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Exam: SOLUTION

Q1

Consider an economic agent with preferences 1 on the set of the bundles in a

K-commodity world. The agent holds a bundle x∗ and can consume any part of it;

however, he feels obliged to give to his friend (who holds the preference relation 2 ) a

bundle which will be at least as good for his friend as a fixed bundle y∗. Assume that

xk
∗  yk

∗ for all k. Both preference relations satisfy strong monotonicity, continuity and

strict convexity.

(1) State the agent’s problem and explain why a solution exists and is unique.

(2) Denote the bundle the agent consumes given x∗ as zx∗. The agent’s indirect

preferences on the space of initial bundles can be defined by a∗ ∗ b∗ if za∗ 1 zb∗.

Show that the indirect preferences are strictly convex and continuous.

(3) Show that if 1 is differentiable then so is ∗ .

Solution

(1) Agent 1 seeks a 1 -maximal bundle x from Bx∗  x | x∗ − x 2 y∗. By the

continuity of 2 , the set Bx∗ is closed and clearly bounded. Thus, since 1 is

continuous, a solution to the problem exists. The set Bx∗ is also convex: if

a,b ∈ Bx∗, then x∗ − a 2 y∗ and x∗ − b 2 y∗ and by the the convexity of 2 ,

x∗ − a  1 − x∗ − b  x∗ − a  1 − b 2 y∗ and a  1 − b ∈ Bx∗. By the

strict convexity of 1 , there cannot be two solutions to the agent’s problem.

(2) Continuity: By the maximum theorem, the function z is continuous. Suppose that

an
∗ ∗ bn

∗, an
∗ → a∗ and bn

∗ → b∗. Then, zan
∗ 1 zbn

∗, and therefore by the function z′s

continuity we have za∗ 1 zb∗ and thus a∗ ∗ b∗.

Convexity: Suppose that a ∗ b, that is za 1 zb. Consider a  1 − b, where

 ∈ 0,1. The bundle za  1 − zb ∈ Ba  1 − b since

a  1 − b − za  1 − zb  a − za  1 − b − zb 2 y∗, which is

because both a − za 2 y∗ and b − zb 2 y∗. Thus,



za  1 − b 1 za  1 − zb 1 zb. It follows that a  1 − b ∗ b.

(3) By the differentiability of 1 , there exists a vector v∗ such that d  v∗  0 iff d is an

improving direction at zx∗. We will show that v∗ is a vector of "local values" for the

relation ∗ as well.

(i) Assume zx∗  d 1 zx∗. Then zx∗  d 1 zx∗  d 1 zx∗ and thus

x∗  d ∗ x∗. Therefore, any improving direction of 1 is also an improving direction for

∗ .

(ii) Suppose that d is an improving direction of ∗ and dv ≤ 0. We can assume that

x∗  d ∗ x∗ and by continuity we can assume that dv  0. By (i), x∗ − d ∗ x∗. The two

"inequalities" contradict the strict convexity of ∗ .



Q2

A decision maker who compares vectors x1,x2 and y1,y2 in R
2 is implementing

the following procedure, denoted by Pv1,v2, where for i  1,2, vi is a strictly

increasing continuous function from the nonnegative numbers to the real numbers

satisfying vi0  0:

(1) if one of the vectors dominates the other he evaluates it being superior.

(2) if x1  y1 and y2  x2, he carries out a "cancellation" operation and then makes

the evaluation by comparing x1 − y1, 0 to 0,y2 − x2, which is accoplished by

comparing v1x1 − y1 with v2y2 − x2 (similarly, if x1  y1 and x2  y2, he bases his

preference on the comparison of v2x2 − y2 to v1y1 − x1).

(a) Verify that if vi
∗t  t (for both i), then the procedure Pv1∗,v2∗ induces a

preference relation on R
2 .

(b) Explain why Pv1,v2 does not necessarily lead to a transitive preference relation.

(c) Complete and prove the following proposition: If the procedure Pv1,v2 induces a

preference relation, then that preference relation is represented by....

Solution

(a) The preference relation represented by x1  x2 is the relation induced by the

procedure.

(b) Let v1Δ  Δ and v2Δ  Δ2. Consider x  2,0, y  0,2 and z  1,1. Then

y  x since 2 − 02  2 − 0, z  y and z  x.

(c) Claim: If Pv1,v2 induces a preference relation, then it can be represented by a

utility function of the form 1x1  2x2.

The claim follows from the result in Lecture 4 which states that any preference

relation on R
2 satisfying the following three properties can be represented by a utility

function of the form 1x1  2x2:

(i) Quasi-linearity in both dimensions: If x  y and v1x1 − y1  v2y2 − x2, then also

v1x1  ei1 − y1  ei1  v2y2  ei2 − x2  ei2, so that x  ei  y  ei.

Furthermore, if x dominates y, then adding  units of any component preserves

dominance.

(ii) Continuity: If x  y, then v1x1 − y1  v2y2 − x2 and by the continuity of v1 and v2

there exist neighborhoods of x and y such that the inequality still holds for all pairs in

the two neighborhoods. If x dominates y then proving the continuty is trivial.



(iii) Strict monotonicity.



Question 3

Discuss the attitude of an agent towards lotteries over a set of consequences

Z  a,b,c satisfying that he ranks a first and c last.

Consider any preference relation (on LZ) satisfying independence and continuity.

Obviously, each preference relation can be described by a single number v ∈ 0,1 by

attaching the numbers 1,v, 0 to the three alternatives. Denote this preference relation

by v .

For a set V ⊆ 0,1, define a choice correspondence CVA as the set of all p ∈ A

satisfying that there is no q ∈ A such that q v p for all v ∈ V.

Define the binary relation pD∗q if pa ≥ qa and pa  pb ≥ qa  qb with at

least one strict inequality. Consider the choice correspondence C defined by p ∈ CA

if there is no q ∈ A such that qD∗p. Show that C  CV for some set V.

Solution:

First note that Evp  pa  vpb  pa1 − v  vpa  pb .

Let V  0,1. We will show that CA  CVA for all A.

Suppose that p ∈ CA. Then, for no q ∈ A − p we have

qa ≥ pa

qa  qb ≥ pa  pb

(the condition that q ≠ p is equivalent to “with at least one strict inequality”.)

If there were q such that q v p for all v, then qa  vqb  pa  vpb for all

v ∈ 0,1, which implies that both:
 qa ≥ pa (take the limit of v → 0)
 qa  qb ≥ pa  pb (take the limit of v → 1).

Thus, p ∈ CVA.

Suppose that p ∉ CA. Then, there exists q such that qa ≥ pa and

qa  qb ≥ pa  pb, with at least one strict inequality. Then,

Evq  qa1 − v  vqa  qb  Evp  pa1 − v  vpa  pb for all

v ∈ 0,1, and therefore p ∉ CVA.


