}>d_{1}$

Step 2. $M_{1} \leq 1-\max \left\{d_{2}, \delta_{2} m_{2}\right\}$

Since Player 2 obtains the payoff d_{2} by opting out, we must have $M_{1} \leq 1-\mathrm{d}_{2}$. The fact that $M_{1} \leq 1-\delta_{2} m_{2}$ follows from the argument if player 1 offers player 2 a payoff of less than $\delta_{2} m_{2}$ player 2 will always reject the offer and wait until the next period in which he can receive a payoff of at least that.

Step 3. $m_{1} \geq 1-\delta_{2} M_{2}$, by the same argument in step 1 .

Step 4. $M_{2} \leq 1-\max \left\{d_{1}, \delta_{1} m_{1}\right\}$, by the same argument in step 2.

Step 5. $M_{1}=m_{1}=\mathrm{x}_{1}{ }^{*}$ and $M_{2}=m_{2}=\mathrm{y}_{2}{ }^{*}$.

By Step 2 we have $1-M_{1} \geq \delta_{2} m_{2}$ (since both $1-M_{1} \geq \delta_{2} m_{2}$ and $1-M_{1} \geq d_{2}$) and by
Step 1 we have $m_{2} \geq 1-\delta_{1} M_{1}$, that is $1-M_{1} \geq \delta_{2}-\delta_{1} \delta_{2} M_{1}$, and hence
$M_{1} \leq \frac{1-\delta_{2}}{1-\delta_{1} \delta_{2}}=x_{1}^{*}$. Hence $M_{1}=\mathrm{x}_{1}{ }^{*}$ by $\left({ }^{*}\right)$.

Now, by Step 1 and substituting the result of M_{1} we have $m_{2} \geq 1-\delta_{1} M_{1}=\frac{1-\delta_{1}}{1-\delta_{1} \delta_{1}}$.
Hence $m_{2}=\mathrm{y}_{2}{ }^{*}$ by $\left({ }^{*}\right)$.

By Step 4 we have $1-M_{2} \geq \delta_{1} m_{1}$ (since both $1-M_{2} \geq \delta_{1} m_{1}$ and $1-M_{2} \geq d_{1}$) and by Step 3 we have $m_{1} \geq 1-\delta_{2} M_{2}$, that is $1-M_{2} \geq \delta_{1}-\delta_{1} \delta_{2} M_{2}$, and hence
$M_{2} \leq \frac{1-\delta_{1}}{1-\delta_{1} \delta_{2}}=y_{2}^{*}$. Hence $M_{2}=\mathrm{y}_{2}{ }^{*}$ by $\left({ }^{*}\right)$.

Now, by Step 3 and substituting the result of M_{2} we have $m_{1} \geq 1-\delta_{2} M_{2}=\frac{1-\delta_{2}}{1-\delta_{1} \delta_{1}}$. Hence $m_{1}=x_{1} *$ by $\left({ }^{*}\right)$.

The remaining of the proof is the same as in the lecture notes.

7.

First note that if we wish to model the bargaining model with hyperbolic time preferences, we must take in account that the agent today is different then the game tomorrow. However, the game is the identical, and has the same equilibria.
Furthermore, in the analysis we only use the relation between two consecutive periods (i.e. each type compares the payoffs with the payoffs of the following period, in case such period comes). Hence, we only care about the preference from a one period's difference point of view. This results in the next equilibrium:
$x^{*}=\left(\frac{1-\beta \delta}{1-(\beta \delta)^{2}}, \frac{\beta \delta(1-\beta \delta)}{1-(\beta \delta)^{2}}\right), y^{*}=\left(\frac{\beta \delta(1-\beta \delta)}{1-(\beta \delta)^{2}}, \frac{1-\beta \delta}{1-(\beta \delta)^{2}}\right)$
This equilibrium is identical to the one with the "regular" time preferences, where the δ is changed with $\beta \delta$, and is constant along all periods.
To see that this is an equilibrium, you can use the same arguments as in the class notes. To prove uniqueness, it is a little more complex....

