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ABSTRACT: The correct aggregation of two conditionally independent signals

is by no means an easy task. In particular, individuals fail to recognize that

two weak positive signals of a rare event together constitute strong evidence

for the event, indicating the use of non-Bayesian methods. We demonstrate

the dramatic effect of replacing the Bayesian approach with simpler aggre-

gation procedures using the voting model of Duggan and Martinelli (2001).
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1. Introduction

We ask the reader to consider the following question:

The proportion of newborns with a specific genetic trait is 1%. Two conditionally

independent screening tests, A and B, are used to identify this trait in all newborns.

However, the tests are not precise. Specifically, it has been found that:

70% of the newborns who are found to be positive according to test A have the trait.

20% of the newborns who are found to be positive according to test B have the trait.

Suppose that a newborn is found to be positive according to both tests. What is your

estimate of the probability that this newborn has the trait?

Notice that the properties of the two tests are described differently than they would

be in standard economic theory. Usually, the tests would be described by the chances

of a positive or negative result conditional on whether or not the newborn has the trait.

In contrast, the question reports the likelihood of the trait given a positive result in ei-

ther test. This type of description is widely used in real life. In medicine, for example,

the results of a test are often assessed in terms of their positive predictive value (PPV)

which is defined by the NIH as: “The likelihood that an individual with a positive test

result truly has the particular gene and/or disease in question.”1 Similarly, the effective-

ness of an alarm system is often measured by the false alarm ratio (FAR), which is “the

number of false alarms per the total number of warnings or alarms in a given study or

situation”.2 And just as importantly, this is the way we relate to a multitude of signals in

daily life, such as the chances of snow when predicted by a forecaster, or the likelihood

that someone is at the door when the dog barks.

In the case of one test, the above question is trivial: neither the prior nor the distri-

bution of the signal given the states of the world are of any use. In the case of two tests,

on the other hand, Bayesian updating is more complex and does depend on the prior.

1https://www.cancer.gov/publications/dictionaries/genetics-dictionary/def/positive-predictive-
value

2https://www.statisticshowto.com/false-alarm-ratio-definition/
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Suppose that s ∈ (0,1) is the frequency of the trait and that a proportion φk ∈ [s ,1)

of the individuals who tested positive according to test k (k = 1,2) indeed have the trait.

Denote by pk and n k the probabilities of a positive result in test k for a newborn with

and without the trait, respectively. By standard Bayesian updating:

φk

1−φk
=

s pk

(1− s )n k
.

Denote by π the probability that a newborn who is found positive on both tests has the

trait. Then:
π

1−π =
s p1p2

(1− s )n 1n 2
=
�

1− s

s

�
φ1φ2

(1−φ1)(1−φ2)
.

Notice that: (i) π depends on s , (ii) if φ1 = s then test 1 can be ignored and π =φ2, and

(iii) given φ1 andφ2, π is close to 1 when s is very small. In our scenario, the probability

that the newborn has the trait is π= 0.983!

Thus, since the trait is rare, Bayesian analysis leads to an unintuitive conclusion: two

positive results indicate a high probability of the trait even if neither test is especially

accurate. This can be significant in a variety of contexts: In medicine, the results of

two conditionally independent tests for a rare disease might be concerning even though

each result is not particularly alarming by itself. In legal proceedings, two conditionally

independent clues about the guilt of a suspect, each unpersuasive on its own, may be

persuasive when considered jointly.3

One fairly natural conjecture is that most individuals would fail to compute the cor-

rect probability and would themselves be surprised by the correct answer, as were many

of our colleagues when presented with the above question. The observation that in a

variety of circumstances individuals fail to update beliefs via Bayes’ rule is certainly not

new. Introspection and a large psychological literature cast doubt on the hypothesis that

Bayesian updating procedures resemble those used in real life, even when the informa-

tion needed to form Bayesian posteriors is available and easily interpreted. In particular,

much attention has been given to the “base-rate fallacy”, identified in Kahneman and

Tversky (1973) and elucidated in Bar-Hillel (1980). For a survey of the literature on er-

rors in probabilistic reasoning, see Benjamin (2019) and for a survey on decision-making

heuristics, see Gigerenzer and Gaissmaier (2011).

3For a discussion of aggregation in law, see Porat and Posner (2012).
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In our context, the most relevant analysis is to be found in Budescu and Yu (2006)

who present evidence that individuals tend to aggregate information from multiple

sources by averaging. Our own evidence, based on a survey reported in Section 6, con-

firms this. It also highlights some other intuitive non-Bayesian methods of signal ag-

gregation. In particular, we find that individuals tend to use rules which lead, in the

above question, to the answers 14%, 20%, 45%, 70% or 76%. These correspond to five

simple formulae:

M : φ1φ2

M i n : m i n{φ1,φ2}
Av g : (φ1+φ2)/2

M a x : m a x {φ1,φ2}
M c : 1− (1−φ1)(1−φ2)

Of these rules only M c is qualitatively consistent with the conclusion that both tests

contribute positively to the posterior probability and thus the answer should exceed the

larger ofφ1 andφ2. Yet, even M c fails to yield the conclusion that when the prior is small

two moderately positive signals indicate a high probability of an event.

Our survey is by no means unequivocal evidence to the widespread usage of the

above rules. Nonetheless, as the rules are fairly intuitive and have natural interpreta-

tions, we will apply some of them in our theoretical analysis and study their implica-

tions. We begin with a simple example and then proceed to investigate Duggan and

Martinelli (2001)’s voting game.

2. An Example

Two referees must determine the guilt of a defendant. Initially, they believe that the

probability of the accused being guilty is s = 0.1. Each referee receives a conditionally

independent binary signal about the guilt or innocence of the defendant which is correct

with probability 1− α = 0.9 and incorrect with probability α = 0.1. The referees vote

simultaneously on the accused’s guilt, Y or N . The defendant is found guilty only if both

referees vote Y .
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The referees’ payoffs are depicted in the two matrices below: a referee receives 1 if

the decision is correct when the defendant is guilty, 8 if the decision is correct when the

defendant is innocent, and 0 in any other case. Thus, each referee prefers a conviction

only if his belief that the accused is innocent does not exceed 1/9.

Not Guilty N Y

N 8 8

Y 8 0

Guilty N Y

N 0 0

Y 0 1

Obviously, there is an equilibrium in which both referees always vote N . If the refer-

ees are Bayesian, then there is also an equilibrium in which they vote according to their

signals. To see this, note that a referee cares only about the case in which he is pivotal,

that is, in which the other referee chooses Y . If he gets an “innocent” signal and the

other referee gets a “guilty” signal thus voting Y , he believes that the defendant is guilty

with probability s (1−α)α
(1−s )(1−α)α+sα(1−α) = s = 0.1 and indeed it is optimal for him to vote N .

With a “guilty” signal, conditional on the other referee getting the same signal, the prob-

ability of guilt is s (1−α)2
s (1−α)2+(1−s )α2 =

0.1(0.9)2

0.1(0.9)2+0.9(0.1)2 = 0.9 and it is optimal for him to vote Y .

Thus, voting Y if and only if the signal is “guilty” is an equilibrium. A guilty defendant is

convicted with probability 0.81 and an innocent one with probability 0.01.

The situation changes when the referees are none-Bayesian. Assume that each ref-

eree forms his belief about the defendant’s guilt by aggregating two signals: his own pri-

vate signal and the event that the other agent gets a “guilty” signal (and therefore votes

Y). Each of the signals on its own increases the probability that the defendant is guilty

to s (1−α)
s (1−α)+(1−s )α = 0.5. Then, both the Av g and M a x procedures generate the belief that

the defendant is guilty with probability 0.5, while the M c procedure generates the belief

that the defendant is guilty with probability 0.75. Thus, on receiving a “guilty” signal,

a referee using any of those procedures will choose N and the unique equilibrium is

non-informative.
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3. The voting game in Duggan and Martinelli (2001)

We now consider the model presented in Duggan and Martinelli (2001). A panel of n

referees is to determine whether a defendant is guilty or innocent. The prior probability

of guilt is denoted as s . The referees vote simultaneously. Each referee votes either Y

(guilty) or N (not guilty) and the defendant is found guilty only when the referees unan-

imously vote Y. Prior to voting, each referee receives a private signal in the form of a

number in [0,1] about the guilt of the defendant and then votes whether or not to con-

vict. The signals are identically distributed and conditionally independent across the

referees. The cdf of each signal conditional on the defendant being guilty is F and that

conditional on him being innocent is G . The cdfs have continuous density functions f

and g , respectively. The following restrictions are imposed throughout:

(i) f (0) = 0, g (1) = 0, f (t )> 0 for all t > 0 and g (t )> 0 for all t < 1.

(ii) f (t )
g (t ) is strictly increasing.

Condition (ii) implies that F (t )
G (t ) <

f (t )
g (t ) <

1−F (t )
1−G (t ) for all t ∈ (0,1), F (t )

G (t ) and 1−F (t )
1−G (t ) are strictly

increasing, and together with condition (i), limt→1
1−F (t )
1−G (t ) =∞.

A referee prefers that the defendant be convicted if he believes that the probability of

guilt is at least z , a number in (0,1). This is equivalent to each referee maximizing a vNM

utility function that is equal to 1 if the correct decision is made when the defendant is

guilty; equal to λ = z
1−z

if the correct decision is made when the defendant is innocent;

and equal to 0 if the incorrect decision is made. Therefore, a natural welfare function

when each referee votes Y if and only if his observed signal is at least α, is:

W n (α) = s (1− F (α))n +(1− s )λ(1− (1−G (α))n ).

We assume that z ≥ 1/2≥ s . That is, the ex-ante belief that the defendant is guilty is not

stronger than the belief that he is innocent and the standards for conviction are higher

than the standards for acquittal.

In a strategic environment with incomplete information such as this one, the strate-

gies of the “other players” generate events that can be interpreted by a player as “signals”

and are aggregated with other exogenous signals to formulate posterior beliefs.4 In the

4For an alternative perspective on belief formation in Bayesian games, see Eyster and Rabin (2005).
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standard approach to binary voting models, a voter’s best reply depends on his own in-

formation and the event in which his vote is pivotal. Accordingly, we assume that each

referee aggregates two signals: his own private signal and the event that he is pivotal.

The probability of guilt given the private signal is exogenous. The probability of guilt

given that a referee is pivotal is determined in equilibrium. We assume that each referee

applies a signal-aggregation procedure in order to form a belief about the defendant’s

guilt and votes to convict if the belief is above the threshold z .

We refer to referee i ’s belief that the defendant is guilty – given his private signal t

and conditional on him being pivotal given that all players votes Y if and only if their

signal is above σ – as his C-belief and denote it by μi (t ,σ). The C-beliefs depend on the

procedures, Bayesian or non-Bayesian, used by the referees to update their beliefs.

To summarize, the model is the tuple 〈n , s , z , F,G , (μi )〉 where n is the number of

referees, s is the common prior probability that the defendant is guilty, z is the common

minimal belief as to the guilt of the defendant for which a conviction is optimal, F and G

are the distributions of each private signal given that the defendant is respectively guilty

or not guilty, and μi is referee i ’s C-belief.

It remains to define the equilibrium concept. A (symmetric) equilibrium is a cutoff

σ∗ < 1 such that for every referee i we have that μi (t ,σ∗)≤ z for all t <σ∗ and μi (t ,σ∗)≥
z for all t > σ∗. That is, in equilibrium whenever a referee votes N he believes that

the probability of the defendant being guilty is sufficiently low (weakly below z ) and

whenever he votes Y he believes that it is sufficiently high (weakly above z ). We require

that σ∗ < 1 to exclude the discussion of the non-informative equilibrium (which always

exists) in which all players vote N regardless of their signals and no player is ever pivotal.

This model was not chosen because it is particularly realistic5 but because it is stan-

dard, simple and well known. Other applications could have served the purpose. In

models of mechanism design, auctions, bargaining, and pricing with rational expecta-

tions, agents also aggregate multiple “signals” that are either observed directly or in-

ferred from equilibrium, as in the voting model.

5We agree with the criticism that the application of pivotal reasoning in voting is rather unrealistic (see
Esponda and Vespa (2014) for experimental evidence).
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4. Bayesian equilibria

We first review the voting model under the standard approach where for each i the C-

beliefs are defined by Bayesian updating:

μi (t ,σ) =
s f (t )(1− F (σ))n−1

s f (t )(1− F (σ))n−1+(1− s )g (t )(1−G (σ))n−1
.

Since μi is strictly increasing in t for a fixed σ < 1, σ∗ is an equilibrium if and only if it

satisfies:

μi (σ∗,σ∗) = z .

Clearly, the equilibrium is unique.6 For later use, we rearrange the equilibrium con-

dition. Let r k (θ ) be the probability that the defendant is guilty conditional on k referees

with a common cutoff θ voting Y:

r k (θ ) =
s (1− F (θ ))k

s (1− F (θ ))k +(1− s )(1−G (θ ))k
,

and set r k (1) = 1, which is the limit of r k (θ ) as θ → 1. The function r k is strictly increas-

ing and r k (θ ) < r k+1(θ ) for any k ≥ 1 and 0 < θ < 1. Then, σ∗ is an equilibrium if and

only if it satisfies:

r n−1(σ∗) = z g (σ∗)
z g (σ∗)+ (1− z ) f (σ∗) .

It follows from Duggan and Martinelli (2001) that the equilibrium condition also

characterizes welfare maximization with a common cutoff. As the number of referees

increases, the optimal cutoff decreases and converges to 0. Furthermore, the probabil-

ity of an incorrect decision given the optimal cutoff converges to 0. That is, the equilib-

rium level of welfare under the standard Bayesian approach converges to the “first-best”,

namely s +(1− s )λ.

6Our assumptions imply that μi (0,0) = 0, and the function μi (t , t ) is increasing, continuous and con-
verges to 1 as t → 1. Therefore, there is a unique α satisfying the equation μi (α,α) = z .
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5. Non-Bayesian games: aggregating two signals

We now consider the case in which all or some of the players are non-Bayesian and

use one of the procedures for signal aggregation described in the introduction. These

procedures use a formula that is a function of the two probabilities of the relevant state

conditional on each signal. In our case:

(i) the probability p (t ) that the defendant is guilty given the referee’s own signal t :

p (t ) =
s f (t )

s f (t )+ (1− s )g (t )

(ii) the probability r n−1(θ ) that the defendant is guilty given that the referee is pivotal

and the rest of the referees use the cutoff θ .

Note that p is strictly increasing and satisfies p (t )< r k (t ) for any t ∈ (0,1) and k ≥ 1.

We will see that replacing the Bayesian approach with other methods of signal aggre-

gation (Av g or M a x ) discussed in the introduction yields significantly different results.

5.1 The Avg game

Assume that all referees use the Av g procedure, that is, referee i ’s C-belief is:

μi (t ,σ) =
1

2
(p (t )+ r n−1(σ)).

Since C-beliefs are monotonic in t , equilibria are characterized by the solutions of the

equation 1
2
(p (β )+ r n−1(β )) = z . The following claim states that the equilibrium cutoff is

above the Bayesian one and as the number of referees increases the probability that any

defendant is convicted converges to zero.

Claim A In the Avg game:

(i) There is a unique equilibrium denoted by β ∗.
(ii) β ∗ ≥σ∗ with strict inequality unless z = s = 1

2
.

(iii) Denote by β ∗(n ) the equilibrium in the game with n referees. If z > 1
2

, then as n →∞:

(a) β ∗(n )→ β̄ where p (β̄ )+1= 2z ; and

(b) the level of welfare converges to λ(1− s ) (the defendant is almost never convicted).
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Proof. (i) The function 1
2
(p (β )+r n−1(β )) is increasing in β and ranges from s

2
to 1. Hence

there is a unique β ∗ at which it equals z . Clearly, this is the unique equilibrium.

(ii) Since z ≥ s :

p (σ∗)+ r n−1(σ∗) = s f (σ∗)
s f (σ∗)+ (1− s )g (σ∗) +

z g (σ∗)
z g (σ∗)+ (1− z ) f (σ∗) ≤

z f (σ∗)
z f (σ∗)+ (1− z )g (σ∗) +

z g (σ∗)
z g (σ∗)+ (1− z ) f (σ∗) ≤ 2z .

The first inequality holds strictly unless s = z = 1
2

given that z ≥ 1
2
≥ s . The second

inequality follows from x
z x+(1−z )y +

y
z y+(1−z )x ≤ 2 which holds with equality only for z = 1

2

or x = y (or z = 1). Therefore, one of the inequalities will hold strictly unless s = z = 1
2

.

By the monotonicity of p and r n−1, it follows that β ∗ ≥ σ∗ with strict inequality unless

z = s = 1
2

.

(iii) Since the function 1
2
(p (β )+ r n−1(β )) is increasing in β and n , the sequence β ∗(n ) is

decreasing. Since p (β ∗(n )) ≥ 2z − 1 > 0, β ∗(n ) is bounded away from 0 and the equi-

librium probability that the defendant will be found guilty converges to 0 as n → ∞.

Therefore, the sequence β ∗(n ) converges to the unique solution of p (β )+1= 2z . �

5.2 The Max game

Suppose that all referees use the M a x procedure, that is, for all i :

μi (t ,θ ) =m a x {p (t ), r n−1(θ )}.

The following claim states that the equilibrium cutoff is always below the Av g cutoff

and also below the Bayesian one when n is large. As the number of referees increases,

the equilibrium level of welfare approaches that in the Av g game, namely the level of

welfare in the case of a panel of referees that never convicts, despite the fact that con-

victions occur with probability larger than s .
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Claim B In the M a x game:

(i) There exists a unique equilibrium γ∗ satisfying r n−1(γ∗) = z .

(ii) γ∗ ≤ β ∗.
(iii) Let γ∗(n ) be the equilibrium in the game with n referees. There exists a sequence η(n )

that converges to∞ such that for any n, σ∗(n )>γ∗(n ) if and only if λ<η(n ).

(iv) As n increases, the probability of convicting a guilty defendant converges to 1 and that

of convicting an innocent one converges to s
(1−s )λ . The level of welfare converges to λ(1−s ).

Proof. (i) The unique solution γ∗ of r n−1(γ) = z is an equilibrium: if a referee receives a

signal below γ∗, then his C-belief is z and he is indifferent between voting Y and voting

N; if he receives a signal above γ∗, then his C-belief is at least z and voting Y is optimal.

There is no other equilibrium:

(a) A common cutoff γ < γ∗ is not an equilibrium since a referee with a signal t ∈ (γ,γ∗)
has a C-belief equal to m a x {p (t ), r n−1(γ)} which is less than z since p (t ) < p (γ∗) <
r n−1(γ∗) = z and r n−1(γ)< r n−1(γ∗) = z . Such a referee prefers to vote N.

(b) A common cutoff γ̄ > γ∗ is not an equilibrium since in that case any referee’s C-belief

is at least r n−1(γ̄)> z and thus voting N is not optimal given any signal.

(ii) The assertion follows from the Av g equilibrium condition 1
2
(p (β ∗) + r n−1(β ∗)) = z

and the fact that r n−1(t )> p (t ) for all t ∈ (0,1).

(iii) γ∗(n ) is the solution to r n−1(t )
1−r n−1(t ) = λ and σ∗(n ) is the solution to r n−1(t )

1−r n−1(t )
f (t )
g (t ) = λ. The

two LHS functions are increasing and have the same value only at the point t̄ such that

f (t̄ ) = g (t̄ ). Define η(n ) = r n−1(t̄ )
1−r n−1(t̄ ) . The sequence converges to infinity since F (t̄ )<G (t̄ ).

Then, λ<η(n ) iff γ(n )< t̄ iff f (γ(n ))
g (γ(n )) < 1 iffσ∗(n )>γ∗(n ).

(iv) Since γ∗(n )<σ∗(n ) for large n , the probability that a guilty defendant is found guilty

goes to 1. The ratio of convictions of guilty defendants to those of innocent defendants

is s (1−F (γ∗(n )))n
(1−s )(1−G (γ∗(n )))n =

r n−1(γ∗(n ))
1−r n−1(γ∗(n ))

1−F (γ∗(n ))
1−G (γ∗(n )) which converges to λ by the equilibrium condi-

tion. Therefore, the probability of an innocent defendant being found guilty converges

to s (1−z )
(1−s )z and the level of welfare converges to s +(1− s )λ(1− s

1−s
1−z

z
) = λ(1− s ). �
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Remark (the Min game): By an argument similar to that in Claim B, the only equilibrium

of the game in which all referees follow the M i n procedure is δ∗ satisfying p (δ∗) = z .

Since the equilibrium is independent of n and δ∗ > 0, the probability of conviction goes

to zero as the number of referees increases, and the level of welfare converges to (1−s )λ,

as in the Av g and M a x games.

5.3 The Mixed Bayesian and Avg game

Suppose that nκ referees are Bayesian and the rest use Av g . We assume that at least two

referees use Av g . An extension of the equilibrium definition specifies α∗ < 1 and β ∗ < 1

where α∗ is the common cutoff of the Bayesian players and β ∗ is the common cutoff of

the Av g players.

The following claim shows that as long as the proportion of Av g referees is positive,

then as n increases, the probability that the defendant is convicted goes to zero.

Claim C Suppose that z > 1
2
> s .7 Then:

(i) An equilibrium exists.

(ii) Any sequence of equilibria (α∗(n ),β ∗(n )) converges to (0, β̄ ) where p (β̄ ) = 2z − 1 and

the equilibrium probability of conviction converges to zero as n →∞.

Proof. (i) Defineψ(t ) = 1−G (t )
1−F (t ) . An equilibrium (α∗,β ∗)∈ (0,1)× (0,1) is characterized as a

solution of the equations:

1

1+ 1−s
s

g (α)
f (α) (ψ(α))

κn−1(ψ(β ))n−κn
= z

1
2
[p (β )+

1

1+ 1−s
s
(ψ(α))κn (ψ(β ))n−κn−1

] = z

7When s = z = 1
2

there exists an equilibrium that is identical to the one in which all n players are

Bayesian (or use Av g ). Let τ∗ be the solution of the equation g (τ)
f (τ) (ψ(τ))

n−1 = 1. Then, τ∗ also solves the

equation p (τ) + 1/(1+ (ψ(τ))n−1) = 1. Therefore, α∗ = β ∗ = τ∗ is an equilibrium. Obviously, τ∗ is also an
equilibrium when all referees are either Bayesian or use Av g .
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A solution in (0,1)× (0,1) exists.8

(ii) Let (α∗(n ),β ∗(n )) be a sequence of equilibria. The sequence α∗(n ) converges to 0. If

not, there would be an ε > 0 and a subsequence that is above ε. Since ψ(ε) ∈ (0,1) and

ψ is increasing, the LHS of the first equation along the subsequence would converge to

1> z .

Since p (β ∗(n )) > 2z − 1 > 0 there is ε > 0 such that β ∗(n ) > ε for all n . Since ψ(ε) ∈
(0,1), by the second equation β ∗(n ) converges to β̄ , the unique solution of p (β ) = 2z −1

and β ∗(n )> β̄ . It follows that the probability that all Av g referees will vote Y is less than

s (1− F (β̄ ))n (1−κ) + (1− s )(1−G (β̄ ))n (1−κ), which converges to zero as n→∞. �

Comment: An alternative approach to modelling belief formation with non-Bayesian

procedures is that each referee aggregates n signals rather than two: his own signal and

additional distinct signals, one for each Y vote cast by the other referees. More precisely,

a referee i who receives the signal t and knows that all of the other referees follow a

common cutoff θ forms his C-belief by aggregating:

(i) his own signal t (according to which the defendant is guilty with probability p (t ));

and

(ii) n − 1 other signals: for each referee j 
= i the signal that he is voting Y, that is, j ’s

private signal is at least θ (for any one of these signals the defendant is guilty with prob-

ability r 1(θ )).

Thus, under the Av g approach, μi (t ,θ ) = 1
n
(p (t ) + (n − 1)r 1(θ )) and under the M a x

approach, μi (t ,θ ) =m a x {p (t ), r 1(θ )}.
The conclusions reached in the previous section essentially remain valid under this

approach to belief formation. In particular, in the equilibria of the Av g and M a x games,

the probability of conviction goes to zero as the number of referees becomes large.

8For every β < 1, there is a unique α ∈ [0,1) that solves the first equation since the equation’s LHS
converges to 0 as α→ 0 and to 1 as α→ 1. Denote this solution by a (β ). For every α ∈ [0,1], there is a
unique β ∈ (0,1) which solves the second equation since the LHS converges to 1 as β → 1 and is equal
to 1

2(1+ 1−s
s
(ψ(α))κn )

< 1
2

at β = 0. Denote this solution by b (α). The functions a (β ) and b (α) are continuous

and decreasing. It can easily be verified using standard arguments that there exists (α∗,β ∗) ∈ (0,1)× (0,1)
which solves both equations.
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6. Survey evidence

The intuition that people fail to recognize that two moderate and conditionally indepen-

dent signals of a rare event aggregate to significant evidence of the event was confirmed

in several discussions with colleagues familiar with probability theory, many of whom

were surprised by this feature of Bayesian updating. We also conducted a survey which

showed that only a small minority of people reach the correct conclusion and that the

majority use one of the formulae mentioned in Section 1.

The main survey was conducted at the Center for Experimental Social Science at

New York University (NYU) and the Centre for Behavioural and Experimental Social Sci-

ence at the University of East Anglia (UEA).9 Students registered with the labs were in-

vited to participate10 and each participant was assigned randomly to answer one of five

questions.11 The questions were similar to the one presented in the introduction except

for two main differences. First, we provided a non-technical description of conditional

independence. Second, in four of the five questions, the ex-ante frequency of the trait

“1%” was replaced with “a very small proportion”. For completeness, we provide the

question we posed in the introduction as it appeared on the survey (question Q1):

9We are indebted to the Centre for Behavioural and Experimental Social Science at The University of
East Anglia, and especially to Theodore Turocy, and to the Center for Experimental Social Science at New
York University, and especially to Anwar Ruff and Shayne Trotman, who were so generous with their time.

10At UEA, one out of ten students received 20 pounds for participating and at NYU each student re-
ceived $10. Students were not incentivized in any other way. We do not report the results for each center
separately since the differences were negligible.

11Prior to this survey we conducted a pilot on the platform arielrubinstein.org/gt, a website for carrying
out pedagogical experiments in choice theory and game theory, in which almost all of the participants are
current or past students in game theory courses. No monetary incentives were provided other than a few
participants being randomly chosen to receive $40 regardless of their answers. No significant difference
were detected between the pilot’s results and those reported below.
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Q1: A very small proportion of the newborns in a certain country have a specific ge-

netic trait.

Two screening tests, A and B, have been introduced for all newborns to identify this

trait. However, the tests are not precise. A study has found that:

70% of the newborns who are found to be positive according to test A have the genetic

trait (and conversely 30% do not).

20% of the newborns who are found to be positive according to test B have the genetic

trait (and conversely 80% do not).

The study has also found that when a newborn has the genetic trait, a positive result in

one test does not affect the likelihood of a positive result in the other. Likewise, when

a newborn does not have the genetic trait, a positive result in one test does not affect

the likelihood of a positive result in the other.

Suppose that a newborn is found to be positive according to both tests. What is your

estimate of the likelihood (in %) that this newborn has the genetic trait?

In Q2 we changed the probabilities to 80% and 60% instead of 70% and 20%. In Q3,

we changed the underlying story by replacing newborns with undergraduates who are

either continuing on to graduate school or not. A positive result on a test is replaced by

a student having taken a certain course. The proportion of students who continue on to

graduate school is 70% for those who took course A and 20% for those who took course

B. The results for Q1, Q2 and Q3 are presented in Table 1.

Note that under the assumption that “a very small proportion” is interpreted as being

at most 5%, a correct answer in Q1 and Q3 is at least 91% and in Q2 it is at least 98%. The

proportions of those answers appear in the first column.

“correct” n (MRT) M Av g M a x >M a x (M c ) Other
Q1genetic, 70-20 3% 93 (118s) 14% 20% 14% 20% (4%) 32%
Q2genetic, 80-60 1% 91 (107s) 21% 27% 15% 18% (11%) 19%
Q3students, 70-20 1% 97 (98s) 7% 27% 20% 21% (6%) 25%

Table 1: Results for Q1, Q2 and Q3.
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As shown in the table, a majority (about 60%) of the participants used one of the four

formulae: M , Av g , M a x or M c . Around 20% chose an answer strictly above the larger

of φ1 and φ2, which is qualitatively correct. There do not appear to be any significant

differences in the results between the three questions. The median response time (MRT)

was also quite similar in all three, ranging from 98 to 118 seconds.

Q4 was used to check the consistency of the approaches used by the participants.

We asked them to simultaneously estimate the likelihood of the trait given two differ-

ent pairs of test results: Alice tests positive on two tests with accuracy of 70% and 20%,

respectively and Bob tests positive on two tests with accuracy of 50% and 40%, respec-

tively. We observe a considerable degree of consistency. Of the 92 participants, about

60% were consistent in their use of one of the four formulae: M (15%), Av g (30%),

M a x (13%) and M c (2%). Furthermore, 8% of the participants consistently gave answers

above M a x which differed from the answer according to M c . There were no correct an-

swers.

Q5 is identical to Q1 except that the base rate is 20% (rather than “a very small pro-

portion”). As noted earlier, when the base rate is equal to φ1, the correct answer is φ2.

Nonetheless, all four formulae were used in this question. About 17% gave the right an-

swer but it is unclear whether it was for the right reason or it was based on the M a x

formula. About 13% gave the base-rate probability (20%) as their answer. One-sixth of

the participants chose an answer strictly above both φ1 and φ2, although in this ques-

tion any answer other than 70% is qualitatively incorrect.

“correct” n (MRT) M 20% Av g M a x >M a x (M c ) Other
Q5 17% 94 (121s) 10% 13% 9% 17% 16% (3%) 36%

Table 2: Results for Q5.
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7. Summary

Individuals often fail to understand that two relatively weak signals that a rare state has

been realized in fact is very strong evidence and use non-Bayesian procedures for pro-

cessing multiple signals. We modify a well-known voting model by assuming that voters

use non-Bayesian procedures for aggregating signals. We show that in contrast to the

standard case:

(1) If all the referees use the Av g procedure and the number of referees is large almost

all defendants are acquitted.

(2) If all the referees use the M a x procedure and the number of referees is large, all guilty

defendants are convicted, as well as some proportion of the innocent ones. Remarkably,

the level of welfare converges to that achieved when the referees never convict.

(3) If some proportion of the referees - no matter how small - uses the Av g procedure

and the remaining referees are Bayesian, then it is almost certain that the defendant will

be acquitted when the number of referees increases to infinity.

(4) While a “large” Bayesian panel approximates the first-best, all of the other types of

“large” panels that we investigate achieve in the limit the same level of welfare as a panel

that never convicts, even though the members of the panel use different equilibrium

strategies.
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