Solution for problem set 10

1. (Example of mixed and behavioral strategies)

At the initial history choose A and B each with probability $1 / 2$; at the second information set choose l.

2. (Mixed and behavioral strategies and imperfect recall)

If player 1 uses the mixed strategy that assigns probability $1 / 2$ to $l l$ and probability $1 / 2$ to $r r$ then she obtains the payoff of 1 with probability $1 / 2$ regardless of player 2 's strategy. If she uses a behavioral strategy that assigns probability p to l at the start of the game and probability q to l at her second information set then she obtains the payoff $p q t+$ $(1-p)(1-q)(1-t)$, where t is the probability with which player 2 chooses his left action. Thus by such a strategy she guarantees a payoff of only $\min \{p q,(1-p)(1-q)\}$, which is at most $1 / 4$ for any values of p and q.

3. (Splitting information sets)

Suppose that the information set I^{*} of player 1 in the game Γ_{2} is split into the two information sets I^{\prime} and $I^{\prime \prime}$ in Γ_{1}. Let σ^{*} be a pure strategy Nash equilibrium of Γ_{2} and define a profile σ^{\prime} of pure strategies in Γ_{1} by $\sigma_{i}^{\prime}=\sigma_{i}{ }^{*}$ for $i \neq 1, \sigma^{\prime}\left(I^{\prime}\right)=\sigma_{1}{ }^{\prime}\left(I^{\prime \prime}\right)=\sigma^{*}\left(I^{*}\right)$, and $\sigma^{\prime}{ }_{1}(I)=\sigma^{*}{ }_{1}(I)$ for every other information set I of player 1.

We claim that σ^{\prime} is a Nash equilibrium of Γ_{1}. Clearly the strategy σ_{j}^{\prime} of every player other than 1 is a best response to $\sigma^{\prime}{ }_{-j}$ in Γ_{1}. As for player 1, any pure strategy in Γ_{1} results in at most one of the information sets I^{\prime} and $I^{\prime \prime}$ being reached, so that given $\sigma^{\prime}{ }_{-1}$ any outcome that can be achieved by a pure strategy in Γ_{1} can be achieved by a pure strategy in Γ_{2}; thus player 1's strategy $\sigma^{\prime}{ }_{1}$ is a best response to $\sigma^{\prime}{ }_{-1}$.

If Γ_{2} contains moves of chance then the result does not hold: in the game

the unique Nash equilibrium is for the player to choose r. However, if the information set is split into two then the unique Nash equilibrium call for the player to choose l if chance chooses the left action and r if chance chooses the right action.

4. (Parlor game)

This (zerosum) extensive game is

The strategic form of this game is

	C	N
LH	0,0	$-5 / 2,5 / 2$
LL	$-1,1$	$-1,1$
HL	0,0	$3 / 2,-3 / 2$
HH	$1,-1$	0,0

First note that the strategies $L H$ and $L L$ are strictly dominated by $H H$ and $H L$ respectively. (i.e. if player 1 gets the high card she is better off not conceding.) Now, there is a unique Nash equilibrium, in which the mixed strategy of player 1 assigns probability $2 / 5$ to $H L$ and probability $3 / 5$ to $H H$ and player 2 concedes with probability $3 / 5$. (In behavioral strategies this equilibrium is: player 1 chooses H when her card is H and chooses H with probability $3 / 5$ and L with probability $2 / 5$ when her card is L; player 2 concedes with probability $3 / 5$.)

5. (absent-minded driver)

Was solved in class.

