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1. INTRODUCTION 

In this essay, we shall make an attempt to account for the frequently 
observed phenomenon of insurance companies offering discounts to clients 
who possess a favorable record of past claims. We shall argue that such 
discounts provide a mechanism which enables both insurer and insured to 
counteract the inefficiency which arises from moral hazard. 

Moral hazard is an example of economic interaction involving imperfect 
observability: The insurer cannot observe certain actions taken by the 
insured, actions which, however, have an effect upon the insurer’s payoff. 
Moreover, this inability of the insurer to observe the actions of the insured 
creates an incentive for the insured, once insurance is purchased. to act in a 
manner that is liable to enhance the likelihood of a large claim being filed. 
As a result, the scope for a mutually advantageous interaction becomes 
severely hampered and, in particular, fully efficient interaction becomes 
impossible because efficient contracts are not enforceable. 

If interaction takes the form of an isolated contract, then any attempt to 
correct the inefficiency caused by moral hazard must take place through the 
specification of what rewards or penalties the insured person would incur for 
any given level of the commonly observable variables. Much of the literature 
on moral hazard to date has concentrated on the question of how to design a 
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scheme of such rewards and penalties so that the inefficiency brought about 
by moral hazard might be aileviated. (See, for example, Holmstrom 16 ]. 
Pauly [9], and Shave11 [ 121.) Indeed, Mirrlees has shown [8] that, under 
certain conditions, a scheme of rewards and penalties can be designed under 
which there exist enforceable contracts such that the loss of efficiency from 
moral hazard is arbitrarily small. To obtain this result. Mirrlees must allow 
for penalties which cause the insured person to suffer a negative utility of 
arbitrarily large magnitude. In general, sophisticated schemes of rewards and 
penalties will serve to reduce the inefficiency brought about by moral hazard, 
but they cannot serve to eliminate the inefficiency altogether. 

Here, we shall de-emphasize the role of rewards and penalties and concen- 
trate instead on temporal structure. Indeed, in what follows, fulllindemnity 
insurance contracts will be assumed to be offered at a prespecilied price, 
which makes the schedule of rewards and penalties incurred by the insured 
completely inflexible. The values taken by the commonly observed variables 
in any given period do not, in any way, affect the insured person’s rewards in 
that period. On the other hand, rewards do change over time. in that the 
price of a given insurance contract may be different in different periods. In 
particular, the insurer will be allowed to adjust the price of the contract 
being offered in accordance with the insured’s past record. It will be our 
purpose, in the sequel, to show that with insurance rates having this kind of 
temporal flexibility, it becomes possible for insurer and insured to reach an 
enforceable long-term contract that eliminates the inefficiency caused by 
moral hazard. This result holds regardless of the shape of the insured’s utility 
function, as long as this function displays risk aversion. In particular, this 
function need not have the unboundedness property required for Mirrlees’s 
result mentioned above. 

The present paper is cast entirely in terms of a simple insurance problem. 
However, the discussion is clearly applicable, with the appropriate changes 
of interpretation, to a whole host of principal-agent problems in which the 
principal is unable to observe some of the actions taken by the agent. In two 
recent papers, Radner [ IO] and Rubinstein [ 111 have studied the intertem- 
poral structure of certain principal-agent relationships along lines similar to 
those which we intend to pursue in the present essay. All three studies view 
the principal as being faced with a problem of statistical inference involving 
a delicate balance between two opposing types of errors. There are, however, 
some basic differences separating the three studies. In [lo], the principal’s 
optimal strategy lacks a certain “perfectness” property which the optimal 
strategy of the insurer in the present study will have. In [ 111, the agent’s 
actions are observable and only his intentions are not, which is not the case 
in our insurance problem. These contrasts and others will be discussed in 
Section 5. 
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2. THE ISOLATED CONTRACT 

Consider an asset which is susceptible to damage, with the extent of the 
damage depending jointly on the cure exercised by the owner and on random 
factors. Let the value of the undamaged asset be fixed at unity and assume 
that damage takes the form of a detraction from this fixed value. The extent 
of the damage, once it has occurred, is universally observable and unam- 
biguously measurable. 

The owner of the asset considers the possibility of insuring it against 
damage. He can purchase insurance from a price-setting agency, who will be 
called “the insurer” for short. The insurer offers the owner a single contract 
on a “take it or leave it” basis: In exchange for a premium rc, the insurer 
undertakes to indemnify the owner to the full extent of the damage. (Thus, 
contracts offering partial coverage are being ruled out by assumption.) The 
insurer’s action is therefore described completely in terms of selecting a 
nonnegative real number Z, the premium for the contract being offered. 
Letting the premium be measured in the same units as the value of the asset, 
we observe that only values of rt lying in the unit interval make sense, so the 
action of the insurer is restricted at the outset to satisfy 7c E [0, 1 1. 

Given that the insurer offers a contract with premium rr, the owner of the 
asset has two decisions to make in response: He must decide whether or not 
to accept the offer, and he must determine the level of damage-preventing 
cure that he wishes to exercise. Now, care is costly and we shall think of a 
given level of care in terms of the costs incurred in exercising it, measured in 
units of value. The action to be taken by the owner of the asset will therefore 
be described by a pair (b, c), with b taking the values 0 or 1 and with c 
taking nonnegative real values. Specifically, (0, c) will stand for the decision 
to decline the insurer’s offer and spend c on care and (1, c) will stand for the 
decision to accept the insurer’s offer and spend c on care. It is clear that 
values of c satisfying c > 1 do not make sense, so the a priori restrictions on 
the owner’s action (b, c) are given by b E {O, 1 } and c E 10, 1 1. 

At any level of care, the actual extent of damage to the asset is a random 
variable. To formalize this, we shall say that after the insurer picks n and 
after the owner responds with a choice of (b, c), a state of nature o is 
selected from some sample space 0, with a commonly known probability 
measure, to be denoted ,u. The values taken on by c and w jointly determine 
the extent of the damage that will have been caused to the asset. Specifically, 
let D(c, w) be the damage to the asset if its owner spends c on care and if the 
state of nature is o, so that D is a function defined on [O, 1 ] x R with values 
in (0, 11. Referring to D as the dumagefuncrion, we shall assume that D(c, .) 
is p-measurable for all c E [0, l] and that D(., o) is continuous for all 
w E 8. Also, for any given c E [O, 11, we shall let D(c) be the random 
variable describing the damage to the asset at a level of care c, i.e., 
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D(c)(o) = D(c, w). Finally, expected damage at a given level of care will be 
denoted 6(e), so that 

D(c) = ED(c) = i, D(c, 0) d/f(w) 

for all c E (0, I]. 
The damage function D will be assumed to satisfy the following additional 

assumptions: 

(i) The expected damage function fi is decreasing and convex. 

(ii) The inequality 

D(0) > D(c) + c 

holds for some c > 0. 

The first of these assumptions states that, on the average, care does indeed 
reduce damage, but at a nonincreasing rate. The second assumption states 
that care is economically meaningful in the sense that there exists some c > 0 
such that, by spending an amount c on care, it is possible to reduce expected 
damage by more than c. 

Let us define the socially optimal’ levels of care as those values of c for 
which c + D(c) is at its minimum. Assumption (ii) above says that the care 
level c = 0 is not socially optimal. 

Now suppose that all three choices have been made: The insurer has 
picked rc, the owner of the asset has picked (b, c), and nature has picked w. 
This will determine the monetary proceeds (in units of value) of the two 
parties as follows: 

insurer’s proceeds = 0, if b = 0, 

= 71- D(c, w), if b= 1; 

owner’s proceeds = -c - D(c, o), if b = 0, 

= -71--C, if b=l. 

Let us now assume that the insurer’s payoff is given simply by the expected 
value of monetary proceeds. The owner of the asset, on the other hand, will 
be assumed to calculate expected utility and to be risk averse. (Without risk 
aversion, there will be no motivation to insure.) When the owner’s monetary 

I It is only appropriate to interpret these levels as being “socially optimal” if it is thought 
somehow that society as a whole is risk neutral. 
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proceeds are given by a random variable z, his payoff, to be written U(z), 
will be given by 

w> = Jw) = i,, 4+)) 4+), 

where u, a real function defined for all real values, is assumed to be 
increasing and concave. Under these assumptions, the final payoffs of the 
two agents, given the choices of 71 and (b, c), are as follows: 

insurer’s payoff = 0 if b = 0, 

= 71 - D(c), if b= 1; 

owner’s payoff = U(+ - D(c)), if b = 0, 

= z&z - c), if b=l. 

If, for some reason, insurance is not purchased (so that b = 0), then the 
owner of the asset must set the cost of care at a level, to be denoted C, for 
which 

max U(-c - D(c)) o<c< I 

is attained. For convenience, let us define 6 by writing 

0 = U(-c - D(F)), 

so that I? is the best payoff which the owner of the asset can secure under 
autarky, without interacting with anyone. 

Now, the insurer cannot observe the level of care c, nor the state of nature 
w. He cannot plan to separate out the effects of c and w when he agrees to 
cover any damage that might be caused to the asset. In our model, there is 
no way for the insurer to support a claim of negligence against the owner of 
the asset, nor to vary the premium in accordance with observed damage. 
Knowing this, the owner of the asset will set the level of care at c = 0 
whenever he decides to buy insurance (that is, if he sets b = 1, then he will 
set c = 0). This is because care is costly and insurance provides complete 
coverage. Therefore, if the insurer picks a premium 71, then, under moral 
hazard, the payoffs to the two agents come out as follows: 

insurer’s payoff = 0, if b = 0, 

= 7L - D(O), if b= 1; 

owner’s payoff = 0, if b = 0, 

= u(--71), if b=l. 
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At a given premium 71, the owner will choose to insure the asset (i.e., he will 
set b = 1) if, and only if, the inequality u(-rc) > 0 is satisfied. This 
inequality u(-n) > 0 is therefore a necessary and sufftcient condition for the 
existence of an active insurance market under moral hazard. In order to be 
able to compare this situation with what would happen if moral hazard were 
absent, we find it useful to define two auxiliary functions, to be denoted U* 
and U+, in the following manner: Let x be any real number. Then, 

u*(x) = o<y”,“<, u(-c - n) subject to 7c - 6(c) > x 
x1, 

and 

U*(x) = u(-D(0) -x). 

The function U* describes the utility-possibility frontier that would be 
accessible through the market if moral hazard were absent, while U* 
describes the actual utility-possibility frontier, under moral hazard. Suppose 
that the insurer’s payoff (i.e., excess of premium earned over expected 
payments on claims) were fixed at a given level, x. In the absence of moral 
hazard, the insurer is able to observe the level of care c and to charge 
different premiums for different values of c. And since the insurer’s payoff is 
fixed at x, the premium that would have to be charged when the owner sets 
care at the level c is given by D(c) +x. In response to this schedule of 
insurance premiums, the owner of the asset would select c in [0, 1 ] precisely 
as described in the maximization problem defining U*(x). Note that the level 
of care selected by the owner in this situation is, in fact, a socially optima1 
level (in the sense discussed above). Now, in the presence of moral hazard. 
the insurer knows that the owner will set care at c = 0, so the premium that 
he must charge to earn a payoff of size x is given by D(O) + x. The owner, if 
he chases to insure, winds up with a payoff of u(-D(O) - X) = U,(x). 

It follows from our assumptions on the utility function u that the functions 
U* and U, are both decreasing and concave. Also, given the properties of 
the damage function D, we note that the inequality U*(x) > U,(x) is true for 
all values of x. This inequality gives the sense in which moral hazard causes 
ineficiency: The utility-possibility frontier in the case where moral hazard is 
absent lies uniformly above the corresponding frontier for the case where 
moral hazard is present. 

By refusing to transact (or, equivalently, by charging a premium X= l), 
the insurer obtains an assured payoff of size 0. Similarly, the owner of the 
asset can obtain an assured payoff of size I? without recourse to insurance of 
any kind. Thus, the pair (0, 0) describes the payoffs to the two agents under 
autarky. It should be noted, furthermore, that the inequality o< U*(O) must 

642/30/l ~6 
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OWNER’S 
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INSURER’S 
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FIG. 1. Here t? > U*(O). 

always hold. (This follows immediately from Jensen’s inequality.) The 
meaning of this inequality is simply that, in the absence of moral hazard, 
risk averse individuals find actuarially fair insurance attractive. Now, 
regarding the relationship between i? and U,(O), we note that the inequalities 
U > U, (0) and 0 < U, (0) are both possible. If the former inequality holds- 
U> U,(O)---then moral hazard has the effect of foreclosing insurance tran- 
sactions altogether. The two agents end up at the point of autarky, with 
payoffs (0, I!?). If the latter inequality holds--U < U,(O)--then some 
mutually advantageous transactions exist even under moral hazard, but such 
transactions are very much restricted in comparison with the transactions 
that would take place if moral hazard were eliminated. These two cases are 
depicted in Figs. 1 and 2, respectively. In both figures, the shaded areas 
represent individually rational outcomes, i.e., pairs of payoffs giving each 
agent at least what the agent could get on his own. Because of moral hazard, 
many of these outcomes are not attainable, in the sense that contracts 
leading to these outcomes are not enforceable. Under moral hazard, only the 
outcomes lying in the heavily shaded area (and, in Fig. 1, only the outcome 
(0, U) itself) are both attainable and individually rational. 

OWNER’S 
PAYOFF 

INSURER’S 
PAYOFF 

FIG. 2. Here 0 < U,(O). 
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3. REPEATED CONTRACTS 

Now let us imagine a situation where the interaction described in the 
previous section recurs time and again. Both insurer and insured know, 
before agreeing on anything, that they will be meeting each other periodically 
and that there will be an opportunity for concluding a separate contract in 
each period. Once again, we shall think of the insurer as offering a price for 
insurance and of the insured as responding to the insurer’s offer. However, 
both the insurer’s offer and the insured’s response will now take the form of 
long-term strategies, specifying how each party will act at any given date, 
depending on the information that will be available to the party at that date. 
Interaction will be assumed to take place in the following order: The insurer 
starts out by announcing a strategy of insurance sales. The insured responds 
by selecting a strategy of insurance purchases and levels of care. After both 
parties have picked their strategies, “history” begins to evolve through the 
unfolding of a sequence of random events. 

We have chosen not to model the interaction between insurer and insured 
in terms of a full-fledged supergame, because we felt that the kind of 
Stackelberg view proposed in the previous paragraph-with one player 
announcing a strategy and the opponent picking a best response-is more 
suitable for our problem. In particular, we do not allow the insurer ever to 
take actions which deviate from his announced strategy, so that it is not 
necessary for us to consider what the insured’s response to such deviations 
might be and whether or not it is possible for the insured to force the insurer 
to abide by his own announcement. We shall return to this question briefly 
in Section 5. 

As before, we think of the insured as owning an asset of unit value. The 
number D(c, w) will, once again, stand for the extent of the damage to the 
asset in any period, given that the owner spends an amount c (c E (0, I]) on 
care and that the state of nature is w (w E ~2). Damage takes the form of a 
detraction from the value of the asset, and the damage function D is assumed 
to be the same in all periods and to satisfy all the assumptions introduced in 
the previous section. We assume also that, at the beginning of each period, 
the insurable asset is restored to unit value, regardless of any damage which 
it may have suffered in the preceding period, and regardless of whether or 
not it had been insured in the preceding period. We do not inquire into the 
source of the funds that the owner of the asset must put forth in order to pay 
insurance premiums or otherwise to restore the asset to its original value. As 
in the previous section, the only insurance contracts to be considered are 
full-indemnity contracts where, in return for a premium which is independent 
of observed damage, the insurer undertakes to cover all losses. Finally, 
letting w’ be the state of nature in period t, we assume that {w’, w’,...} is a 
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sequence of independent observations from a sample space a, with the 
probability law given in each period by the same probability measure p. 

Now we must state precisely what information the two parties will have in 
any given period. Let us consider the insurer first. At the end of any given 
period, the insurer will have obtained answers to the following two questions: 
First, has the asset been insured in this period? Second, ifthe asset has been 
insured, what was the size of the claim filed by the owner, if any. (By our 
assumption, if insurance is purchased, then the owner always submits a 
claim for the full extent of the damage, the latter being commonly obser- 
vable.) At any given moment of time, the insurer’s information will therefore 
consist of a history of answers to these two questions. If we let the insurer’s 
one-period information set be denoted I,, then we can write 

1, = {(O,O)}U (1) x 10, 11, 

i.e., I, consists of the pair (0,O) and of all the pairs of the form (1, d), with 
d E [0, 11. Here, (0,O) means “asset has not been insured” and (1, d) means 
“asset has been insured and a claim of size d has been filed.” If 8, E Z, , then 
we shall write 

with 19, E (0, 1 } telling whether or not insurance has been bought and 
8, E [0, 1 ] telling, in case insurance has been bought, how much damage has 
been claimed. For t = 1, 2 ,..., let Z: be the t-fold Cartesian product of I, with 
itself, i.e., the set of all t-histories of pairs of the form (8,, 0,). Under the 
assumption of perfect memory, Z: describes all the states of information in 
which the insurer can possibly be at the end of the tth period. We shall refer 
to Z: as the insurer’s information set in period t + 1. 

As for the insured, in the course of any given period he too obtains 
answers to two questions: First, what was the premium being charged by the 
insurer in this period? Second, what was the extent of the damage to the 
asset in this period? One would think, therefore, that the owner’s information 
at any given moment is a history of answers to these two questions. 
However, as has already been asserted above, our framework here differs 
from that of a full-fledged supergame in that the insurer is assumed never to 
deviate from the initially announced strategy. Consequently, the owner of the 
asset is always in a position to compute the premium being charged in any 
given period from the insurer’s pre-announced strategy, and there is no need 
to count this premium as part of the information gathered by the owner in 
the course of the period. Thus, the one-period information set of the owner of 
the asset is given simply by 

1, = [O, 11, 
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with d E I, standing for “damage this period has been of size d.” As before, 
we let Z: be the t-fold Cartesian product of I, with itself, i.e., the set of all 
possible t-histories of damage to the asset. Then Z: is the owner’s information 
set in period t + 1. 

What are the actions to be taken by the two parties? The insurer, for his 
part, knows that in period t he will have to pick a premium rt that he will 
charge for insuring the asset on a full-indemnity basis. This premium will be 
some real number lying in the unit interval. Writing P for the set of actions 
open to the insurer in any given period, we therefore have 

P= [O, I]. 

As for the owner of the asset, his action in period t will be twofold: First, he 
will either insure the asset or refrain from doing so. Second, he will pick an 
amount c to be spent on damage-preventing care. Therefore, we can write the 
set of actions open to the owner of the asset in any given period as the 
product B x C, where 

B = (0, 11, c= 10, l] 

so that (0, c) will stand for the action “do not insure and spend c on care” 
and (1, c) will stand for “insure and spend c on care.” 

It is now possible to define the notion of a strategy for either party. 
Intuitively, a strategy is a rule which maps information into action. 
Formally, we have: 

A strategy for the insurer is a sequence of the form f = (f’,f’,...) such 
that f’ E P and such that, for t = 1, 2,..., f”’ is a Borel-measurable’ 
function defined on Z: and having values in P. 

Similarly, a struteg-v for the owner of the asset is a sequence of the form 
g = (g’,g* . . . . ), such that g’ E B x C and such that, for t = I,2 ,..., g” I is a 
Bore]-measurable function defined on Zi with values in B x C. For each I, g’ 
can be decomposed in a natural manner by writing g’ = (g;, g:.). 

Let S, and S, be the sets of all strategies for the insurer and the owner, 
respectively, and define S = S, x S,. Given a pair (f, g) E S, let 0:(J g) and 
8:(f, g) be the prospective (or anticipated) state of information of the insurer 
and the owner, respectively, at the end of period t, on the assumption that the 
strategies f and g will be followed. Then S{(f,g) and f3:(Jg) are random 
variables which depend on how the various random events occurring up to 
period t will have turned out and which take their values, respectively, in Z: 
and I:. Formally, S:( f, g) and @(f, g) must be defined inductively, as 
follows: Let (Jg) E S, with f = (J’,f* . ...) and g = (g’,g* ,... ). We shall 

’ Borel-measurability is required for f’* ’ and g“ ’ below in order to ensure that random 
variables appearing below are well defined. 
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write 19: = ((8;, 8;) ,..., (Sk, 6;)). For t = 1, 2 . . . . we may now define @(f, g) 
and ei(f, g) in the following manner: First, we write 

%U g) = d T %(.A g) = s:, x qg;. w’>+ 

where x denotes multiplication, and 

G(.L g) = qg;, w’). 

Then, for t = 2, 3 ,..., we have 

@‘,(S, s> = da(C’(f, g)> 

eb(f, d = gk(e:- ‘CL g)) x as46 7.~ g), 4), 

and 

In all of the above, W’ stands for the state of nature observed in period t.j 
For a given pair of strategies (fig) E S, the prospective (or anticipated) 

actions of the insurer and the owner of the asset in period t are given, respec- 
tively, by f’(e:-‘(A g)) and g’(8:-‘(f,g))-and by f’ and g’ in the case 
t = 1. These two quantities are random variables taking values, respectively, 
in the insurer’s action space P and in the owner’s action space B X C. 
Having noted this, it is now possible to go ahead and write down the 
prospective (or anticipated) single-period payoffs of the parties. Let h’, (f. g) 
be the insurer’s prospective random payoff in period t and let h:(S, g) be the 
owner’s prospective random payoff in period-t, both calculated for the given 
choice of strategies (f, g) E S. Then, we have, except for an obvious 
modification when t = 1, that 

hi =O, if g;(e:- ‘) = 0. 

=ff(ey) - qg;(e:-I), d), if g;(e;-‘)= 1; 

and 

h: = +g;(e:- 1) - qgge:- f ), at)), if g;(e;- ‘) = 0, 

= a(-gge:- 1) -j-ye:- I)), if g;(e:-1) = 1, 

where, for typographical reasons, we have suppressed the arguments (L g) 
throughout the equations. Here h:(f,g) and h:(f.g) are random variables 

’ Note that f?,(f, g) and Si(J, g) actually do not depend on J However, we have chosen to 
retain the symbol f in our notation. 
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whose expected values are the respective single-period payoffs of the two 
parties, as defined in the previous section. 

Both the insurer and the owner of the asset are assumed to be interested in 
the long-run behavior of the payoffs which they receive. In particular, we 
shall assume that both parties evaluate infinite streams of prospective 
random payoffs by attempting to calculate the long-run arithmetic average 
along these streams. Consider a pair of strategies (f, g) E S. We shall say 
that the pair (J;g) is averageable if there exist two real numbers, to be 
denoted H,(S, g) and H2(f, g), such that, as T-+ 00, 

’ 4 hi(f,g)--+H,(f,g) as. 
7 ,=I 

and 

The subset of S consisting of all averageable pairs of strategies will be 
denoted S. Note that the definition of averageability requires convergence 
almost surely, whereas the structure of the problem indicates that mean 
convergence should suffice. However, it will turn out that even the more 
restricted class of strategies ,!? is broad enough to give us our results. 

At this point we must write down, in a precise way, what is to be meant 
by a pair of strategies (x g) E S being enforceable. Recall the structure of 
interaction ‘being assumed here, namely the insurer moving first, followed by 
the owner of the asset picking a response. Therefore, it is reasonable to 
regard a pair (f: g) E S as enforceable if g is, in a suitably defined sense. a 
best response on the part of the owner to an offer of f’on the part of the 
insurer. This leads to the following definition: 

Let (xi) E 3. We shall say that g is a best response toTif there does not 
exist a g E S, having the property that, for some E > 0, the event 

for infinitely many values of T 

has positive probability. In other words, we assume that a sufficient cause 
for the owner of the asset to reject g as a possible response toywould be the 
finding of a strategy g E S, for which 

has positive probability. 
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Let (x 3 E 2. We shall say that the insurer can enforce ,@ by announcing~ 
(or, more concisely, that the pair (x gJ is enforceable) if g is a best response 
to j? 

It is our objective in the present essay to see whether, by adopting a 
suitable “no-claims discounts” strategy, the insurer can enforce upon the 
owner a strategy under which the latter would always exercise the proper 
amount of care, thus wiping out the ill-effects of moral hazard. So, we must 
now turn to a precise definition of what will be meant by a “no-claims 
discounts” strategy for the insurer. Basically, an insurer offering no-claims 
discounts is saying this to his potential clients: “Before each renewal of your 
policy, we shall look at your long-run record with us. If this record looks 
reasonable, then your premium for renewal will be low. However, if your 
record should be unreasonable, then your premium will be high.” A client’s 
record with an insurance company is clearly the history of claims having 
been filed by this client in the past. This record may be thought of as 
“reasonable” if, on average, claims tiled in the past have not significantly 
exceeded the level of claims that would be expected if it were known that the 
proper amount of care was indeed being exercised by the client. Formally, 
we propose the following definition: 

A strategy fE S, for the insurer,f= (f’,f*,...), will be referred to as a no- 
claims discounts strategy (or as an NCD strategy, for short) if it has the 
following form: There exist three numbers, c*, rr*, and TC*, satisfying 
O<c,< 1 and O<rc++<7r*< 1, such that 

and, for t = 1, 2 ,..., 

f”‘(e{)=n*, if 2 f!?S,/N(t) < D(c,) + a’(” 
,~ I 

zz 71*, otherwise, 

where (a’) is a sequence of nonnegative real numbers and where N(t) is 
defined by N(t) = ,Z=, 0: for t = 1, 2 ,... . 

Recall that 0: is 1 or 0 according as the asset has or has not been insured 
in period s and that 8”, is the size of the claim filed in period s (with OS, = 0 
implying OS, = 0). Accordingly, the ratio xi= i &/N(t) is the average size of 
the claims tiled by the owner of the asset in the first t periods. (Here, O/O 
must be interpreted as 0.) Under an NCD strategy, the insurer will, in period 
t + 1, charge a low premium rt* if the average size of the claims filed up to 
that period falls below the expected damage to the asset, given the level of 
care c* (where c.+ is interpreted as the level of care deemed proper by the 
insurer) plus some margin of error a N(f) The sequence (a’) is introduced . 
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here in order to allow the insurer to “go easy” on his client, by agreeing that 
if the average size of the claims filed in the past is only slightly above &c,), 
then this would still qualify as “reasonable” and the premium to be charged 
on this kind of record would be at the low rate rr.+. Thus, an insurer who 
adopts an NCD strategy must announce four things for his strategy to be 
completely specified, namely, c.+, rc.+, 7c*, and the “forgiveness” sequence 

la’). 
Now, at long last, we are ready to state 

THEOREM 1. Let c0 E [O. 1 ] and x,, E [ 0, 1 ] be such that 

(1) 7r0 - D(c,) > 0 4 and U(-c, - 7r0) > 0. 

Then, there exists a pair (x gy E $ having the following properties: 

(2) f is an NCD strateg-y; 

(3) f&(X s3 = 710 - &co), f&(.x S) = UC-C,, - “0); 
(4) Kg) is enforceable. 

In order to interpret what is being asserted here, note first that the 
inequalities in Condition (1) are equivalent to the statement that if, in an 
isolated contract, the insurer were to pick the action rco and the owner were 
pick the action (1, co), then the outcome would yield, for each party, a payoff 
at least as high as what the party could get on its own. That is, Condition 
(1) characterizes the individually rational outcomes for a single contract. 
(See Figs. 1 and 2, where these outcomes form the shaded areas.) Thus, what 
Theorem 1 states is that, in the long run, the insurer can enforce any 
individually rational outcome, by adopting a suitable NCD strategy. More 
precisely, given any individually rational outcome, the insurer has an NCD 
strategy f which enforces a response g, such that the pair (xg) is 
averageable and yields average payoffs tending to the payoffs in the given 
outcome. As might be expected, the strategy &-a best response for the 
owner to the insurer’s NCD strategy &consists of picking the pair (1, co) in 
all periods: The owner always insures his asset and always exercises the 
proper amount of care. 

Theorem 1 tells us, in particular, that all the outcomes which are fully 
Pareto optimal (and individually rational) are enforceable through NCD 
strategies. In other words, there exists a family of NCD strategies for the 
insurer which elicit a socially optimal level of care (see Section 2) from the 
owner of the asset in every period. These are the strategies which correspond, 
via Theorem 1, to the fully Pareto optimal outcomes for a single contract. 

Now, the converse of Theorem 1 would read as follows: Let (fl S) E 3 be 

’ The theorem remains true also when this inequality is dropped. 
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an averageable pair of strategies having the following three properties: (i)$is 
an NCD strategy; (ii) The pair (3 g> is enforceable; (iii) H,(x g’) >, 0. Then, 
the pair Vf,(j;i), H2(j:t)) is an individually rational outcome for a single 
contract. Is this converse assertion true? The answer is yes, and it follows 
readily from the following more general proposition: 

THEOREM 2. Let (x g3 E ,!? be an averageable pair of strategies. Then, 
the inequality 

holds, with U* as defined in Section 2, that is, 

U*(H,(f, g)) = O<y;, 1 u(-c - x) subject to 7r- B(c) > H,(x g7. 
..1\ 

Theorem 2 has some straightforward implications. Suppose, for example, 
that the insurer is a monopolist whose objective is to maximize the long-run 
average of his own net earnings. Then, it follows from Theorem 2 that the 
best the insurer can do is find the pair (c,, rr,,) which solves the problem 

max n-D(c) 
o<c,n< 1 

subject to u(-c - rr) > 0, 

and then pick an NCD strategy which enforces the single period outcome 
(no -@co), u(-co - rco)) in the long run. On the other hand, suppose (as in 
the theory of optimal taxation) that the insurer is a public agency whose 
objective is to maximize the long-run average utility of the owner of the 
asset, given only that he, the insurer, shall not make a loss. (This is the 
framework being considered by Mirrlees [8].) Then, it follows from 
Theorem 2 that the best he can do is find the pair (co, rco) which solves the 
problem 

max u(-c - n) 
O<C,K< I 

subject to TL - D(c) > 0, 

and then pick an NCD strategy which enforces the single period outcome 
(0, u(-co - no)) in the long run. In both cases, it follows from Theorem 1 
that the insurer can do what is being asserted and it follows from Theorem 2 
that he can do no better. 

4. PROOFS 

In order to prove Theorems 1 and 2, we shall have to use several 
assertions from probability theory. We turn first to’ a statement of these 
assertions. 
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ASSERTION A (Law of the Iterated Logarithm). Let (Xl } be a sequence 
of independent identically distributed random variables with finite means p 
and finite variances (1’. Then, for every ,J > 1, almost surely, 

lim;up ,U - + i X’ (2Aa* log log T/T)“’ < 1. 
t-1 Ii 1 

Proof See, e.g., Breiman [2, p. 2911. 

ASSERTION B. Let K be a real number. Let {Xl] be a sequence of 
random variables. Let x’ denote a value of X’ and, for every x’,..., x’, let 
(l/T) CT=, x’ be denoted XT. If XT > K, E(xTt ’ 1 xl,..., x’) <K. Then, 
almost surely, lim sup XT < K. 

Proof See Blackwell [ 1, Theorem 11. 

ASSERTION C (Strong Law of Large Numbers). Let {X’} be a uniformly 
bounded sequence of random variables. Then, almost surelv, 

$5 [X’-E(X’IX’,...,X’-‘)]+O. 
f- 1 

Proof See, e.g., Loeve [7]. 

ASSERTION D. Let X be a random variable bounded by some real 
number B. Let A be an event with Pr(A) = 1 - E. Then 

IE(X)-E(XIA)I<2Bs/(l-s). 

Proof This result is immediate. 

ASSERTION E (Consequence of Egoroffs Theorem). Let (X’) be a 
sequence of random vectors with values in R”. Let A c R” be a closed set 
with the property that p(X’, A) + 0 a.s., where p denotes Euclidean distance. 
Then, for every 6 > 0, there exists an event E with Pr(E) > 1 - 6 such that 
p(X’, A) + 0 uniformly on E. 

Proof: See, e.g., Halmos 14, p. 881. 

ASSERTION F. Let A c R” be a convex compact set, and let {X’} be a 
sequence of random vectors with values in R” such that 
E(X’ / Xl,..., Xl-‘) E A for all t. Let (l/T) CT=, X’ be denoted XT. Then 
p(x’, A) + 0 as.. where p is Euclidean distance. 

Proof: This follows from Assertion C, together with the convexity of A. 
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ASSERTION G. Let {Xl} be a sequence of bounded random variables 
such that, for all t and for all values x’,..., x’-’ taken on by Xl,..., X” . 
E(X’ 1 xl,..., XI-‘) < i?. Let {6’} be a sequence of random variables such that 
6’ = 0 or 1 and 6’ is measurable in the sigma-field generated by Xl,..., X”. 
Then 

Prob ilimsup i~~6’Xt)/(~,S’j~~ort~,6’<mj=1. 

Proof. See Freedman [3]. 

We turn now to the proofs of the two theorems stated in Section 3. 

Proof of Theorem 1. For convenience, let u(-c, - n,) be denoted U,. To 
specify the insurer’s NCD strategy f select rr*, rr*, c*, and a sequence 
(a~)~=, as follows: rr* = rr,,, 7c* = 1. c* = c,, and 

aT = V(2k7* log log t)/t, 

where A > 1 and o* = Var D(c,). Let g’ be given by g” = (1, c,) for all t, i.e., 
in every period, the owner insures the asset and exercises care at the level c,,. 
We must show that the pair (J s”> satisfies Conditions (3) and (4) in the 
statement of Theorem 1. To see that Condition (3) is satisfied, note that 
(D(c,, w’)} is a sequence of independent identically distributed random 
variables. By Assertion A, we have, a.s., that for all but finitely many T 

1 ‘, 
\ WC,, 02’) -D(q) < al. 

-F tr, 

Since 19l, = 1, we have CT-, 8’, = T and so, almost surely, it is true for all 
but finitely many values of T that 

Therefore. by the construction of x we have, almost surely, that f” = 71*, 
except for finitely many values of T. Now, using Assertion C, we get 

+ $ h:(.hfb r* - D(c,) = 7co - D(c,) a.s. 
I- I 

and 

’ T’ hi(f73 + u(-c* - x*) = U, 
r ;r, 

a.s. 
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Next, we must show that Condition (4) is satisfied, i.e., that f is a best 
response to $ Assume, contrary to Condition (4), that there exists a g E S2 
such that 

Pr(U’ > U, + F, for infinitely many values of 7) > sO, 

where 6’ = (l/T) C:=, h:(x g). By Assertion G, we may assume, without 
loss of generality, that gi = 1 for all t. Let dT be the average claim in the 
first T periods, when the owner plays g. That is, 

dT = f ;; e&(x g). 
,?I 

Define two real-valued functions d, and d* as follows: 

d,(u) = @n, - u-‘(u)) and d*(u) = D(l - U-‘(V)). 

Here d,(u) and d*(v) are the levels of expected damage to the asset which 
give the owner a utility level u when the insurance premium is z0 or 1 (=x*), 
respectively. The domains of d* and d* are closed intervals and their 
common range is contained in [0, 11. The assumptions on u and D imply 
that both d, and d* are increasing convex functions. Furthermore, the graph 
of d, must lie to the right of the graph of d*. (That is, 
(d,)-’ (y) > (d*)-’ (y) for all y in the common range of d, and d*.) 
Moreover, the choice of TC* = 1 implies that (d*)-’ (y) < 0 for all y in the 
range of d*. All these properties are summarized in Fig. 3. 

It follows from Assertion D that we can select El, 0 < 6 < E,,, to be so small 
that for every c and for every t, El-c - D(c, w’) 1 ,!?I < 0 + (~,,/4). Let A be 
the convex hull of the graphs of d, and d*. It follows from Assertion F that 
p[oJT,dTL~]+O, a.s., where p denotes Euclidean distance. From Asser- 

OWNER’S 
PAY OFF 

I 1 INSURER’S 

ii uo - PAYOFF 

FIGURE 3. 
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tion E we now obtain that for every E^ > 0 there exists an event ,?? with 
Pr@) > 1 - 8 and there exists T such that for every t > T, p[ (u’, d’). A ] is 
arbitrarily small. Since d, is a convex function, we can get this distance to 
be small enough to assure that the inequality 

is satisfied for t > T. 

0’ - (cl*)-’ (Z) < Eo/2 

To establish the desired contradiction, it remains to be shown that 

limsup 0’ < U, + sO, a.s. on I?. 

Note that a’ + 0 and therefore there exists a T,, such that, for every t > T,,, 
we have 

d, + a’ < d*(U, + fe,), 

where d, = d,(U,). To complete the proof, we now make use of Assertion B. 
Assume 0’ > U, + (e0/4), and t > max{ T,,, T}. From the choice of T and 
TO, d’ > d,(U, + (e,,/4)) > d, + a’. Thus, under strategy fl a high premium 
7c* = 1 is being charged. Therefore E[U’+’ 1 U’,..., U’, i] < 
max, E[-c - D(c, w’)l I?‘] < 0 + (co/4) < U,, + (3&,/4). Thus, the premises 
of Assertion B are satisfied and we may also conlcude that in I?‘, whose 
probability exceeds 1 - 2, limsup fl’ < U, + (3&,/4), contradicting the 
original assumption about the strategy g. Therefore, recalling the choice of E, 
we conclude that E[U’+ ‘1 (fl’, d’), I?] < U, + (c,,/4). Thus, the premises of 
Assertion B are satisfied and we may also conclude that in I?, whose 
probability exceeds 1 - 6, the distance p[(@, d’), C] -+ 0 a.s. Therefore, 
limsup fl’ < U, + (3&,/4), contradicting the original assumption about the 
strategy g. 

Proof of Theorem 2. Let a set A c R2 be defined as follows: 

A = {(x, y) 1 x < n - D(c), y < u(-c - 71) for some c, rc E [0, 1 ] }. 

By our assumptions on D and U, A is a closed convex set. Furthermore, it 
follows from assumption (ii) on D (see Section 2) that (0, I?) E A. Let 
(x & E .I?. For every t and for every state of information 0’- ‘, we have 

(E(h; 1 et-‘), E(h; 119~‘)) E A, 

which follows from the observation that the random variables h{ 1 tit-’ and 
hi 1 19-r are generated either by a pair (c, rr) with insurance purchased in 
period t or by the owner deciding, in period t, to decline the insurance offer, 
which leads to the payoff pair (0, I!$ with ir< 0. Therefore, we may write 

E[(h;, h;) 1 h; ,..., h;-‘, h; ,..., hi-‘] EA. 
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By Assertion F, 

so, by the definition of A there exists c E [0, I] such that 

ff,(.f $3 < u(-c - m - ff,(J S)> 

< u(-e - D(c^) - H,(f: g3) 

where c^ is some socially optimal level of care. This completes the proof. 

5. DISCUSSION 

Now let us review the structure of the insurer’s NCD strategy in 
Theorem 1. Consider the pair (no, co) appearing in the statement of the 
Theorem. If the insurer could somehow convince the owner of the asset to 
exercise care at a level c,, then he would be happy to sell him insurance at a 
price r,-,, and the resulting outcome would be to the benefit of both parties. 
In order to convince the owner of the asset to set care at cO, the insurer 
announces that the premium for insurance in any given period may depend 
on the owner’s record of claims up to that period. Theorem 1 shows that a 
relatively simple rule of this kind will indeed convince the owner of the asset 
to exercise the proper care cO. The insurer picks two premium levels, high 
and low, with the low level set at rrO and the high level, say, 7c*, set to satisfy 
u(-n*) < i?. (For the owner of the asset, rr* is a penalty premium, because 
he can attain the utility level 0 even without recourse to insurance.) In any 
given period, the insurer now charges a low premium n, if the owner’s 
average past claims have not been “excessive.” Otherwise, he charges the 
high premium 7c*. The insurer’s problem is to define exactly what will be 
meant by a past claims record being excessive. If the definition of 
“excessive” should be too strict, then the owner of the asset would end up 
paying a penalty premium quite often, even when he exercises proper care. 
On the other hand, if the definition of “excessive” should be too lax, then the 
owner of the asset would be able to set the level of care below c0 sufficiently 
often (thereby obtaining an average utility level in excess of U,) while at the 
same time keeping his claims record below the level that causes insurance 
premia to go up. For example, suppose that the average size of the owner’s 
past claims is to be considered “excessive” if it falls above B(c,). Then, with 
probability 1, the owner of the asset will be charged a penalty premium 
infinitely often, even if he consistantly exercises the proper care cO. On the 
other hand, suppose that the average size of past claims is to be considered 
“excessive” only if it falls above @c,,) + E for some E > 0. Then, the owner 
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of the asset will be in a position to take advantage of this leniency and lower 
care to some level c satisfying D(c) < B(c,) + E without the penalty premium 
affecting his long-run average utility. Thus, what the insurer must do is find 
an appropriate statistical instrument that would make it possible for him 
simultaneously to reduce the likelihood of two types of errors: One type 
consists of an erroneous detection of a (nonexistent) deviation from the 
proper care level c, and the other type consists of a failure to detect an 
actual (and prolonged) deviation from that proper care level. Theorem 1 
provides such an instrument. In the tth contract between insurer and owner 
the penalty premium X* will be charged if, and only if, the record of past 
claims filed shows an average size of claims exceeding @c,) + a’, where 
(cr’} is a sequence of positive real numbers converging to 0 sufficiently 
slowly. Indeed, any sequence {a’} converging to 0 and having the property 
that a’ 3 (2Aa2 log log t/t) “* for all t and for some ;1 > 1 will do. On the one 
hand, it follows from ar + 0 that the owner of the asset cannot profitably 
deviate from the proper care level cO. On the other hand, the slow rate of 
convergence of a’ provides a guarantee that, if the owner of the asset should 
consistently exercise the proper level of care cO, then, with probability one. 
he will be charged the penalty premium rr* only finitely many times. (Note 
that if we take a’ = (2b2 log log t/t)“2 but set 1 = 1, then with positive 
probability, a properly careful owner will find himself penalized infinitely 
many times.) Informationally, the insurer’s strategy is very simple: He uses 
only two premium levels, rr,, and rc*, and he must keep a running account 
only of the average size of the claims filed by the owner in those past periods 
where he (the owner) chose to buy insurance. 

The existence of an insurance strategy having the desirable properties 
discussed above follows from a theorem in probability theory known as the 
Law of the Iterated Logarithm. This theorem has been used recently also in 
two other studies, and this seems to be a good place to comment briefly on 
the relationships between these studies and the present essay. In the first of 
these studies, Rubinstein [ II] considers the question of how the legal system 
ought to treat an individual who is found to have committed an offense of 
the kind that may, with some probability, be committed inadvertently, even 
by the most scrupulously law-abiding citizens. (Failing to report an item in 
one’s income tax return may be a case in point.) If the legal system is to act 
leniently, then individuals may find it advantageous to commit the offense 
willfully. On the other hand, if the legal system acts very stringently, then it 
may often find itself penalizing honest individuals who are the victims of 
random circumstances. Rubinstein shows that the legal system can 
successfully avoid these two predicaments by adopting a strategy of 
punishing an offender in period t if, and only if, the number of times where 
the offense had been committed in the past exceeds the value t(p + a’), 
where p is the probability of the offence being committed accidentally and 
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{a’} is a sequence of “safety margins” obtained from the Law of the Iterated 
Logarithm. The main structural difference between the framework of 
Rubinstein’s paper and the framework being considered here is that, in the 
former, a willfully committed offense is immediately detected, so an 
individual cannot plan to commit the offense willfully in the hope of being 
mistaken for an honest law-abiding citizen. In our present framework, 
negligent behavior on the part of the owner of the insurable asset can never 
be detected as such. Thus, it appears that the owner of the asset might be in 
a position to gain from undetected negligent behavior. The long proof of part 
(4) in Theorem 1 shows that this is not possible. Another difference is that, 
in the framework being considered here, the owner of the asset can choose to 
refrain altogether from buying insurance in any given period. Assertion G in 
the previous Section is required in order to show that the owner cannot use 
this option to advantage. 

Radner [ 101 also uses the Law of the Iterated Logarithm as a means for 
detecting deviant behavior that is not directly observable. Radner is 
concerned with what he calls “cooperative agreements” which lead to long- 
run payoffs that dominate the payoffs associated with a single-period Nash 
equilibrium. He shows that for every E > 0 there exists a pair of strategies 
under which, if the single game is repeated sufficiently many times, then 
deviant behavior cannot yield a long-run payoff which exceeds the payoff 
from the cooperative agreement by more than E. There are several differences 
between Radner’s framework and the framework being considered here but, 
in our view, the main difference lies in Radner’s use of a so-called “trigger 
strategy” (also known in the folklore as a “grim” strategy) for the principal: 
Punishment. once it occurs, continues relentlessly, until the game ends. In an 
infinitely repeated version of Radner’s model, punishment would have to be 
inflicted until the deviating agent’s payoff is driven down virtually to the 
inferior level obtained in the single-period Nash equilibrium. In the present 
essay, we have concentrated on what we have called “no-claims discounts” 
strategies which, we feel, are closer to observed behavior than trigger 
strategies. In our framework, a deviating individual is punished only as long 
as his record appears unreasonable, and punishment ceases as soon as this 
record is restored to within reasonable bounds. The strategies being 
considered here have a certain “perfectness” property which is not shared by 
Radner’s trigger strategies: For all I, and for all conceivable histories up to 
period t, the insurer’s NCD strategy will elicit the proper care level from the 
owner from period t onwards. 

This last comment makes it clear that NCD strategies are by no means 
the only ones which make it possible for the insurer to enforce a proper care 
level c,, in return for a lower premium for insurance no. Indeed, we are 
indebted to R. J. Aumann and A. Neyman for pointing out to us that, in 
order to establish the existence of some strategy that enforces a proper level 

642/30/l-7 
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of care, it is not even necessary to appeal to the Law of the Iterated 
Logarithm. A more elementary tool-the Borel-Cantelli Lemma-would 
suffice for that purpose. To see this, let {p’} be a sequence of real numbers 
satisfying 0 <p’ < 1 for all t, and assume that the series Cp’ converges. 
Now suppose that the owner of the insurable asset has already suffered 
through t - 1 epochs of punishment. Then, what the insurer must do in any 
given period is to calculate the probability of the owner’s record being as it 
really is, or worse, on the assumption that he (the owner) has been exercising 
proper care c0 ever since the last time he had been punished. If this 
probability is less than pl, then a new epoch of punishment begins (i.e., the 
owner is charged a high premium x*) and this punishment continues relen- 
tlessly until it is known with certainty that the owner’s long-run utility has 
been reduced to a level l? + E’, where E’ -+ 0. It can be shown, using the 
Borel-Cantelli Lemma, that this insurance strategy enforces a proper level of 
care as a best response. Here again, what is lost is the NCD structure of the 
insurer’s strategy. 

Finally, it ought to be mentioned that, with minor modifications, the 
present framework can be recast to fall within the realm of repeated games. 
Using the terminology of the theory of repeated games, our Theorems I and 
2 amount to the assertion that the set of pairs of payoffs which are 
individually rational in the single game coincides with the set of equilibrium 
pairs of payoffs in the repeated game. In this sense, our theorems constitute a 
new version of what has come to be called the Folk Theorem of repeated 
games (see Hart [S]) for a class of games with imperfect information, where, 
in any given period, a player must make his move without full knowledge of 
the moves made by the other player in the preceding periods. 

REFERENCES 

1. D. BLACKWELL. An analog of the minimax theorem for vector payoffs, Pacific J. Muth. 6 
(1956), l-8. 

2. L. BREIMAN, “Probability,” Addison-Wesley, Reading, Mass., 1968. 
3. D. FREEDMAN, Another note on the Borel-Cantelli lemma and the strong law, Ann. 

Probab. I (1973), 910-925. 
4. P. R. HALMOS. “Measure Theory,” Van Nostrand, Princeton, N.J., 1950. 
5. S. HART, Lecture Notes: Special topics in game theory, Stanford University, Stanford. 

Calif.. 1979. 
6. B. H~LMSTRGM, Moral hazard and observability, Bell J. Econ. 10 (1979). 74-91. 
7. M. LOEVE, “Probability Theory,” Volume II, 4th ed., Springer-Verlag, Berlin, 1978. 
8. J. A. MIRRLEES, The theory of moral hazard and unobservable behavior, Mimeo, Nuffield 

College, Oxford, 1975. 
9. M. PAULY, Overinsurance and public provision of insurance: The roles of moral hazard 

and adverse selection, Qunrr. J. Econ. 68 (1974), 44-62. 



INSURANCE AND MORAL HAZARD 97 

10. R. RADNER, Monitoring cooperative agreements in a repeated principal-agent 
relationship, Econometrica 49 (1981), 1127-I 148. 

I 1. A. RUBINSTEIN, An optimal conviction policy for offenses that may have been committed 
by accident, in “Applied Game Theory” (S. J. Brams, A. Schotter, and G. Schwodiauer, 
Eds.). Physica-Verlag, Wiirzburg, 1979, 40664 13. 

12. S. SHAVELL. On moral hazard and insurance, Quart. J. Econ. 93 (1979). 541-562. 


