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Abstract: A principal needs to decide which of two parties deserves a prize. Each party

privately observes the state of nature that determines which of them deserves the prize.

The principal presents each party with a text that truthfully describes the conditions for

deserving the prize and asks each of them what the state of nature is. The parties do not

behave strategically. Each party can lie by activating a cheating procedure which relates

to the state and the text given to him. The principal “magically implements” his goal

if he can come up with a pair of texts satisfying that in any dispute, he will recognize

the cheater by applying the following rule: the truth is with the party satisfying that if

his statement is true, then the other party (using the cheating procedure) could have

cheated and made the statement he is making, but not the other way around. Several

examples are presented to illustrate the concept.
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1. Introduction

Two invigilators, B and G, have overheard a student receiving a whispered message from

another student during an exam. The invigilators have not seen the questions on the

exam but would be able to solve them. It is known that B is hostile to the student who

received the message while G is sympathetic towards him. The exam includes multiple

questions but only one refers to the variable α and reads as follows: “Solve the equation

α+ 1 = 4.” The student answers the question correctly. Invigilator B claims that the

whispered message was: “α= 3.” This is a serious allegation and if correct, the student’s

exam will be disqualified. Invigilator G claims that the whispered message was: “Solve

the equation α+1= 4 first.” If he is right, then the student’s answer genuinely reflects his

knowledge of the material and there will not be any serious consequences. Who should

be believed: B or G?

Although there is no definitive proof for either claim, we would choose to believe G.

The reasoning would be that if the message were “Solve the equation α+ 1 = 4 first”,

then B could solve the equation himself and claim that the message was “α= 3”. On the

other hand, if the message were “α = 3”, it is very unlikely that G (who, as mentioned,

has not seen the exam questions) could guess that the equation solved by the answer

α = 3 is α+ 1 = 4 rather than any other equation with the same solution. Hence, there

is asymmetry between the two conflicting claims, which makes it possible to reasonably

conclude that G’s claim is the truthful one.

In the above episode, the asymmetry between the two claims is built in rather than

engineered by someone seeking to uncover the truth. In other cases, one might consider

designing a mechanism that creates asymmetry between a truth-teller and a cheater,

which the principal would be able to exploit in order to identify the truth-teller with

reasonable certainty. The design of such a mechanism is at the core of our analysis.

We consider situations of the following nature: Two parties claim a prize being of-

fered by a principal. The principal’s view is that only one of them truly deserves the

prize, and his identity is determined unequivocally by facts known to the two parties

but not to the principal. The parties do not know the principal’s view; nonetheless both

insist that they deserve the prize.
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The situations we have in mind are related to the biblical Judgement of Solomon,

where two women claim to be the mother of the same baby and the king must decide

who is telling the truth. In that story, unlike ours, the women know the circumstances

under which King Solomon wishes to deliver the baby to each of them. There is also an

asymmetry in the women’s preferences with regard to the potential consequences of the

ruling: the true mother likes the baby “more” than the fake mother in the sense that the

true mother – whichever woman she is – is willing to pay more for the baby than the

fake mother. This asymmetry allows Glazer and Ma (1989) (later generalized by Perry

and Reny (1999)) to construct a game form with the feature that regardless of who the

true mother is, the induced extensive game has a unique subgame perfect equilibrium

with the outcome that the true mother gets the baby without making any payment. In

contrast, we consider similar disputes without assuming any asymmetry in preferences

or information. The only asymmetry between the two parties is that one deserves the

prize and can claim it by telling the truth about the state while the other can claim the

prize only by telling a lie.

The approach taken in this paper is that, unlike telling the truth, cheating is often not

a simple task, and it may require the liar to operationalize some “cheating procedure”.

We show that a principal who is aware of the agent’s cheating procedure can sometimes

design a mechanism that will enable him to identify the liar without observing an actual

“smoking gun”.

We study mechanisms where the principal provides each party with a text describ-

ing the circumstances (the set of states) under which he deserves the prize. Each party

then submits a description of a state which he claims to be the true state. The model is

enriched by (i) a language that the principal can use to compose a text, and (ii) a cheat-

ing procedure that determines the state a party will announce, given the text he received

and the realized state he observed. The cheating procedure is common to the two par-

ties and is known to the principal. Both the language and the cheating procedure are

situation-specific. For now, their details are left vague; nonetheless, each situation we

analyze below will entail a formal specification.
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Returning to the biblical “King Solomon Judgement” story, notice that if the moth-

ers were reasoning strategically, then Solomon would not have been able to implement

his strategy. In that case, the false mother would have known the king’s strategy and

would have imitated the true mother’s strategy. King Solomon—“the wisest man who

ever lived”— thus gained his reputation by being able to predict how the two mothers

would respond to the mechanism he had designed.

We also adopt a non-game-theoretic approach (a point that will be discussed later)

that is based on a novel concept we refer to as “magical implementation”. A magical im-

plementation mechanism consists of the following stages (which occur after the parties

have been informed about the state):

Stage 1: The principal provides each party with a true and full description of the set of

states in which the party deserves the prize. Being constrained by a language, there are

numerous texts that can describe this set and the particular text presented to a party is

chosen at the principal’s discretion.

Stage 2: Each party must present a factual statement (true or false) to the principal after

he is informed that:

(i) If his statement does not justify his claim for the prize, he will not receive it for certain.

(ii) If his statement justifies his claim while the other agent’s does not, then he will

receive the prize.

The party is not informed about the outcome if both his and the other agent’s statements

justify their respective claims.

Stage 3: The principal considers the statements, s1 and s2, made by party 1 and party 2,

respectively, and makes his decision as follows:

• If both statements imply that the same party deserves the prize, then he awards it

to that party.

• If both parties make a statement justifying their own claim to the prize, then the

principal checks whether there is a party i such that if si is true, then the cheating

procedure might have enabled party j to make the statement s j , whereas if s j is

true, the procedure could not have enabled party i to make the statement si . In

this scenario, the prize is awarded to party i .

• In all other cases, neither party is awarded the prize.
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In other words, the principal provides each party with an accurate description of the

conditions under which he deserves the prize. The principal will grant the prize if the

two parties agree on who deserves the prize, or if he can apply what we refer to as the

“one-way cheating principle”, according to which the truth is with the party satisfying

that if his statement is true, then the other party (using the cheating procedure) could

have cheated and made the statement he is making, but not the other way around.

Asymmetries between statements are often used in practice as a tool to decide which

of two conflicting statements is true. For example, scholars of old manuscripts who have

before them two versions of the same text, but only one of which can be genuine, use

such asymmetries as a tool to decide which one is the original. A principle known as

“Lectio difficilior potior” instructs scholars to prefer text A over text B if text A can be

seen as a simplification of text B, but not vice versa.

Another such natural asymmetry involves word associations (see Michelbacher, Ev-

ert, and Schütze (2007)). For example, if two parties disagree about which university a

certain professor graduated from, where one claims it is MIT and the other that it is NIT,

then we would tend to believe that the professor graduated from NIT.

In what follows, we formalize the concept of magical implementation and apply it in

three examples.

2. The formal framework

Parties 1 and 2 are in a dispute over a single indivisible prize. Let S be the set of all pos-

sible states of the world. The set S is partitioned into two disjoint subsets, W 1 and W 2,

where W i denotes the set of states in which party i should win the prize. In every state

both parties are informed about the state but do not know the partition that determines

who deserves the prize. We refer to the tuple ‹S, W 1, W 2› as an implementation problem.

A principal who is not informed about the state needs to rely on the parties in order

to award the prize correctly. He constructs a pair of texts T 1 and T 2, where T i is the text

provided to party i . We interpret a text as a description of circumstances in which the

party that receives the text deserves the prize. In choosing the texts, the principal uses a

language L= ‹T, I nt ›, where T is a set of texts and I nt is an interpretation function that

assigns to each T ∈ T a subset I nt (T ) of states in which T is true. Notice that we allow

different texts to have the same interpretation.
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The principal gives the text T i to agent i and asks him to declare the true state. He

informs agent i that if the state he decares does not satisfy T i he will definitely not get

the prize. However, the principal does not disclose what would happen if both agents

declare states that satisfy their respective texts.

Once a party has received a text T , he sends a message to the principal in the form of

a state in S. It is assumed that if the state s satisfies the text T (that is, s ∈ I nt (T )) then

the party will send the message s . Otherwise, the party applies a cheating procedure

formalized as a binary relation→T on S. The statement s →T t is interpreted as: “If the

true state is s and the text T is not satisfied by s , then the cheating procedure may lead

the party to claim t which does satisfy T .” The same state s may have multiple states

t for which s →T t . We assume that both parties apply the same cheating procedure.

We will consider a different language and a different cheating procedure in each of the

sections below.

We say that the pair of texts (T 1, T 2)magically implements ‹S, W 1, W 2› if:

(1) I nt (T i ) = W i for both i . That is, the principal provides each party with a correct

description of the circumstances under which he deserves the prize.

(2) For every two states s and t , if s →T i t (and thus s ∈W j and t ∈W i ) then t 9T j s .

That is, given any state, if the undeserving party cheats, then the principal can apply the

one-way cheating principle (given the cheating technology) and infer correctly which

party is telling the truth.

We use the term magical implementation because magicians possess skills to discern

subtle patterns and behavioral cues in human actions, which they are able to exploit in

order to create the illusion of a miracle. The principal, in his role as magician, exploits

his understanding of human imperfections in order to achieve his goal. Whereas a ma-

gician wishes to entertain his audience, the principal wishes to identify which of two

rival parties is telling the truth.

Discussion: The notion of magical implementation is fundamentally different from the

classical notion of Nash implementation, in that it does not involve a game. First, the

principal provides each party only with a text that truthfully describes the circumstances

in which he deserves the prize and commits that the party will not receive the prize if his

claim does not meet the conditions described in the text. However, the principal does
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not inform the parties of what will happen if their claims contradict each other. Second,

the parties do not think strategically, i.e. they do not take into consideration the other

party’s actions. Each party acts as a “problem solver” being aware that he will certainly

not get the prize if he does not solve the problem and without being aware that even if

he successfully solves the problem he still may not get the prize.

Note that if the parties were aware of the principal’s inference method and would

think strategically, then following the cheating procedure would not constitute a Nash

equilibrium. More precisely, when s ∈W i , we assume that party j will declare a state t

such that s →T j t even if t 9T i s . But in that case, party j would do better if he finds a

state r such that r →T i s and s 9T j r and based on this lie persuades the principal that

party i is the cheater.

The one-way cheating principle differs from the basic idea behind the standard Nash

implementation mechanism à la Maskin (1999) (in an environment of at least three

agents). There, the mechanism accepts an appeal by an agent if and only if the ap-

peal is against the agent’s own interests (according to the consensus among the other

agents about his preferences). Obviously, Nash implementation is not feasible in our

environment. Magical implementation is based on the asymmetry created by the use of

the cheating procedure rather than the exploitation of differing interests.

Notice also the difference between our approach and that of the literature on imple-

mentation with hard evidence (see, for example, Green and Laffont (1986), Lipman and

Seppi (1995), Glazer and Rubinstein (2006)). In that literature, an agent is limited as to

the lies he can tell about the state. This limit is given and is not affected by the mecha-

nism designed by the principal. In contrast, in our setting the limit is determined as a

function of the text given to the agent and the cheating procedure.
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3. Setting a trap through associations

3.1 A motivating story

A village in DrSeussLand is populated by Yooks and Zooks. A person was seen planting

a bomb. The police arrests 8 suspects in the neighborhood: 3 Yooks (their names are

denoted by y1, y2, y3) and 5 Zooks (their name are denoted by z 1, z 2, z 3, z 4, z 5). It is certain

that one of the suspects is the terrorist. There are two witnesses to the event – one of

them a Yook and the other a Zook. The witnesses are able to recognize the terrorist.

They do not know whether he or any other suspect is a Yook or a Zook because you can’t

distinguish Yooks and Zooks by appearance or name.

The witnesses are reluctant to identify the terrorist because he might belong to their

own group, and such an action would be seen as a betrayal. For a Yook “getting the prize”

means that a Zook is charged with the crime while for a Zook “getting the prize” means

that a Yook is charged.

The authorities are determined to identify the terrorist. They know which group each

of the suspects belong to and are aware of the witnesses’ reluctance to turn in a member

of their own group. They construct two websites – one for the Yook witness and the other

for the Zook witness. On the first page of each site, they insert the pictures and names of

the 8 suspects. Recall that the name of a suspect does not reveal whether he is a Yook or

a Zook.

z 3 y2 z 5 z 4 y1 z 2 z 1 y2

Figure 1. The first page of both websites

Each website comprises numerous pages, each displaying the names and pictures of

two suspects. We consider each page as a means to trigger an association between the

two suspects featured on it. In practice, this trigger could be emphasizing a prominent

characteristic that is shared between the two. To ensure that an agent associates B after

considering A, we might include a prominent detail in the description of A that is shared

exclusively with B.

The left graph on Figure 2 describes the Yook’s website while the right graph de-
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scribes the Zook’s. An edge in a graph means that the two connected suspects appear

on one of the pages in the corresponding website. Both witnesses are obliged to name a

suspect. The activity on both websites is confidential and the authorities cannot moni-

tor it.

The Yook witness is informed that a suspect is a Zook if and only if he appears on at

least two pages of his website. Similarly, the Zook witness is informed that a suspect is a

Yook if and only if he appears on at least two pages of his website. Both witnesses know

that the information is accurate since the authorities are prohibited from cheating.

z 3

z 2

z 1

y 5

y 4

y 3

y 2

y 1

z 3

z 2

z 1

y 5

y 4

y 3

y 2

y 1

Figure 2. The graph on the left describes the Yook’s website while the graph on the right describes the
Zook’s. Each edge represents one webpage with the pictures and names of two paired suspects.

The authorities are aware of the witnesses’ cheating procedure. Each witness naively

searches for a suspect who belongs to the other group (i.e. his name appears on at least

two pages of his website). He can use a search engine in the process. A witness starts

by checking the group identity of the actual terrorist and if he does not belong to the

opposite group (i.e. his name appears only once in the website), he repeats the process

starting with the other name that appears with the terrorist on the only page that the

terrorist’s name and picture are displayed.

In order to demonstrate the authorities’ scheme, assume that the terrorist is z 1. The

Yook starts by searching for the name z 1 and finds that it appears on four pages, namely

that the terrorist is a Zook and thus he can happily announce that he has identified z 1

to be the terrorist. The Zook also starts by searching for the name z 1 and discovers that

on his website the name appears only on one page, together with y2. He concludes that
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he has to cheat. Hoping that y2 appears on at least one more page, he continues by

searching for y2 and finds that he appears on his website more than twice and thus y2

is a Yook. He then announces that the terrorist is y2. Thus, both witnesses identify a

suspect from the other group.

The DrSeussLand authorities now face a dilemma. Nevertheless, they conclude that

z 1 is the terrorist. Their logic is based on an understanding of the witnesses’ cheating

procedure. They know that if the terrorist is z 1 (as the Yook claims), the Yook would claim

that the terrorist is z 1 and the Zook would claim that the terrorist is y2. They also know

that if the terrorist is y2 (as the Zook claims), then the Yook witness would announce z 2

rather than z 1. This is because he would start from y2, and after discovering that he is

not a Zook, would continue by searching for the name z 2 (suspect y2’s partner on the

only page in the Yook’s website where y2 appears). The asymmetry leads the authorities

to apply the one-way cheating principle and conclude that the terrorist is z 1 and not y2.

It is easy to verify that the above magic would work whichever suspect is the terrorist.

3.2 The general case

The implementation problem: The set of states S is finite and partitioned into W 1 and

W 2, each of which has at least two states.

The language: A text is characterized by a set D of doubletons of states in S and has the

following form:

T (D): You deserve the prize if the state of nature is a member of at least two

doubletons in D .

The cheating procedure: A party is endowed with a technology that provides him with

answers to questions of the type Q(D, s ): “Which sets in D contain s ?” Denote by A(D, s )

the answer to question Q(D, s )which could be either:

(i) none;

(ii) one doubleton {s , t } (which contains s ); or

(iii) a set of at least two doubletons (each containing s ).

We assume that a party which receives a text T (D) and observes the state s activates the

following procedure:
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Start by asking the question Q(D, s ).

If |A(D, s )|> 1, then declare s .

If A(D, s ) contains only {s , t }, then ask the question Q(D, t ). If |A(t )|> 1, then declare

t . Otherwise, that is if A(D, s ) = ;, or A(D, s ) = A(D, t ) = {{s , t }}, repeat the process

starting with an arbitrary state x for which the question Q(D,x ) was not asked previ-

ously.

If you have exhausted all states in S without finding an element that belongs to two

sets with labels in D , then give up and declare s .

Notice that unless no state satisfies the text T (D) this procedure will always end up with

the party finding a state that satisfies it. This is the reason that given the aforementioned

framework, the principal cannot achieve his goal with a single party.

The formal description of the cheating procedure is the relation defined by s →T (D) t

if either:

(i) A(D, s ) = {{s , t }} and |A(D, t )|> 1; or

(ii) |A(D, t )|> 1 and either “A(D, s ) = ;” or “A(D, s ) = {{s ,x }} and |A(D,x )|= 1”.

In option (i), the party asks the question Q(D, s ) and discovers that s appears only in

{s , t }. He is then nudged to ask Q(D, t ) and discovers that t satisfies the text.

In option (ii), the party starts with Q(D, s ) and then is stuck, either because s does not

appear in any doubleton in D , or it appears only once with another state that also ap-

pears only once. In either of these cases, the party picks an arbitrary state not explored

before and that state may be t .

Claim A Let ‹S, W 1, W 2› be a problem satisfying that every W i contains at least two states.

If the principal is equipped with the above language and both parties use the above cheat-

ing procedure, then the problem is magically implementable.

Proof. Enumerate the states of W 1 and W 2 as z 1, . . . , z K and y 1, . . . , y L , respectively (with-

out loss of generality assume that K ≤ L). Form a sequence x 1, . . . ,x 2L starting with y 1

and alternating between states in W 1 and states in W 2 (for the the case K = L, we de-

note x 2L+1 = x 1). The states of W 2 appear in order. The states of W 1 appear cyclically

(if necessary) in their order. Thus, for example, if K = 3 and L = 5 the sequence will be:

(x 1, . . . , x 10) = (y 1, z 1, y 2, z 2, y 3, z 3, y 4, z 1, y 5, z 2). The key feature of this construction is
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that there is no pair of states z ∈W 1 and y ∈W 2 such that z appears right after y some-

where in the sequence and appears right before y somewhere else in the sequence.

We now construct two texts: T (D1) (assigned to party 1) and T (D2) (assigned to party

2). The set D1 consists of:

(i) K doubletons {z 1, z 2},{z 2, z 3}, . . . ,{z K , z 1}; and

(ii) |W 2| doubletons {x k ,x k+1}, one for each x k ∈W 2.

The set D2 is constructed similarly. Figure 2 above illustrates the construction of the

texts T (D1) (on the left) and T (D2) (on the right) in the case that W 1 = {z 1, z 2, z 3} and

W 2 = {y1, y2, y3, y4, y5}.

For any y ∈W 2, the set A(D1, y ) contains only one doubleton {y , z } where z appears

right after y in the sequence (x 1, . . . ,x 2L), and therefore y does not satisfy T (D1). This z

is in W 1 and |A(D1, z )| > 1. Thus, there is a unique z ∈W 1 (the one which comes after

y in the sequence) such that y →T (D1) z . On the other hand |A(D2, y )| ≥ 2 and therefore

y satisfies the text T (D2). Similarly, any z ∈ W 1 satisfies the text T (D1) and there is a

unique y ∈W 2 (the one which comes after z in the sequence) such that z →T (D2) y .

By the construction of the sequence (x 1, . . . ,x 2L), there is no case where y comes right

after z and also z comes right after y . Thus, for no z ∈W 1 and y ∈W 2 do we have both

y →T (D1) z and z →T (D2) y . It follows then that (T (D1), T (D2))magically implements the

problem. �

The intuition underlying the construction of the two texts is as follows: If s ∈ W i ,

then party i will find that at least two doubletons in Di contain s and he will declare s .

Party j starts with s and finds that only one doubleton {s , t } is in D j . He then asks about

the state t and ascertains that it belongs to two doubletons in D j and declares t . But

party j has fallen into a trap! The principal can apply the one-way cheating principle

(given the state s , party j could cheat using t and if the state were t , then party i could

not cheat by declaring s ) and concludes that j is the cheater.
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4. Setting a trap through a logical riddle

This section investigates the concept of magical implementation when the language of

the principal and the parties’ cheating procedure are similar to those discussed in Glazer

and Rubinstein (2012) in the context of a single-agent implementation problem.

4.1 A motivating example

The rector of a university, a magician in his spare time and known for his eccentric

academic opinions, is consulting with two professors, Pro and Con, about whether to

appoint Professor G to a prestigious university chair. Pro and Con have each interviewed

G. The rector knows that even though they agree on G’s academic merits, Pro firmly sup-

ports the appointment, while Con is vehemently against it.

The rector will form his opinion on the basis of the truth or falseness of three state-

ments about G: E =“G is a genuine scholar of Economics”, L =“G is a genuine scholar of

Law”, and P =“G is a genuine scholar of Psychology”. The professors do not know which

combinations of the facts will induce the eccentric rector to approve the appointment.

The rector could simply ask the professors to state the facts (about which they agree,

as mentioned) but he fears that they may give him a biased opinion due to their strong

personal bias for or against G. He suspects that they may not be above deception in order

to “save the university from what they consider to be a catastrophic decision”.

The rector meets Pro and Con separately and asks them whether each of the state-

ments E , L and P is True or False. Coding “True” as 1 and “False” as 0, there are 8 possible

configurations of answers (states): 000,100, . . . ,111 (for example, 101 stands for E and P

are true and L is false).

The rector is not a fan of multidisciplinary experts and he strongly believes that the

chair holder should have only one specialization. Thus, he considers the combinations

100, 010, and 001 as necessary and sufficient for G to be appointed.

Before asking the three questions, the rector (who, as you will recall, is a magician in

his spare time) provides each of the professors with a text consisting of a list of propo-

sitions that truthfully characterizes the states in which the rector’s view is aligned with

that of the professor who receives the text. In other words, the text that Pro (Con) re-

ceives describes the states in which the rector is in favor of (against) the nomination.
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The rector can do this in a number of ways, and his design of the texts will take into

account his knowledge of how each professor will respond to a particular text.

The propositions in each of the texts take the form A ∧ B → C , interpreted as “if

the facts in the antecedent, i.e. A and B , are true in the case of G, then the fact in the

consequent, i.e. C , must also be”. For instance, the proposition ¬E ∧ L → ¬P requires

that “if G is not a scholar in Economics and is a scholar in Law, then he should not be

a scholar in Psychology.” The following table presents the texts given to Pro and Con by

the rector:

You are right if your report satisfies the following propositions:

Professor Pro Professor Con

¬E ∧ L→¬P

E ∧ L→ P

E ∧P→¬L

E ∧¬L→¬P

¬E ∧¬L→ P

L ∧¬P→ E

¬E ∧P→ L

¬L ∧¬P→¬E

As mentioned, the rector knows the cheating procedure applied by a professor if he

finds that the truth does not satisfy all the propositions in his text’s list. In that case,

the professor searches for a state which satisfies the text by advancing along a path. He

starts with the true state. He finds a proposition (in principle, there could be more than

one) that the state violates and switches the truth value of its consequent to obtain a new

state. If the modified state satisfies the text, then he reports it. Otherwise, he continues

the process with the new state until he reaches a state that appeared previously along

the path. He then returns to the true state and looks for another path until he runs out

of possibilities, in which case he gives up and announces the true state. Notice that

each proposition in both of the texts involves all three variables and has two effects: it

rules out one state and directs the professor to a different (unique) state. For example,

the proposition E ∧ ¬L → ¬P on Pro’s list rules out state 101 and in the case that Pro

considers that state, it will direct him to consider the state 100.

To see how the mechanism works assume, for example, that G is an expert in Eco-

nomics (E) and Law (L), but not in Psychology (P). The state E , L,¬P (i.e., 110) satisfies all
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three propositions on Con’s list and therefore Con reports the truth. This state violates

(only) the proposition E ∧ L → P on Pro’s list, leading Pro to consider the state E , L, P

(111), which violates (only) the proposition E ∧ P → ¬L on his list. Pro then considers

the state E ,¬L, P (101), which violates (only) the proposition E ∧ ¬L → ¬P on his list.

He finally reaches the state E ,¬L,¬P (100) which satisfies all the propositions on his list

and he therefore reports it to the rector.

The rector now faces two opposing statements: Con’s statement E , L,¬P (110) and

Pro’s statement E ,¬L,¬P (100). He decides (correctly) against the nomination by apply-

ing the one-way cheating principle: Pro’s statement is the output of the cheating proce-

dure if Con’s statement is true. On the other hand, if Pro’s statement is true, then Con

would declare ¬E ,¬L,¬P (000) instead of what he did declare (the state E ,¬L,¬P (100)

violates only the proposition ¬L ∧¬P→¬E on Con’s list and in that case, Con would be

directed to the state ¬E ,¬L,¬P (000) which satisfies his text).

000 100

110010

001 101

111011

000 100

110010

001 101

111011

Figure 3. Each node in the lefthand cube represents a state. The red dots denote the states that support
Pro’s position, while the black dots denote those that support Con’s. The propositions on Pro’s (Con’s) list
are represented by red (black) arrows in the righthand cube. For example, the red arrow from 101 to 100
represents the proposition E ∧¬L→¬P on Pro’s list.

The left cube in Figure 3 presents the implementation problem. Each node repre-

sents a state. The red dots denote the states that support Pro’s position, while the black

dots denote those that support Con’s. The right cube in Figure 3 illustrates the rector’s

magic. The red arrows correspond to the propositions in Pro’s list while the black arrows

correspond to the propositions in Con’s list. The graph helps us to verify that the pair of

texts presented in the table indeed magically implements the rector’s goal.
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4.2 The general case

The implementation problem: Let S = {0,1}K where K ≥ 3. A state x1x2 . . .x K (short-

hand for (x1, . . . , x K )) is a vector representing the truth values of the propositional vari-

ables v1, . . . , vK , where xk = 1 indicates the “truth” of the variable vk and xk = 0 indicates

its “falsity”. Two states s and t are neighbors, denoted by s N t , if they differ in exactly

one component. Assume that each of the sets W1 and W2 contains at least two states.

The language: A text is characterized by a set of propositions in propositional logic, Φ,

each of which uses some of the variables v1, . . . , vK and has the structure ∧v∈Vφv → φz

where V is a non-empty subset of variables, z is a variable that is not in V , every φv is

either v (the variable v ) or ¬ v (the negation of v ) and φz is either z or ¬ z . Such a

proposition should be interpreted as follows: “If the state satisfies the antecedent of the

proposition (∧v∈Vφv ), then it should also satisfy its consequent (φz ).” A proposition is

complete if all K variables appear in it. A complete proposition excludes one state that

satisfies the antecedent but not the consequent.

A text T (Φ) has the following form:

T (Φ): You deserve the prize if the state satisfies all the propositions in Φ.

One additional constraint on a text is the condition of coherence described in Glazer

and Rubinstein (2012): the text should not include two propositions such that their an-

tecedents do not contradict (i.e., no variable v appears in the antecedents once as v and

once as ¬v ), but their consequents do (i.e., the same variable z appears in the conse-

quents of both propositions – in one case as z and in the other as ¬z ). For example, a

text that includes the two propositions, v1→ v3 and v2→¬v3, is not coherent.

The cheating procedure: The fundamental step in the cheating procedure of a party

who received a text T (Φ) is represented by a binary relation BT (Φ) on S. The statement

s BT (Φ) t indicates that if the party reaches s then he may consider t . It is required that

there be a proposition in Φ which s violates, and t is obtained from s by switching only

the truth value of the variable in that proposition’s consequent. Formally, s BT (Φ) t if:

(1) s /∈ i nt (T (Φ)) (that is, s does not satisfy at least one of the propositions in Φ),

(2) t differs from s in only one variable, and

(3) there exists a proposition φ ∈ Φ such that s and t satisfy φ’s antecedent, and s

does not satisfy φ’s consequent while t does.
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The cheating procedure executes the following algorithm:

Start with the true state s ∗. Advance along a path of the type s1 = s ∗ BT (Φ) s2 BT (Φ)

∙ ∙ ∙BT (Φ) sm (where all the states are distinct). If you reach a state that satisfies the text,

then announce it. If you cannot advance any further without returning to a state on

the path, look for a new path starting again from s ∗. If you do not find a new path,

then announce s ∗.

The procedure induces a binary relation →T (Φ) on S defined by s →T (Φ) t if there is a

sequence of states s1 = s , s2, . . . , sm = t such that s1, . . . , sm−1 do not satisfy T (Φ), t does

and sl BT (Φ) sl+1 for l = 1, . . . , m −1.

Claim B If the principal is equipped with the above language and both parties use the

above cheating procedure, then any implementation problem ‹S = {0,1}K , W 1, W 2› (where

K ≥ 3 and both W 1 and W 2 include at least two states) is magically implementable.

Proof. Recall that a Hamiltonian cycle of the set S is an enumeration x1, . . . ,x2K of all

states of S such that xk N xk+1 for all k (and x2K N x1). The following Lemma is needed:

Lemma: There is an Hamiltonian cycle with more than one block of W 1-states (and thus

also more than one block of W 2-states).

Proof: For every K ≥ k ≥ 1 and δ ∈ {0,1}, let Sk ,δ be the set of all states s such that sk =δ.

Let k be a dimension for which both Sk ,0 and Sk ,1 include an element of W 2. Either Sk ,0

or Sk ,1 contains two states of W 1, unless W 1 has exactly two states (one in Sk ,0 and one

in Sk ,1), in which case W 2 has at least two elements in one of the sets (recall that K ≥ 3).

Therefore, we can assume without loss of generality that S1,1 contains at least two states

from W 1 and one from W 2 and S1,0 contains at least one element from W 2.

Construct an arbitrary Hamiltonian cycle of S1,1. If it contains more than one W 1-

block we can extend it to an Hamiltonian cycle of S with more than one W 1-block. If

not, there must be two W 1-successive states a and b , such that b comes right after a

in the cycle. Construct a Hamiltonian cycle of S as follows: start with b , continue in

the S1,1-cycle to a , move to a ’s neighbor in Sk ,0 and continue with an Hamiltonian cycle

of Sk ,0 that ends with b ’s neighbor in Sk ,0. This Hamiltonian cycle contains at least two

blocks of W 2-states (one in S1,1 and one in S1,0). Figure 4 demonstrates the construction

starting with the Hamiltonian cycle (a = 110,b = 111,101,100) of S1,1:
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Figure 4. The construction of the Hamiltonian cycle with at least 2 blocks of each color (a = 110 and
b = 111).

We can now prove Claim B. Let x1, . . . ,x2K be an Hamiltonian cycle of S that has at

least two blocks of W 1-states (and thus also of W 2-states). Let→ be the binary relation

on S defined by s → t if t appears right after s in the cycle. Define s →1 t if s → t and

s ∈W 2 and s →2 t if s → t and s ∈W 1.

Given any two neighboring states s and t , let φs ,t be the complete proposition that

is satisfied by t but not by s . (That is, given that sk 6= tk :

(i) the consequent of φs ,t is vk if tk = 1 and ¬vk if tk = 0; and

(ii) the antecedent of φs ,t is a conjunction of K − 1 variables or negations of variables,

such that for every l 6= k there is one element in the conjunction: either vl if sl = tl = 1

or ¬vl if sl = tl = 0.)

Finally, let Φi be the set of all propositions φs ,t for which s →i t . The set of states that

satisfy the text T (Φi ) is exactly W i . Obviously, the texts are coherent. It is left to show

that the pair of texts (T (Φ1), T (Φ2))magically implements ‹S, W 1, W 2›.

Consider, for example, s ∈W 1. The state satisfies T (Φ1) and thus party 1 declares s .

Party 2 finds that s does not satisfy T (Φ2). The cheating procedure leads him to declare

the first t ∈ W 2 in the first W 2-block that follows (in the Hamiltonian cycle of S) the

W 1-block that contains s .

The principal can now apply the one-way cheating principle and conclude that 2 is

cheating. If the true state were t (as 2 claims), then party 1 would declare the state r , the

first element in the W 1-block that follows the W 2-block that contains t . Since there are

at least two W 1-blocks, the state r is different from the state s . �

A question that naturally arises is whether the principal needs to involve both parties

or can he make do with involving only one party. With only one party, the implemen-
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tation problem is a pair ‹S, W › where W is the set of states in which the party deserves

the prize. Implementation would require the existence of a text T with i nt (T ) =W such

that there is no s /∈ I nt (T ) and t ∈ I nt (T ) such that s →T t . It follows from Glazer and

Rubinstein (2012) that such an implementation is possible if and only if each connected

component (with respect to the neighboring binary relation) of the complementary set

of W contains a cycle of length 4 or more. Returning to this paper, if either W 1 or W 2 has

this feature, then implementation can be achieved by involving only one of the parties.

However, as in the motivating example in subsection 4.1., this is often not the case and

magical implementation requires the involvement of both parties.

5. Making cheating too risky

This section is motivated by the two-invigilator scenario presented in the introduction.

We will demonstrate that sometimes the principal may be able to distinguish between

a truth-teller and a cheater only after he shares some of his information with the par-

ties. First, however, we need to adjust the notion of implementation problem and the

definition of magical implementation.

The implementation problem: We expand the notion of an implementation problem

to be a tuple ‹S, W 1, W 2, I , Ip ,μ›where the three additional elements are:

I : The parties’ common information structure of S (a partition of S). In state s ∈S,

each party is informed about I (s ), the cell in the partition that contains s .

Ip : The principal’s information structure of S. In state s ∈S, the principal is

informed about IP (s ), the cell in the partition that contains s .

μ: A probability measure on S.

It is required that any information set in I is either a subset of W 1 or of W 2, that is,

the information possessed by the parties is sufficient to determine which party deserves

the prize. If this condition were also applied to Ip , then the case would be trivial: the

principal would arrive at the correct conclusion without having to elicit any information

from the parties.

The language: A text has two parameters: A set Y ⊆ S, a union of sets in Ip which con-

stitutes the information provided to the parties by the principal (in addition to what the
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parties already know according to the information structure I ), and a set W ⊆S, a union

of the cells in I . A text T (Y , W ) has the following form:

T (Y , W ) : The state is in Y . You deserve the prize if the state is in W .

Once a party has received a text T (Y , W ), he needs to send a message to the principal in

the form of an information set in I . It is assumed that a party is aware that the informa-

tion he receives from the principal is truthful (but does not necessarily consist of all the

information possessed by the principal).

The cheating procedure: The cheating procedure in this section is more conventional

than in the previous two. A party’s willingness to cheat by reporting a false information

set in I depends on his fear of getting caught. We say that a party is caught cheating if

the information he reports and the principal’s knowledge do not intersect. It is assumed

that a party considers cheating (by announcing an untrue information set in I ) only if

he believes that the probability of getting caught does not exceed some threshold τ. A

party bases his belief on the prior μ, the information set in I which he initially received,

the principal’s announcement Y , and the principal’s information structure Ip .

To summarize, the procedure followed by a party after receiving the text T (Y , W ) and

given that he initially received the information set K ∈ I is as follows:

If K ⊆W , then declare K .

If K * W , then search for an L ∈ I in which you deserve the prize (L ⊆W )

and the probability of being caught after declaring L is below τ, that is,

μ({s | L ∩ Ip (s ) = ; } | K ∩Y )≤ τ.

If you find such an L, then declare it; otherwise declare K .

This cheating procedure generates the binary relation →T (Y ,W ) on the information

sets in I , defined by K →T (Y ,W ) L if K *W , L ⊆W , and a party that initially receives the

information K and cheats by declaring L gets caught with probability (conditional on

K ∩Y ) not exceeding τ.

Finally, we modify the definition of magical implementation. The principal chooses

a partition I ∗p that is coarser than Ip , and after being informed about an information set

M in Ip he provides each party i with the text T (Y,, W i ) where Y is the cell in I ∗p that

includes M . Thus, it is assumed that the principal provides both parties with the same
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additional information. In order to magically implement his goal, it is required that

whenever the parties’ claims differ (and assuming that the parties follow the cheating

procedure), the principal will be able to activate the one-way cheating principle and

correctly identify the deserving party.

Formally, we say that ‹S, W 1, W 2, I ,μ, Ip › is magically implementable if there is a par-

tition I ∗p coarser than Ip such that for any set Y ∈ I ∗p the texts T (Y , W 1) and T (Y , W 2)

satisfy that if K , L ∈ I , K ∩Y 6= ;, L ∩Y 6= ; and L→T (Y ,W i ) K , then K 9T (Y ,W j ) L.

Notice the difference between catching a cheater and inferring that a party is cheat-

ing using the one-way cheating principle. The former occurs only when the principal

has solid proof that a party is cheating, namely the party’s statement contradicts the in-

formation possessed by the principal. The latter occurs when there is a dispute between

the parties and the principal applies the one-way cheating principle without any solid

evidence that one of the parties is cheating.

The exam example: We now formalize the example presented in the introduction. The

set S consists of four states which are depicted as cells in the table below: a row indi-

cates the content of the whispered message (the solution or just the equation) while a

column specifies the equation (assuming, for simplicity, that there are only two possible

equations):

the whispered message The exam equation

α+1= 4 α+2= 5

a solution a b

an equation c d

The winning sets are W B = {a ,b} and W G = {c , d }. Each party’s information partition

is I = {{a ,b},{c },{d }} while the principal’s is Ip = {{a , c },{b , d }}. Assume that μ(a ) =

μ(b )> 0.

When τ < 1/2, the texts T (S, W B ) and T (S, W G ) (the principal does not provide any

additional information to the parties) magically implement the problem:

– When the parties are informed that the state is c (d ), they know that the principal pos-

sesses the information {a , c } ({b , d }). Then, party B is not afraid to cheat and declare

{a ,b} since he will with certainty not be caught cheating.

21



– When the parties are given the information {a ,b}, they do not know whether the prin-

cipal received the information {a , c } or the information {b , d }. Party G is afraid to report

{c } since if he does, he will be caught cheating with probability μ(b )/[μ(a ) + μ(b )] =

1/2>τ. Similarly, G is afraid to cheat by reporting {d }.

Thus, {c }→T (X ,W B ) {a ,b} and {d }→T (X ,W B ) {a ,b} but {a ,b}9T (X ,W G ) {c } and

{a ,b}9T (X ,W G ) {d } and the problem is magically implementable.

Note that if τ> 1/2, then also {a ,b}→T (X ,W G ) {c } and {a ,b}→T (X ,W G ) {d } and the pair

of texts fails to magically implement the problem. This will also be the case if the prin-

cipal reveals his knowledge. Then, in state a (for example), the principal will announce

{a , c } and party G (who possesses the information {a ,b}) will not be afraid to cheat by

declaring {c }. At the same time, party B will not be afraid to cheat in state c by declar-

ing {a ,b}. Thus, full information revelation will not enable the principal to perform his

magic.

The asymmetry between a cheater and a truth-teller emerged on its own in the above

example. The following example demonstrates that providing information is sometimes

necessary for magical implementation.

Setting a trap by providing additional information:

S = {a ,b , c , d , e , f },

W 1 = {a ,b , c }, W 2 = {d , e , f },

I = {W 1, W 2},

Ip = {Z1 = {a },Z2 = {c , d },Z3 = {b , e },Z4 = { f }},

μ= the uniform probability measure on S.

Assume that τ is above and below

a b c

W 1

d e f

W 2

Figure 5. The information partition I is represented by the ellipses while Ip is represented by the colors.

It is easy to verify that as long as τ > 1/3 = μ(a )/μ(W 1) = μ( f )/μ(W 2), the prob-

lem is not magically implementable without the principal providing additional infor-
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mation to the parties. However, if τ < μ(a )/[μ(a ) + μ(c )] = μ( f )/[μ( f ) + μ(d )] = 1/2,

magical implementation is achieved by the principal committing to supply additional

information according to the information structure I ∗p = {Z1 ∪Z3,Z2 ∪Z4}. Assume, for

example, that the principal has announced Z1 ∪Z3 = {a ,b , e }. In the case that the par-

ties are initially informed of W 1, each party will conclude that the state of nature is ei-

ther a or b . Party 2 is deterred from cheating since he will be caught with probability

1/2 = μ(a )/[μ(a ) +μ(b )] > τ. In the case that the parties are initially informed of W 2,

they will conclude that the state of nature is e and therefore the principal possesses the

information {b , e } and party 1 will not be caught cheating if he announces W 1. Thus,

W 1 9T (Z1∪Z3,W 2) W 2 and W 2→T (Z1∪Z3,W 1) W 1 and in the case of disagreement the princi-

pal will be able to use the one-way cheating principle to infer that party 1 is the cheater.

6. Takeaway

The paper’s takeaway is methodological. It draws attention to the potential of designing

mechanisms that rely on the difficulty of cheating. Most of the implementation liter-

ature ignores this and assumes that cheating is as easy as telling the truth. Although

some of the more recent literature does incorporate the difficulty of cheating by assum-

ing that it is costly or that the agents are bounded in the lies they can tell, the imposed

constraints are taken to be independent of the mechanism. (See, for example, Green

and Laffont (1986), Lipman and Seppi (1995), Glazer and Rubinstein (2006), Kartik and

Tercieux (2012) and Ben-Porath, Dekel and Lipman (2019).) According to our approach,

agents wishing to cheat successfully behave like problem solvers without taking into ac-

count any strategic considerations and without fully understanding the principal’s deci-

sion rule. The difficulty of the problem facing the agent depends on the mechanism. We

provide three examples in which a mechanism designer who understands the cheating

procedure being used by the agents can design a mechanism that exploits the inherent

asymmetry between a truth teller and a liar in order to identify the liar, without observ-

ing an actual “smoking gun”.
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As already mentioned, our notion of implementation is not game-theoretic. We feel

that the literature is overly conservative in its focus on implementation by means of

game-theoretical concepts. Although game theory obviously provides an interesting ap-

proach to study implementation problems, it is far from being the only one and models

that ignore agents’ strategic reasoning might be interesting in their own right.

A Final Comment by Ariel Rubinstein: I am fully aware (and in fact proud) that the paper

is written in a style different from what is the convention these days in Economic Theory.

The discussion is purely conceptual. We do not claim that there are practical applica-

tions; the paper is short; and although the discussion is carried out in formal language,

we avoid any fancy mathematics. The goal is simply to convey an idea. Indeed, I am

suspicious of any work in Economic Theory that goes beyond presenting one main idea

accompanied by a few simple examples. This paper should be read almost like a story:

you might find it interesting, entertaining or elegant, or maybe... not. If the reader de-

rives something useful from the article, that’s fine; however, it is not my intention to

generate any “practical” conclusions.
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