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ABSTRACT

Three different topics are treated: Arrow's impossibility theorem,

Rawls' difference principle and a choice problem for ''the youth in a strange

town''.

Three axiom systems on the order relations, which include the
requirement that the relation be definable in the pertaining language, are

correspondingly given. The order relations satisfying the axioms in certain

models are characterized.
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1. Introduction.

The three sections deal with three different topics. Beyond that,
this paper aims to .exemplify the importance of. including the element of
"language" in discussions within the theories of social choice, utility and
measurement.

taining relation

symbols which may be used in addition to the.other logical signs - the connéctives,
the quantifiers and the variables. For each language we will provide a model and
particularly an interpretation. for the relation symbols in it. We will examine
the question of what order relations which are.definable in the language and
satisfy several further axioms exist for this model.

In section 2 we will consider Arrow's. problem of social choice. The
language will contain n. relation symbols which "'represent" the n  preference
relations of the individuals. We will construct a model in which every ordef
relation satisfying ''unanimity" and which can be formulated in terms of these

A enaides wnth
n relations is a dictatorial order relation, .in the sense thE?*5§actly one of
the individuals' preference relations is identical to it.. We will discuss the
question of to what extent the requirement of definability replaces the |
requirement of independence of irrelevant alternatives.

In section 3 we will deal with Rawls' maximin principle. The language
contains a single binary relation. We will consider a set of the form X x N
with a binary relation » , where (Y,j) ¥ (x,i) means that the social
possibility y 1is more acceptable to j than the possibility x is to i .

We will give‘gg; axiom system which will include the definability requirement

and prove that in this model the only order relation satisfying the axioms is

the maximin.



In section 4 we will discuss '"the youth who arrives at a strange town
and has to choose one of .two girls, S The information
given him is the names of the girls' male companions over the last n days.
Assuming that the youth is ''rational", .we may take it that his choice is
determined by an order relation on n-tuples of boys' names. We will characterize

the order relations expressible in the youth's language.

Definitions .and Notation.

Background material. in logic may.be. found in [3] and [8].

We will employ the formal language of the predicate calculus. The
language has the following atomic symbols: 1. object symbols 2. variables
3. relative symbols 4. connectives (M- negation, v.~ disjunction,
A - conjunction, - - implication and & .- equivalence) 5. quantifiers
(Vv - for all, 3 - there exists). Atomic formulae are relative symbols in
whose empty positions are.inserted object .symbols and.variables. A well formed

formula (wff.) is defined inductively by:
1) Atomic formulae are wffs.
2) If ¢ and ¢ are wffs., soare=y¢y , OV, @AV, OV, Q&P .

3) If y is a wff., and does not contain the signs 3y ., Vy , then Vyy ,

Jyv are wffs.

Let A be a set. An n-place relation on A is a subset of A" .

For a 2n-place relation R we write (x1’°°“’xn)R(y1""°’yn) in place of



(xl,..,,xn,yl,ﬂ..,yn) € R . A binary relation on A is an order relation if
it 1is reflexive, transitive and complete. R is a strong order if it is
asymmetric (aRb = bRa) , transitive and connected. If 7, is an order relation

we will as usual write " a~Db " in place of " a Zb and b xa'", and

"a»b!" in place of " a Zb and not bZa". EL denotes the

lexicographic order on R" ,  that is (b1’°°°’bn) ZL (a1’°°°’an) if there

exists k such that for all k > i , ai =b, , and b, > a or else for

i k k’

all 1<1i¢<n a; =b, . If x €A", we will write x = (Xq0eenX )

If ¢ isawff., then 1 :@=¢, (-1) - @ =20 . |A| is the order
of the set A .

Let L be a language containing n relation symbols with il"“"in
places. A model is an (n+l)-tuple <A,R1,m,.,Rn> , Where A is a set (the
universe of the model) and the Rj are ij-place relations on A . The notion
of a wff. ¢ being "satisfied in M under the substitution of t

1”"’th " is

) . Let X be a set of

defined naturally, and is denoted by M E w(tl,.oo,tn

wffs. in the language L , and let M be a model for L . A model M admits
elimination of quantifiers relative to X if for every formula m(vl,.,.,vn)
there exists a Boolean combination of formulae in ¥ , w(vl,.,.,vn) , such
that ME (Vvl,.,.,vn)w(vl,..o,vn) o w(vl,,,,,vn) . If ¥ 1is the set of
atomic formulae, we will say that M admits elimination of quantifiers.

A formula w(xl,.,.,xn, yl,.,,,yn) explicitly induces an order on
M if the relation ¢ defined by

M . .

(xl,..,,xn)w (yl,,..,yn) & ME m(xl,na.,xn, yl,...,yn) is an order relation
on [M]n, A relation R will be called explicitly definable in M if there

exists ¢ such that mM = R ,



2. Arrow's Impossibility Theorem

Theorem 2.1, Let L be a language containing n binary relation
symbols ¥1,”., >n There exists a model M for L where the binary
relations are interpreted as complete and strong order relations and such that
if ¥ is a strong order relation on the universe of M , definable in L and
satisfying the axiom of unanimity (for all i b>’i a=bYa ) then there

exists a unique i such that % = >'i .

Proof. Let Q be the rationals. It is a simple matter to construct
n ‘
a set Ac Qn such that AN exl Ii # § for all intervals Ii,..,.,In and such
1:
that for all a,b € A, a*b = a; * bi for all i=1,...,n . Define %i

b >'i a if and only if bi > ay

Let M = <A, >1,..,,>n>a

Clearly >i are strong complete order relations on A , -and it is
easily checked that M admits elimination of quantifiers. Let (y,x) be the
formula in L satisfying y» x if ME @(y,x) . ¢ is equivalent to a
disjunction of "orderings' where an "ordering" is a conjunction of the form

n
(61 € {1,-1}) ) 1/=\1 61 © (Y >1 X)

Suppose > * >i for all i . Let wi(y,x) be the ordering in ¢ containg

n

X >i y . Let b0 € A ; we will define bl,bz,.n.,b inductively so that

M E wi(bl,b1+1) and for all 1 <3 <i, b;, ;) ,

-1 . .
Suppose we have chosen b ; b" is chosen so that for 1 < j < m-1



0 ,m-1
b., b. if s .
(bs, b ) Y X)) vy > x
BT €
J
771 ) if (%) s x Dy
bﬁ € (max {bg, bﬁ—l}, ®) , and for j > m
771 ) iU (x) 2 X Py
bt €
J
(-0, bm‘l) if v (y,x) »y»>. x
J m J

and finally b? > bg for all i so b" > bO for all i .

Because of the unanimity, bn > b0 , in contradiction.to.the transitivity and

inflexivity of ) .

Two differences between this result and Arrow's impossiblity theorem
are worthy of mention. Arrow considers the collection of models of the form
<X, R1’°°°’Rn> where X is a given set and the Ri are strong order
relations on X . Theorem 2.1 considers a single model.

Secondly, Arrow uses an independence axiom, here ‘replaced by the
"definability" requirement. Had we not in addition rq;:ri::zd ol discussion

to a single model the theorem would have been invalid. 4t is easily verified

that the following preference relation is definable in the language L .



: majority rule
)P(Rl,,,.,R ) = ... according as

majority rule induces an order on X

Jotherwise

3. Rawls' Maximﬁn»Princip}e

The main theorem here is Theorem 3.1 which characterizes the order

relations 2: on R" satisfying the following three axioms:

Axiom A. For all (al,.,.,an) € R® and for all o € Sn

(al"°"an)’~'(ao(l)’°""ao(n))

Axiom P. If ai z bi for all i and there exists 10 such that

a . > biO , then (al,...,an) > (bl,...,bn)

Axiom D. There exists a formula w(yl,...,yn,xl,...,xn) in the
language containing a single binary relation such that in

the model of the reals, M= < R,> > ,

MFE @y, x]o.,xn) iff Yoy % (xl...xn)



n . . .
For a € R* , we will denote the components of a in decreasing

n 1 2 n

order by al,.,,,a (amz2a”"z2 ... 2a)

Theorem 3.1. The order relations on R satisfying axioms A, P, and

D are the n! order relations for which there exists a permutation il"'in

i i i i
of 1,...,n such that y ¥ x iff (yll...yln) 2L (x 1 x 1y

Proof. The theory of dense order with no initial and final elements
is a typical example of a theory admitting elimination of quantifiers ([2]);

we may therefore assume that given m(yl...yn,x 'Xn) s the formula explicity

1"
defining %, , ¢ is equivalent to a disjunction of orderings where an ordering
is a conjunction which "orders" {yl,...,yn, x1’°‘°’xn} ,» that is, contains

v, > Vj or " v, > vj as formulae in the conjunction for all

vi,vj € {y1’°"’yn’ xl,.a.,xn}

Axiom A allows us to restrict ourselves to the order induced by ¢ on non-
increasing sequences. Suppose that for all 1 £ i <n there exists an

ordering wi such that X; > Yy; appears in the ordering. Axiom P enables us
to assume that by orders {yl,...,yn, xl,...,xn} with strong inequalities,

Let aO € R" . Choose al € R® as follows:

Let j1 be the largest number j for which Xj > yj appearing in ¢1
< .

=3

1 1 1 0
Choose ap > a, > ... > ajl > ay
Choose a; ol 0 ai from (-eo, a?) so that they satisfy the relations in wl

1
relative to aO “os aO .

1 n
1 k n 0. _k . .

Suppose we have chosen a ...a € R° and a = a . Let Jke1 be the maximal

j for which xj > Yi ,] appears in the conjunction y,

L
iy jrt Uit S )



We will choose ak+l > .. > ak+1
Jk+1

] from the interval (a?, ®) so that they

satisfy the relations in wj ‘1 relative to a?,...,a? , and we will choose

k k

ak+1 ,...,ak+1 from the interval (-oo, ao) so that they satisfy the
Jk+1+1 n : 1

relations in wj relative to

k k
k+1 ajk+1,..,,an : The denseness and non-

. . . +
existence of initial and final elements guarantee the existence of ak 1

Thus ¢ . (252" and hence a¥% aX'! . we will finally obtain
jk+1 L~

ao b a1 P AR 4 a™ s a§l> ag from P anl)-ao , and from the

transitivity - aO a; a™ » a contradiction.

So far we have proved the existence of ii s such that Yi > X = y>x .
1 1

Let us examine the ordering disjunction in ¥ which contain Yi =X
1 1

This disjunction defines an order on decreasing sequences of length n whose

il'th element is 0 . Similar considerations lead to the existence of 12
such that y, =x, |, Y. *X. = y>x, and generally to the existence
i i i i
1 1 2 2 y
of il’° .,in such that for all 1<k < n ,
k-1
ALY, =X, Ay, »X, = y>x.
J*l 1j 1j 1k ]k

"Isolation'" of the maximin principle from the n! relations of

theorem 3.2 may be achieved by any one of the following axioms:
Axiom CON 2: is convex.

Axiom ME  For all 1i,j there exist a,b € R" such that
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Proposition 3.2. i) The only order relation on R" satisfying

axioms C, P, D, A is the maximin.

ii) The only order relation on R" satisfying

axioms ME, P, D, A is the maximin.

Proof. i) By 3.1 there exists a permutation il"'iﬁ such that
i i i i |
y 2: x iff (y L...y B >L (x Lo x ™y . Suppose % is not the maximum

order. Let k be the smallest integer such that for i, #+n - k + 1 = N

k

(N, NN N, ) > (N, L, N0, 0)

(—Nz,...,-NZ,N,N,...N-NZ) > (—Nz,...,—Nz,O,.e.,O)

Thus by axiom C,

(N, N2 -1, 1) > (NS, N20,. 00

which contradicts P .

..in such that

ii) By 3.1, there exists a permutation il'

i i i
y;:.x iff (y 1...y ) ZL (x 1.,ax ) Let k be the samllest integer
for which ik + n-k+1 (ik < n-k) . There exist, by Axiom ME, a,b such

1. i. 1 ik
that b > a but forall j<k, aJd=b7 and a“>b¥X, thus

a > b, a contradiction!

Definition. The relation 2; on R" which satisfies y 2: x iff

n 1.

n 1. L . .. Y.
27 (x .. .xT) is called the maximin relation.

(y ...y

. " . : n . . .
~ Axiom P For all (bl""bn)(al°"an) € R, a; bi for all i

implies (a;...a ) > (by...b)
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Axiom C > is a continuous relation (for all a {x | x % a) is
T e~

closed)

Proposition 3.3. If ,2: is an order relation on R" satisfying

axioms A, D, P*, C, then there exists .i such that b 23 a iff t52at

Proof. The existence of i such that y1 > x' = )f)ﬁ x follows

from the proof of 3.1. Let a,b € R" s a1 = b1 . We can easily construct

k

sequences X, - a , Y 2 b such that yi > x; , and so yk E: x  for all

k . From axiom C, b ¥, a . Thus bt 2al = b k; a .

Axiom ME~* for all 1 £ i € n-1 there exist a,b € Rn such that

b1 =a; > b2 =a,>...> a8, > bi >...bn_1 =a ;> bn > ey
and b ¥ a .
Corollary 3.4. If }5“ is an order relation on R" which

satisfies axioms A, D, P*, C, .and CON (or ME*) - then " 2 2" iff b k;a .

Several axiomatic characterizations of Rawls' maximin principle have
been published recent}y ([2], [4], [6]1, [10]). 1In the notation of [6], we
have dealt with a cestasp—wmivense where X , the set of social possibilities
was identified with R" (in fact we could have generalized to A" where A
is a densely ordered set with no initial and final elements), the set of
individuals was N = {1,...,n} and the relation R on X xN , interpreted
by " (x,i)R(y,j) " iff "the utility i obtains in situation x is
greater than the utility j obtains in situation y " , 1is
(x,i)ﬁ(y,j) ® X, 2 yj . In this lies the first main difference between this

paper and the others.
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The second difference is in the omission.of the axiom of Binary

Relevance and the including of the requirement of definability. It may be
easily verified that in this case too, mere replacement of binary relevance
by the requirement of definability without restricting the domain would not
have given the maximin characterization. For example, the following criterion
is definable: " xSy if the majority rule defines an order relation on the
model, and also a majority prefer x to y., and also xSy , if the
majority rule does not define.an order relation, but x is preferred to vy

under the maximin criterion.”

4., A Youth Arrives in a Strange Town

A youth arrives in a strange town. . He isabowtvbewdetiro-tus
vEfere~oi £rdomdabip.  The information given him will be the list of boys who
went out with the girls over .the last. n days. Being a stranger in town all
he can tell about the boys in the list is whether they are different or not.
Our youth's language, L, will be '"the puremlanguagé with equality"
(without relations). The model M is the set of boys in town. Assuming the
youth is "rational', we may take that there exists an order relation on a
list of boys of length n which determines the youth's choice.

We will characterize (by proposition 4.1 and 4.2) the order relations
expressible in L , i.e., the order relation fulfill the following requirement:
There exists in L a formula w(xl,...,xn, yl,...,yn) such that
(xl,..,,xn) > cy1’°°'fyn) iff ME w(xl,...,xn, yl,...,yn)

Given an n-tuple x = (xl,...,xn) we will denote by EX the

partition of {1,...,n} into equivalence classes under the equivalence relation
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defined by

(for example, for x = (a,b,b,a,c,a) the equivalence partition {1,...,6} is
{ {1,4,6},{2,3},{5} } ) . We will denote the set of equivalence classes of

{1,...,n} by E -

Proposition 4.1. Let R be a relation on En . There exists

w(xl,...,xn, yl,...,yn) is the language L such that Mk w(xl,...,xn, yl,..,,yn)

iff E_ R E.
X y
Proof. For all e € En we denote the equivalence relation on

{1,...,n} which induces e by e' , and define

Viyuoo = A V. =V.A A V. FV. . Define
we( 1’ ’Vn) S 1 s
ie'j ~ie'j

w(xl,...,xn, yl,...,y )

n v ms(xl,..,,xn) A wt(yl,...,y Y . It is

sRt n

immediately clear that ¢ satisfies the requirements.

The main proposition in this section is the following:

Proposition 4.2. Let w(xl,...,xn,yl,...,yn) be a formula in L

which defines explicitly an order relation in M . Then there exists an order

relation R on En such that

M F(p(xl,...,xn,yl,.,.,yn) . iff Ex R Ey

Proof. ¢ may contain predicates. But from a theorem of Tarski
(see [2]) it follows immediately that there is a formula | in the same free
variables Xisee X 5y seeea¥y --such that

)]

M= VX ... yl...yn[m(xl...yn) 6~w(xlw..yn)

n
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Further, we may assume that ¢ 1is the disjunction of formulae which are

conjunctions in which for all Vi’vj € {xl,...,xn,yl,...,yn} either vi = Vj

or v, = Vj appear. Such a conjunction will be called an "ordering'" of
XpoeoXp YooYy Clearly all that is required is to show that given two
n-tuples a and b with identical equivalence structures (Ea = Eb) s Wwe

have
M ¥ @(a,b) & @(b,a)

Before the proof it may help to examine an example. Let 1 = 3 and let the
universe of M be f[a,b,c,d} . (a,b,c) and (d,a,b) have identical
equivalence structures ( { {1),{(2},{3} } ) . Suppose (d,a,b)wM(a,b,c) .
Then (a,b,c)wM(b,c,d)wM(c,d,a)wM(d,a,b) , and thus (a,b,c)mM(d,a,b) .

Let a = (al,...,an) and b = (bl,...,bn) be two n-tuples of the elements

k

of the model such that Ea = E = {I }j=1 .

b J

Suppose b mM a . Let i .,ik be representatives from the equivalence

1’

classes. We denote ¢ -

it
~
20
-
»

.s8, ,b. ,...,b, ) where
iy

wseessby b= by ,.00,br b {a, ,o,a, ).
iy’ Iy 1 Ty Y Tk

Let t be a permutation of {7,...,k+%} such that c, = bi = r(4) = 3 |

j
For all natural numbers t we define dt,d* € |M|" , and
dt = ¢ where j satisfies 1 €T,
oty j
n 1 _ e o . mo_om-l
4’ =a and d =h . Forall m, Bgy=E , ad d - d iff
bi = ai . Thus 4" mﬂ dm'] . There exists r such that < = e (e the

identity permutation); thus
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a=dt $M dr—l M M d1 - b wM d0 - a
hence
a q} b and b wM a
Remark. "I will check who is the most popular boy in town. Lécking

other information I will make do with the two candidates' lists and designate
the boy appearing in the two lists most often as the most popular. T will
choose the gir] who went out with him most."

In accordance with the previous discussion such a procedure is
irrational - in thbe sense this term has been used here - since a girl with
the list (b,a,b) is preferred to a girl with (c,b,c) in spite of the fact

that their equivalence structures are identical.

Conclusion

What is the meaning of the requirement that preference relations
be definable in a given language?

It appears to me that for many problems in the theories of
measurement, utility and social choice, it would be natural to investigate
the preference relations in conjunction with the relevant language.

The following is from Shelley and Bryan [6]

The importance of judgements and the importance of the human
being in making optimal decisions rests ultimately on the fact
that the problems men address themselve« to are these they have
chosen to state. If an unstated problem is 'solved' there is

no awareness of a 'solution'. Therefore the relations between
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men and their problems are those of the languages used to
state a problem and to reason out a solution (select a course
of action) and those of the languages used to produce a
solution and to express what is considered to be good, best,

or optimal."

I feel that if every one of us tried to analyse the way he makes his
decisions and evaluations, he would find it difficult to separate them from
the 'language' he uses, 'thinks' and 'decides' in.

We instinctively justify to ourselves any decision and try to

N urt
rationalize it. We are inclined to formulate our judgements in words and to
justify them in words.

If this applies to the behavior of an individual, the more so does
it apply to a collective. A social body cannot but formulate its preferences
and decisions verbally, if only because the conveyance of information from
one individual to another within the body is impossible without language.

I would like to mention in passing a basic difficulty we encoﬁ%er.
The scope of the mathematical treatment is confined to formal languages,

whereas decision problems involve natural languages, and the relationship

between natural and formal languages is not a clear one.
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