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A BARGAINING MODEL WITH INCOMPLETE INFORMATION
ABOUT TIME PREFERENCES

By ARIEL RUBINSTEIN'

The paper studies a strategic sequential bargaining game with incomplete information:
Two players have to reach an agreement on the partition of a pie. Each player, in turn,
has to make a proposal on how the pie should be divided. After one player has made an
offer, the other must decide either to accept it or to reject it and continue the bargaining.
Player 2 is one of two types, and player 1 does not know what type player 2 actually is.

A class of sequential equilibria (called bargaining sequential equilibria) is characterized
for this game. The main theorem proves the (typical) uniqueness of the bargaining sequential
equilibrium. It specifies a clear connection between the equilibrium and player 1’s initial
belief about his opponent’s type.

1. INTRODUCTION

ONE OF THE MOST BASIC HUMAN SITUATIONS is one in which two individuals
have to reach an agreement, chosen from among several possibilities. Traditional
bargaining theory seeks to indicate one of the agreements as the expected (or
desired) outcome on the sole basis of the set of possible agreements and on the
point of non-agreement. Usually, the solution is characterized by a set of axioms.
(For a survey of the axiomatic models of bargaining, see Roth [13].)

Much of the recent work on bargaining aims at explaining the outcome of a
bargaining situation using additional information about the time preference of
the parties and the bargaining procedure. Such models are associated with the
strategic approach. The players’ negotiating maneuvers are moves in a nonco-
operative game that describes the procedure of the bargaining; noncooperative
solutions to the game are explored.

The strategic approach also seeks to combine axiomatic cooperative solutions
and noncooperative solutions. Roger Myerson recently named this task the “Nash
Program.” Though Nash is usually associated with the axiomatic approach, he
was the first to suggest that this approach must be complemented by a noncoopera-
tive game (see Nash [10]).

In a previous paper [14], I analyzed the following bargaining model, using the
strategic approach. Two players have to reach an agreement on the partition of
a pie of size 1. Each player in turn has to make a proposal on the division of
the pie. After one player has made an offer, the other must decide either to accept
it or to reject it and continue the bargaining. The players have preference relations
which are defined on the set of ordered pairs (s, t), which is interpreted as
agreement on partition s at time ¢ Several properties are assumed: “pie” is
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deairable, “time” is valuable, the preference is continuous and stationary, and
the larger the portion of the pie the more “compensation” a player needs to
consider a delay of one period immaterial.

The set of outcomes of Nash equilibria for this game includes almost every
possible agreement, and the bargaining in a Nash equilibrium may last beyond
the first round of negotiations. The Nash equilibria are protected by threats, such
as responding to a deviation by insisting on receiving the whole pie. It is very
useful to apply the concept of (subgame) perfect equilibrium (see Selten [16])
which requires that the players’ strategies induce an equilibrium in any subgame.
This usually leads to a single solution, which is characterized by a pair of
partitions, P, and P,, that satisfies (i) Player 1 is indifferent between P, today”
and “P, tomorrow,” and (ii) Player 2 is indifferent between ‘P, today” and “P,
tomorrow.” When a unique pair of P, and P, satisfies the above statements, the
only perfect equilibrium partition is P, when 1 starts the bargaining and P, when
2 starts the bargaining. The structure of the unique perfect equilibrium is as
follows: Player 1 (2) always suggests P, (P,) and Player 2 (1) accepts any offer
which is better for him than P, (P,). For example, when each player has a fixed
discounting factor 8, the perfect equilibrium outcome gives player 1 1/(1+ 8) if
he starts the negotiation, and §/(1+8) if 2 starts. Both partitions tend to the
equal partition when & tends to 1. It is clear that the method demonstrated by
this model is useful for analyzing other bargaining procedures and other properties
of time preferences. Additional properties of the model are studied by Binmore
[1].

A critical assumption of the model is that each player has complete information
about the other’s preference. This assumption makes it less surprising that,
typically, the bargaining in perfect equilibrium ends in the first period, although
it could continue endlessly.

When incomplete information exists, new elements appear; a player may try
to conclude from the other player’s moves who his opponent really is; the other
player may try to cheat him by leading him to believe that he is tougher than he
actually is. In general terms, the incomplete information model enables us to
address the issues of “‘reputation building,” signalling, and self-selection mechan-
isms. Here continuation of bargaining beyond the first period becomes more likely.

A number of works have appeared on bargaining with incomplete information.
For example, Harsanyi and Selten [7] present a generalized Nash solution for
two-person bargaining games with incomplete information. Myerson [9] presents
another generalization. Both solutions are characterized by sets of axioms. Finite-
horizon bargaining games with incomplete information are treated by Fudenberg
and Tirole [5], Sobel and Takahashi [17], and Ordover and Rubinstein [11]. In
addition, Cramton [2], Perry [12], and Fudenberg, Levine, and Tirole [4] analyze
seller-buyer infinite-horizon bargaining games in which reservation prices are
uncertain, but time preferences are known.

The present article attempts to explain bargaining with incomplete information
by investigating the model introduced in [14], with one additional element: Player
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2 may be one of two types: 2, (weak) or 2, (strong). The types differ in their
time-preferences (for example, higher or lower discounting factors). Player 1
adopts an initial belief regarding the identity of Player 2.

The difficulties of extending the notion of perfect equilibrium to games with
incomplete information have been discussed extensively in the last few years (see
Kreps and Wilson [8]). Generally speaking, the problem is that in order to check
the optimality of 1’s strategy after a given sequence of moves, we must verify his
beliefs. Therefore, the notion of sequential equilibrium includes player 1’s beliefs
both on and off the equilibrium path.

The set of sequential equilibria for this game is very large. The freedom to
choose new conjectures off the equilibrium path enables the players to establish
credibility for “too many” threats and thus to support “too many” equilibria. I
suggest that many of the sequential equilibria are unreasonable. These can be
eliminated by making additional requirements on beliefs and on equilibrium
behavior. Indeed, as Kreps-Wilson claims, “...the formation [of sequential
equilibria] in terms of players’ beliefs gives the analyst a tool for choosing among
sequential equilibria” [8, p. 884].

The quite reasonable, additional requirements are described in Section 5. The
key requirement (B — 1) makes it possible for type 2, to screen himself: if player
2 rejects an offer made by player 1 and makes a counteroffer which is worse than
1’s offer for the weak type but better for the strong type, then 1 concludes that
player 2 is strong (2,).

The main theorem of this paper specifies a clear connection between the unique
bargaining sequential equilibrium and 1’s initial belief that 2 is 2,, denoted by
w,. The theorem states that there exists a cut-off point w™ such that if w, is strictly
below w*, player 1 gives up: he offers the partition he would have offered if he
thought he was playing against 2,, and player 2, whatever his type, accepts it. If
w, is strictly above w*, some continuation of the bargaining is possible. In
equilibrium, player 1 offers P,, 2,, would accept it, and 2, would reject it and
offer P,, which is accepted by 1. The partitions P, and P, are the only ones
satisfying: (i) Player 1 is indifferent between “P, today” and the lottery of “P,
tomorrow”’ with probability w, and “P, after tomorrow” with probability 1 —wy;
(ii) Player 2,, is indifferent between ““P, today” and *P, tomorrow™.

2. THE BARGAINING MODEL

Two players, 1 and 2, are bargaining on the partition of a pie. The pie will be
partitioned only after the players reach an agreement. Each player in turn makes
an offer and his opponent may agree to the offer, “Y”, or reject it, “N”.
Acceptance of an offer ends the bargaining. After rejection, the rejecting player
has to make a counteroffer and so on without any given limit. There are no rules
which bind the players to previous offers they have made.

Formally, let S =[0, 1]. A partition of the pie is identified with a number s in
S by interpreting s as the proportion of the pie that 1 receives (2 receives 1—s).
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A strategy specifies the offer that a player makes whenever it is his turn to
make an offer, and his reaction to any offer made by his opponent. A strategy
includes the player’s plans even after a series of moves that are inconsistent with
the strategy itself.

Let F denote the set of all strategies available to the player who starts the
bargaining. Formally, F is the set of all sequences of functions f={f*};Z,, when
for t even, f': S"'> S and for ¢ odd, f: S'>{Y, N}, where S’ is the set of all
sequences of length ¢ of elements of S. (For example, f*(s°, s') is a player’s offer
at time 2 assuming that he offered s°, his opponent rejected it and made the offer
s', which was rejected by the other player.) Similarly, G is the set of all strategies
for a player whose first move is a response to the other player’s offer. Note that
mixed strategies are not allowed.

A typical outcome of the game is a pair (s, t), which is interpreted as agreement
on the partition s in period t Perpetual disagreement is denoted by (0, ©).

The outcome function of the game P(f, g), then, takes the value (s, t) if two
players who adopt strategies f and g reach an agreement s at period ¢, and the
value (0, c0) if they do not reach an agreement.

The players have preference relations >, and >, on the set of pairs SX T =
[0,1]1%{0,1,2,...}. It is assumed that >, satisfies the following assumptions
(analogous assumptions are assumed about >,; recall that according to our
notation, player 2 receives the fraction 1 —x in the partition x):

AsSSUMPTION (A-0): The relation is complete, reflexive, and transitive.
ASSUMPTION (A-1): “Pie” is desirable: If x>y, then (x,t) >, (3, t).

AssUMPTION (A-2): “Time” is wvaluable: If x>0 and t,>1t,, then
(x, 1) > (x, t).

AsSSUMPTION (A-3): Continuity: The graph of >, is closed in (S X T) X (S x T).
AssUMPTION (A-4): Stationarity: (x,t) =, (y, t+1) iff (x,0) >, (y,1).

AssUMPTION (A-5): The increasing compensation property: If
(x’ O) ~1 (x+ S(X), l)a

then ¢ is strictly increasing.
For the sake of simplicity I make the following assumption:

AsSUMPTION (A-6): For every x there is d(x)e[0,1], such that
(x’1)~1(d(x)30)~

This implies that (0,t) ~,(0,0) for all ¢+ and I assume further that
(0, ) ~, (0, 0).
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The present value of (x, t) is the t-fold composition of d with itself. Notice
that by (A-1)-(A-3) and (A-6) the function d is increasing, continuous, and
satisfies d(0)=0 and d(x)<x for x>0. By Assumption (A-5), x—d(x) is an
increasing function and by Assumption (A-4) the function d gives us all the
information about the relation >,.

The most important family of relations satisfying the above assumptions are
those induced by a utility function x8'. The number 0<8 <1 is interpreted as
the fixed discounting factor.

It is shown in Fishburn and Rubinstein [3] that time preferences satisfying
(A-0)-(A-4) and (A-6) can be represented by a utility function of the form u(x)8".
A sufficient (but not necessary) condition for the preference to satisfy Assumption
(A-5) is that it be representable by u(x)8’ where u is concave. The fixed bargaining
costs preference (induced from a utility function x — ct) does not satisfy Assump-
tions (A-5) and (A-6).

In the current paper player 1’s preference must be extended to refer to the
lotteries of elements in S X T. (The symbol w0,® (1 — )0, stands for the lottery
which provides the outcome 0, with probability w, and outcome 0, with probability

(1-w).)

AssUMPTION (A-7): Player maximizes the expectation of u(x) &' for some concave
function u(x) and some 6.

The new element in this paper is the extension of the analysis to situations of
incomplete information. Player 1’s preference is known by player 2, but player
2 may possess one of the preferences >, (weak) or >, (strong). If 2 holds >,
(=,) it is said that he is of type 2,, (2;).

It is assumed that 2,, is more impatient than 2, that is:

AssuMPTION (C-1): If x#1 and (y,1) ~,, (x,0), then (y,1) >, (x,0).

With fixed discounting factors 8,, and §,, this assumption means that &;> §,,.

In [14] a full characterization of the perfect equilibrium outcomes of this game
with complete information is presented. We summarize these results here.

Under the current assumptions about the time preferences there is a unique
(x*, y*) € §? satisfying

(x*,1) ~, (¥*%,0) and (y*,1) ~, (x*,0).
Denote the pair (x*, y*) by A(>,, >,). It was proved in [14] that the only perfect

equilibrium partition is x* when 1 starts the bargaining, and y* when 2 starts
the bargaining and in any case the negotiation ends in the first period. Denote

A=, =)=V, V),
A=y, =)= (V, Vo).

A

Since 2,, is more impatient than 2, V,,> V, and Vw> V..
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FIGURE 1

Figure 1 is useful at several subsequent points. The curve which includes the
origin represents the present value to player 1 of the partition x tomorrow, that
is, it includes all the pairs (x, y) such that (x, 1) ~,(y, 0). The other two curves
represent the present value to player 2 of y tomorrow, depending on whether he
is weak or strong. That is, they include the pairs (x, y) such that (y, 1) ~, (x, 0)
and (y,1) ~,, (x, 0). The intersections of those curves with player 1’s present
value curve are (V,, V,) and (V,, V,).

ExamMpLE: When the players have fixed discounting factors 6, and é8,,

1-6 1-6
A=( 2,61 2).
1_3182 1"‘8132
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Binmore [1] shows that where the §; are derived from the continuous discount-
ing formula x(e™"")" (7 is the length of one period of bargaining), then

limA=< 2 )
>0 rntr, rntr
In other words, when the time interval tends to 0, player 1 gets r,/ r, + r,, regardless
of whether he is the first or the second player to make an offer. In particular, if
the players have identical time preferences, the solution coincides with the equal
partition.

The last assumption about the time preferences is the following:

AssuMPTION (C-2): (Vw, 0) <, (V, 1).

By (C-l),(Vw, 0) <, (VS, 0). Here it is further assumed that type 2,, prefers the
complete information partition between 1 and 2, even if player 1 starts the
bargaining, and there is a delay of one period in the agreement. Assumption
(C-2) excludes the possibility that in equilibrium 2,, sorts himself by making an
offer z satisfying (z, 0) >, (V,, 1) (and thus (z,0) <, (Vw, 0)) and (z, 0) >=,, (V,, 1)
(see Proposition 4). Notlce that if the players have discounting factors ;= e~ """
(see the previous example), then Assumption (C-2) is satisfied whenever r,, > r,

and 7 is small enough.

3. NASH EQUILIBRIA

Section 2 defines a game with incomplete information. The usual solution
concept for such games is Harsanyi’s Bayesian Nash equilibrium (see [6]). Let
(f, g h) be a triple of strategies for 1, 2,, and 2, respectively. The outcome of
the play of (f, g, h) is

P(f, 8 h)=(P(f, g), P(£, h)).

This means that the outcome of the game is a pair of outcomes, one each for the
cases that 2 is actually 2,, or 2,

DEFINITION: A,triple (£ 8 h)e Fx G x G is a Nash equilibrium if there is no
f € F such that

woP(f, §)®(1—wo) P(f, h) >, woP(f, £)® (1- wo) P(f, h),
and there is no g€ G or he G such that
P(f.g)>.P(f.§) or P(f,h)>,P(f h).

(A similar definition is suitable for (f, 8, ﬁ) e GXFXF)

In other words, 1’s strategy has to be a best response against 2,’s and 2,’s
plans, “weighted” by w, and 1—w,, respectively, and g and h have to be best
responses in the usual sense.
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As in the complete information case, the set of Nash equilibria in this model
is very large. Proposition 1 provides a complete characterization of the set of
Nash equilibrium outcomes in this model. In particular, Proposition 1 implies
that, for every partition P, ((P, 0), (P, 0)) is a Nash equilibrium outcome.

ProposiTION 1: ((P,, t,), (P, t,))=(0,,0,) is a Nash equilibrium outcome if
and only if

0,>,0, and 0, >;0,.

Proor: If (0,, 0,) satisfies the conditions, then the following is a description
of a Nash equilibrium: both players demand the entire pie and reject every offer
except at periods ¢, and ¢, when players 1 and 2,, and 1 and 2, offer and accept
P, and P, respectively.

Obviously the conditions 0,, >, 0, and 0, >, 0,, are necessary. Q.E.D.

4. SEQUENTIAL EQUILIBRIUM

The basic idea of sequential equilibrium is similar to the idea of perfect
equilibrium: the players’ strategies are best responses not only at the starting
point, but at any decision node. For player 1, the test whether a strategy is the
best response depends on 1’s belief that 2 is 2,,. Therefore, a sequential equilibrium
includes the method of updating 1’s belief that 2 is 2,.

Define a belief system to be a sequence @ =(w'),-_; 3., such that ' =,
and, for t=1, w': 8'>[0,1]. w'(s',...,s’) is 2’s belief that 2 is 2,, after the
sequence of rejected offers s', ..., s'”" and after 2 made offer s".

The formal definition of (f, g, h, @) being a sequential equilibrium is messy
but intuitively straightforward. The belief system must be consistent with the
Bayesian formula. Moreover, after unexpected behavior by player 2, player 1
makes a new conjecture regarding 2’s type; the equilibrium behavior of player
1 must be consistent with the new conjecture as long as no new deviation is
observed. Player 1 does not change his belief about player 2 as a result of any
deviation of his own.

For formal definition, let us use the notation s'=(s"---s') and the brief
notation w'=w'(s’), f' =f'(s"), or f'(s'') according to the evenness of ¢, and
similarly define g’ and h".

The Bayesian requirements are:

() f g™ '=h""'=Nand g"=h"=5" then w =" >

(ii) If 0<wT™?<1, g7 '=N and g"=s", and either h" '=Y or h7 #s7,
then 0™ =1.

(iii) f 0<wT2<1, K" '=N, h" =57 and either g"'=Y or g"7 #s”, then
0T =0.

Finally I add to the definition of sequential equilibrium another constraint
which does not follow from Kreps-Wilson’s definition. If 1 concludes with
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probability 1 that player 2 is of a certain type, he continues to hold this belief
whatever occurs after he comes to this conclusion; in other words, if he concludes
that ' =0 or w'=1, he continues to play the game as if it were a game with
complete information against 2, or 2,, respectively.

Formally, if ®” >=1, then =1, and if ®” 2=0, then w” =0.

The next proposition can be proved using the arguments presented in [14].

ProrosITION 2: Let (f, g, h, ) be a sequential equilibrium in the game when
1 starts; then P(f h)>,(V, O)A and P(f,g)=<,(V,,0); and if 2 starts,
P(f h) >,(V,,0) and P(f, g) <,(V,,0).

Thus, a sequential equilibrium outcome cannot be better (worse) for player 1
than the perfect equilibrium outcome in the complete information bargaining
game with 2,, (2,).

The next proposition demonstrates that the set of sequential equilibrium out-
comes is very large.

The sequential equilibrium, which is constructed in the proof, is supported by
player 1’s belief that a deviation must be of type 2,.. Whenever there is a deviation
from the equilibrium path, player 1 concludes that he is playing against 2,,. Such
conjectures serve as threats against player 2. The definition of sequential equili-
brium that was suggested to exclude noncredible threats does not exclude
threatening by beliefs.

PROPOSITION 3: For every w,, and for all x* satisfying (Vs, 1) =,, (x* 0) and
(x*,0) >, (V,,1), either ((x*,0),(x*,0)) or ((x*0),(y*1)) (where
(y*,1) ~,, (x*,0)) is a sequential equilibrium outcome.

ProoF: Let x* satisfy (V,, 1) =, (x*, 0) and (x*,0) =, (V,, 1). Let y* and z*
satisfy (y*, 1) ~,, (x*, 0) and (z*, 0) ~, (3*, 1). Let y and Z satisfy (3, 0) ~, (x*, 1)
and (Z,0) ~,, (3, 1). Let us distinguish between the following two comprehensive
(and nonexclusive) cases:

Caske L wo(x*, 0)® (1—-wo)(y*, 1) =, (z%,0).

Caske II: 0y(Z,0)® (1 - wo)(7, 1) <, (x*, 0).

By Proposition 7, at least one of the following inequalities is true:

wO(X*, 1)®(1 - wO)(y*, 2) >l (y*a 0)3
(95,0) =1 wo(Z, @D (1 - wo) (7, 2).

Combining (y*, 0) >, (z*, 1) and (x*, 1) ~, (5, 0) with the stationarity of >,, we
get that for all w, either Case I or Case II must be true.

The following is a description of a sequential equilibrium for Case I with the
outcome ((x*, 0), (y*, 1)):
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Unless 1 changes his belief, he always demands x* and agrees at most to y*;
type 2,, accepts only any offer below x* and demands y*; type 2, accepts offer
x satisfying (x, 0) >, (y*, 1) and always offers y*. On condition that 2 made a
move unplanned by any of the types, 1 changes «’ to 1 and the continuation is
as in the complete information game between 1 and 2,,. Clearly the only change
for a profitable deviation of 1 would be to make a lower demand like z* which
would be accepted by both types. But since wo(x*, 0)® (1—wo)(¥y*, 1) >, (z*,0),
this is not profitable. Checking the other conditions of the sequential equilibrium
condition is straightforward.

The following is a description of a sequential equilibrium for case II with the
outcome {(x*, 0), (x*, 0)):

Unless 1 changes his belief, he always offers x* and accepts y only if
(y,0) =, (x*,1), (y=7y). Both 2,, and 2, agree to settle for x only if (x,0) is
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preferable (according to >,, and >, respectively) to (3, 1). They always offer y.
After 2 made a move unexpected from both types, 1 changes o’ to 1 and the
continuation is as in the complete information game between 1 and 2,,.

Notice that if 1 demands x> x*, 2, rejects it because (3, 1) >, (x*, 0). Thus
the most that 1 can achieve by deviating is that 2,, would agree to Z and 2, would
offer y. However since wq(Z, 0)@ (1 —wo)(7, 1) <, (x*, 0), this is not profitable.
The requirement that (x*,0) >, (Vw, 1) is important to assure that 2, will not
gain by rejecting x*. Q.E.D.

5. BARGAINING SEQUENTIAL EQUILIBRIUM

Section 4 shows that it might be desirable to place additional requirements on
the belief systems in a sequential equilibrium (f, g, h, ®).

In order to demonstrate the first Assumption, (B-1), imagine that 1 makes an
offer x and 2 rejects it and offers y which satisfies that (y, 1) >, (x,0) and
(x,0) >, (y,1). That is, 2 presents a counteroffer which is better for 2, and worse
for 2,, than the original offer x. Then, we assume, 1 concludes that he is playing
against 2.

This assumption is related to an element which is missing from most studies
in Game Theory: we tend to conclude facts from other people’s behavior even
when the unexpected occurs. (B-1) is this type of inference. The effect of (B-1)
is to exclude sequential equilibria like those constructed in the proof of Proposi-
tion 3.

AssuMPTION (B-1): @ is such that if o' *(s""?)#1, (s, 1)>,(s"",0), and
(s"71,0) >, (s', 1), then o'(s' - - - s, 5s")=0.

The next assumption states that 2’s insistence cannot be an indication that 2
is more likely to be 2,. Assume that 2 rejects an offer x and suggests an offer y,
such that

»1)=,(x,0) and (y1)>,(x,0).

Then when 1 updates his belief, his subjective probability that he is playing
against 2,, does not increase.

AssUMPTION (B-2): If (s', 1) =, (s'%,0) and (s',1) =,, (s'7',0), then »'(s") <
wt—Z(st—z).

The next two assumptions place direct restrictions on the players’ equilibrium
behavior, rather than describing their beliefs or preferences.

Assumption (B-3) is a “tie-breaking” assumption. If player 1 has been offered
a partition x and after rejecting it he expects to reach an agreement whereby he
is indifferent to x, then 1 accepts x.
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AssUMPTION (B-3): If (P(fio...st, gist...st, Bstst), 1) ~, (5°,0), then f(s')=Y.
(fist...st is the residual strategy of f after the history s* - - - s')

The last assumption is that player 2 never makes an offer lower than V.

AssUMPTION (B-4): Whenever it is 2’s turn to make an offer,

A

g'=V, and h'=V,

Notice that by Proposition 2, player 2 rejects any offer which is lower than ‘75
Still, the players could use such offers as a communication method. Assumption
(B-4) excludes this possibility.
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I would also like to mention the associate editor’s suggestion that Assumption
(B-4) can be replaced by a requirement on the beliefs that if 2,, is supposed to
accept an offer and 2, is supposed to reject it, then whatever is 2’s offer, 1
concludes from 2’s rejection that he is playing against 2,. The reader can verify
that the alternative assumption plays the same role as Assumption (B-4) in the
only place it is used (the Proof of Proposition 6).

DErFINITION: (f, g, h, @) is a bargaining sequential equilibrium if it is a sequen-
tial equilibrium and satisfies (B-1)-(B-4).

For the following examination of some of the properties of bargaining sequen-
tial equilibrium, let (£, g, h, @) be a bargaining sequential equilibrium:

PROPOSITION 4: Wheneuver it is 2’s turn to make an offer, 2,, and 2, make the
same offer.

PrOOF: Assume that there is a history after which 2,, and 2, make the offers
y and z, respectively, and that y# z If 1 accepts both y and z, then the type
making the higher offer will deviate to the lower offer.

If 1 rejects both y and z, then in the next period he believes he knows which
type 2 is, and he offers V,, or V; accordingly. Then type 2,, will gain by offering
z.

If 1 accepts only z, then the outcome against 2,, will be V,, in the next period.
By definition of sequential equilibrium, (z,0) >, (V,, 1). By Assumption (C-1),
(z,0) >, (V,, 1). Thus, 2,, can deviate and gain by offering z.

If 1 accepts y and rejects z, it must be that (y, 0) >, (V,,, 1) and (3, 0) >,, (V, 1),
in contradiction to Assumption (C-2). Q.E.D.

PROPOSITION 5: If both 2,, and 2, accept an offer x, then x<V,.

PrOOF: If x> V,, then 2, may deviate, say “ N’ and suggest y at the next
periOd’ where (y’ l) >s (xa 0)9 (y, 1) <w (xa O)a and (y’ 0) >1 (‘/sa 1)'

Any y that satisfies that (x, y) is in the shaded area in Figure 3 will do. By
Assumption (B-1), player 1 concludes that 2 is 2, and since (y,0) >, (V,, 1), he
accepts the offer y; since (y,1) >, (x,0), 2, gains by the deviation. When x=1
there is no (x, y) in the shaded area of the figure. However, (V 1) >, (1,0) and
2, could gain by offering and accepting V.. QE.D.

PROPOSITION 6: If 2,, accepts offer x and 2, rejects it, then 2, makes an offer y
such that (y,1) ~,, (x,0), and player 1 accepts it.
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ProoF: If 1 rejects y then he offers V; in the next period. Therefore,
(V, 1) =, (3,0), and by Assumption (B-3) (V,, 1) >, (»,0) which means y<V,,
contradicting (B-4). Thus, 1 accepts y, which implies (3,0) =, (V, 1). It must be
that (x, 0) >, (3, 1). If (x,0) >, (, 1) and y > V,, then 2, gains by decreasing the
offer to y —e (for € >0 small enough). This lower offer persuades 1 that 2 is 2,
and 1 accepts it because (y—¢, 0) >, (V,, 1).

If (x,0)>,(y,1) and y= Vs, then 1 may deviate and demand x+e&. Type 2,
will accept the offer if ¢ is small enough to satisfy (x+¢) >, (y, 1), and 2, will
reject it and will offer V,, the same offer he intended to make before the deviation.
Thus 1 gains by the deviation. Q.E.D.

REMARK: Unless we assume (B-3) and (B-4) we can get ad}iitional equilibria,
where 1 offers x, 2,, accepts x, 2, rejects it and offers y (y < V), which 1 rejects
in favor of the agreement V; in the next period.

From Propositions 4, 5, and 6 we may conclude that a bargaining sequential
equilibrium must end with one of the following:

(T-1): 1 offers x, 2,, accepts it and 2, rejects it; 2 offers y at the next period and
1 accepts it. The offer y satisfies
(x,0) ~ (3, 1),
(10 = (V1) (e, y= Vo),
and wo(x, 0)® (1 —we)(y, 1) =, (V,, 0).

(T-2): 1 offers V, and 2 accepts it.

(T-3): 2,, and 2, offer y and 1 accepts it.

6. THE POINT (x“, y*)

Let z(x) be the z satisfying (x, 0) ~,, (z, 1) if such a z exists. Define for every

I=sw=l,
d“(x)=y where (3,0)~, 0(x,1)®(1—w)(z(x), 2).

Thus, d“(x) is the minimum that 1 would now agree to accept from 2 if he
expects a bargaining sequential equilibrium in the subgame starting the next
period, where his agreement with 2,, is x, and his agreement with 2, is z(x) one
period later.

The function d® has several straightforward properties. It is continuous, it is
strictly  increasing, it satisfies d“(x)<d,(x)<x for x=V, where
(dy(x), 0) ~, (x,1). It satisfies d“1(x)=d*“x(x) if w,> w,.
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Let d, be the graph of the present value function for 2, (ie.,
(d,(»),0) ~, (3, 1)). For x, satisfying (x0,0)~, (0,1), d“(x0)=
wd,(xy)+ (1 —w,) - 0=0 and therefore d* and d,, must have a nonempty inter-
section.

The next proposition states that the intersection of d“ and d, consists of a
single point (x“, y*). This point plays an important role in the main theorem:

PROPOSITION 7: There is a unique point (x,y) such that (x,0) ~,, (y,1) and
y=d(x).

ProoOF: Assume that both (x,, y;) and (x,, y,) satisfy the two equations and
x; < x,. By definition,

(3,0) ~ w(x, NO(1—w)(y,2) for i=1,2.
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By (A-7), (1-w)(u(y;)—8*u(y;)) = w(8u(x;) —u(y;)). Therefore y,> y, implies
that du(x,) — u(y,) > éu(x,) —u(y,) and u(x,)—u(x,)>u(y,) —u(y,). The func-
tion u is concave and x; > y,. Therefore, y,—y,> x,— x;, contradicting (A-5) as
to =,,. Q.E.D.

7. THE MAIN RESULT

THeOREM: For a game starting with player 1’s offer: (i): If w, is high enough
such that y“o>V, then the only bargaining sequential equilibrium outcome is
((x*0,0), (y*, 1)). (ii): If wo is low enough such that y“° < ‘A/s, then the only
bargaining sequential equilibrium outcome is {(V,, 0), (V,, 0)).

In the first case, player 1 offers x“°, 2,, accepts this offer, and 2, rejects it and
offers y“o, which is accepted. 2,, is indifferent between (x“°,0) and (y“o, 1).
In the second case, 1 offers V, and both types 2,, and 2, accept it. In the boundary
between the two zones more than one bargaining sequential equilibrium outcome
is possible.

Let us contrast the equilibrium determined in the Theorem with that derived
with complete information: the weak player is better off whereas the strong player
suffers a disadvantage in the incomplete information game. It is not clear whether
player 1 would benefit from having the information about player 2’s type. Delays
can occur but only if they result in some information transmission.

ExXAMPLE: Assume that 1, 2, and 2, have discounting factors §, 8,, and &,
respectively. Then

1-8 1-8
=V, =————W—,

1- 88, 1- 85,
V.=6V, and V,=8V,.

V.

Here, if

V,— 8%V,
o> =w

1-8,+8V,(68,—9)

E3

we are in case (i) of the theorem and

:(1—8W)(1—62(1—w))
1-8°(1-w)— 88,0

w

Notice that 1= w™* if and only if V,,= V..
Where the discounting factors are derived from the continuous discounting
formula we get the following limit result when we tend the length of a period to
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zero: If wo>2r,/(r,+r,), the outcome is wor,/(wor, +(2—wo)r), and if we<
2r./(ry+r,), the outcome is r,/(r+r,).

The main difficulty here is to prove the uniqueness of the bargaining sequential
equilibrium outcome. However, for a better insight of the result, I begin by
describing a bargaining sequential equilibrium which induces the outcome
{(x*0,0), (y“, 1)) if y“o> V and induces the outcome ((V,, 0), (V,, 0)) if y“o< V

1’s beliefs: Player 1 does not change his initial belief unless player 2 has
rejected an offer s'~! and offers s’ such that (s‘~',0) >,, (s',1); then he changes
his belief to w'(s’) =O. (This belief system certainly satisfies (B-1)-(B-2).)

1I’s strategy: Let s’ be the “empty” history or a history that ends with 2’s offer
s'. Let o= w’(s ). If y =< V (thls case includes the p0551b111ty that a) 0), then
1 accepts stif and only if s'= Vs, otherwise he accepts s’ only if s'= y“’ If 1
rejects s (or s' is the empty history), then he makes the offer x* if y* > V, and
the offer V; if y“ < V

2,’s strategy Let s* be a history that ends with 1’s offer sUIf y© Vs, then 2,,
accepts s' if and only if (s 0) =, (V, 1) If y> V, then 2, accepts s' only if
s'<x® In case 2,, rejects s' he oﬁers V if y© V and if y“ > V then he offers
the lowest number from among y“ and the y satisfying (s',0) >,, (y,1) and y = V

2,’s strategy: Player 2, always makes the same offer that 2,, does. He accepts
only V; or less.

Whenever w'(s')=0 or w'(s')=1, player 1 follows the perfect equilibrium
strategy described in [14] for games with complete information between 1 and
2,, or between 1 and 2,,. If o' =0, 2, follows the perfect equilibrium strategy and
2, chooses a perfect best-response strategy to 1’s strategy (and similarly for the
case w'=1).

8. PROOF OF THE UNIQUENESS OF 'THE BARGAINING SEQUENTIAL EQUILIBRIUM

Assume that y“o> Vs; in what follows it is proved that the only bargaining
sequential equilibrium outcome is ((x“°, 0), (y“°, 1)). The proof for the case that
LR Vs is very similar.

Let BSE, be a short notation for a bargaining sequential equilibrium in the
game where 1 starts the bargaining, and let BSE, be a short notation for a
bargaining sequential equilibrium in a subgame in which 2 starts the bargaining,
if an offer of 1 exists such that 2’s reply “ N and continuation according to the
BSE, is a bargaining sequential equilibrium in the subgame starting after 1’s offer.
Given a number 0< @ <1, define:

A® ={u|(u,0) ~,, 0, where (0,,0,) is a BSE, outcome},
B* ={v|(v,0) ~,, 0,, where (0,,0,) is a BSE, outcome}.
In Section 7 it was proved that x“ce A and y“°e B*.

LemMA 1: ((V,, 0)(V,, 0)) is not a BSE, outcome and {( Vs, 0)(VS, 0)) is not a
BSE, outcome.
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Proor: In any of these cases, player 1 would be able to deviate and offer
a partition x such tAhat (x, O):'W (V, 1). Type 2,, must accept it. Since Y>>V,
wo(X, 1)@ (1= wo)( Vs, 2) >1(V,,0) ~1 (V,,1); thus wo(x, 0)®(1—we)(V,, 1) >,
(V,, 0), and 1 gains by the deviation.

LemMMA 2: If ve B® there exists a uc A” such that (u,0) ~,, (v, 1).

Proor: Define the following BSE;: Player 1 offers u, 2,, accepts it, 2, rejects
it and offers v at the next period. Type 2,, rejects any offer higher than u and 2,
rejects any offer higher than V. In the case that 1’s offer is rejected, the continu-
ation is like the original BSE, without a change in 1’s belief.

Notice that wo(u, 1)® (1 — wo)(v, 2) >, (V,, 0) ~, (V,, 1);thus wo(u, 1)D (1— w,)
(v,1) >, (V,0) and 1 cannot gain by offering V..

LeMMA 3: Define m, =inf A®, m,=inf B*°; then (m,, 0) ~,, (m,, 1).

Proor: By Lemma 2, (m,,0) >, (m,, 1). Assume (m,,0) >, (m,, 1). Notice
that ¢,=0 in every BSE, outcome (0,, 0,) such that 0,,=(s,, t,) is >, close
enough to (m,, 0); otherwise (s, t, —1) ~,, (v, 0) for v < m,, and (s,, t,—1) is a
BSE, outcome and thus ve B“. If 1 deviates from the BSE,; which yields the
outcome (0,, 0,), and demands x such that (x, 0) ~,, (m,, 1), 2,, agrees and 1
gains since x> m,; and, by Lemma 1, the BSE, must be of type (T—1). Thus

(my, 0) ~,, (my, 1).

LEMMA 4: wo(my, 1)@ (1 —wy)(z(m,),2) ~; (my, 0). (Recall that (x,0)~,
(z(x),1).)

Proor: The existence of bargaining sequential equilibrium described in Sec-
tion 5 implies that m, < x“° and m, < y“o. Therefore by Lemma 3

wo(my, 1)®D (1 — wo)(z(m,),2) =, (my, 0).

Assume that we have a strict inequality. A BSE, with an outcome (0,,, 0,) where
2., is indifferent between 0,, =(s,, t,) and an outcome in which he receives a
partition whose present value is quite close to m,, satisfies that ¢, =0 (otherwise
it contradicts Lemma 3). Thus the BSE, has to be of type (T-3). Player 1 can
deviate profitably by demanding m;, accepting it from 2,, and accepting z(m;)
from 2,.

LEMMA 5: m; =x“° and m,= y“.
Proor: Use Lemmas 3 and 4.

LEMMA 6: Define M,=sup,<,, A° and M,=sup,<., B®; then (M,,0) <,
(MZ, 1)'
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Proor: Similar to the proof of Lemma 2.
LEmMMA 7: (M,0) ~,, (M, 1).

Proor: This is clear if M, =x“. Assume M;>x“ and (M,,0) <,, (M, 1).
Let x> x“° be close enough to M, and & >0 small enough such that x€ A® for
some w<w’ z(x)—&>M,, and (z(x)—¢, 0)>; wo(M;, 1)+ (1—wo)(z(M,), 2).
There exists a BSE, such that 1 offers x and 2,, accepts it (otherwise it contradicts
the definition of M,). Assume 2 deviates and offers z(x) — . Player 1 must reject
it.

Let & < w, be 1’s belief that 2 is 2,, after the offer z(x) —e. Then

(z(x)—&,0) >, @(M,, ®(1-w)(z(M,),2).

When rejecting z(x)—e, 1 must expect an outcome better than z(x)—¢ of a
bargaining sequential equilibrium in the subgame after the rejection. The last
inequality with Lemma 1 implies that this bargaining sequential equilibrium must
be of type (T-3). Therefore there is y € B® such that (y,2) >, (z(x) — ¢, 0). Since
z(x)— &> M,, this contradicts M,’s definition.

LEMMA 8: a)o(Ml, 1)@(1 _wo)(Mz,Az) ~1 (Mz, 0).

Proor: By Lemma 7 and M,=x
wo(M;,1)D (1 — wo)(Ma, 2) <; (M, 0).

Assume wo(M,, 1)+ (1 —wo)(M,, 2) <; (M, 0). Let y <v< M, satisfying that v
is the 2,’s present value of a BSE,, wo(M;, 1)®(1—we)(M,,2) <, (»,0), and
(M2a 2) <1 (J’, 0)

By the definition of BSE, there exists an offer of player 1, x, such that 2’s reply
“N” and continuation according to the BSE, is a bargaining sequential equili-
brium in the subgame starting with 1’s offer. Then if player 2 deviates by refusing
x and offering y then player 1 must reject y; otherwise it would be a profitable
deviation. This contradicts the fact that by the choice of y, and since 1’s belief
that 2 is of type 2,, after 2’s deviation is lower than w,, it is optimal for 1 to
accept y.

LEMMA 9: M, =x% and M, = y“°.

ProoF: A conclusion of Lemmas 7 and 8.

9. FINAL REMARKS
The Length of Negotiation

There is a significant difference between the bargaining sequential equilibria
in the two cases where y“o> V and y“o < V When y“o < V the bargaining ends
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at the first period and there is no screening of player 2’s type. If y“o> Vs, then
the bargaining in equilibrium might continue into the second period. Further
research is needed for clarifying the direction for the generalization of the current
result.

The Choice of Conjectures

In [15] I study the set of sequential equilibrium outcomes under several other
assumptions about the choice of conjectures in the bargaining game with fixed
bargaining costs. Specifically, I study the “optimistic conjectures” according to
which a deviation of player 2 always convinces player 1 that 2 is of type 2,,. The
optimistic conjectures are very often used in the incomplete information bargain-
ing literature since they serve as the best deterring conjectures.

The Game Starts with Player 2’s Proposal

In the main theorem the bargaining sequential equilibria are characterized for
the case that player 1 opens the game. If player 2 starts the bargaining and
if yeo>V, V then ((y“°,0), (y“°,0)) is a BSE outcome and if y“< V., then
(V,, 0), (VS, 0)) is a BSE outcome. This can be verified from the construction of
a BSE in the Theorem while noticing that the strategies, after 1 has demanded
the whole pie and has been refused, are BSE in a subgame starting with player
2’s proposal and initial belief w,. However, this is not the only BSE since
(B-1)-(B-2) are not effective as restrictions on 1’s belief after 2’s first offer. By
Proposition 4, 2,, and 2, make the same offer at the first period. We may extend
(B-2) so that we require that if 2 was supposed to make the offer y and his offer
s° was less than y, then w'(s°) < w,. With the extension of (B-2) we get that if
yo< Vs, then (( Vs, 0), (VS, 0)) is the only BSE outcome. If y“o> Vs, we get one
additional BSE outcome ((y“°, 1), (x“0, 2)): player 2 starts with the offer Vs, which
is rejected by player 1 who continues as if he had started the game; if 2 makes
an offer s,> V,, 1 concludes that 2 is 2,, and demands V,,.

Fixed Bargaining Costs

Assume that player 1’s utility is s — ¢t while the utilities of types 2,, and 2, are
(1-s)—c,t and (1—s)—ct. The preferences which are represented by these
utilities do not satisfy Assumptions (A-5), (A-6) but the same techniques which
are used to prove the main theorem are useful to calculate the bargaining
sequential equilibrium here:

@G If

2c
c+e,’

wo >

the only bargaining sequential equilibrium outcome is ((1, 0), (1—c¢,, 1)).
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(i) If

2¢ cte
> wo> ,
c+e, ct+ec,

the only bargaining sequential equilibrium outcome is ((c,, 0), (0, 1)).
(iii) If

the only bargaining sequential equilibrium outcome is {((c, 0), (¢, 0)). (The
appearance of the intermediate zone (2) is due to the fact that here
(Vy, 1) <, (V,0) and not (V,, 1) ~, (V,, 0), as in the previous case.)
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